E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300c3
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	333MHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA Exposed Pad
Supplier Device Package	516-TEPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8313zqaff

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Overview

The MPC8313E incorporates the e300c3 core, which includes 16 Kbytes of L1 instruction and data caches and on-chip memory management units (MMUs). The MPC8313E has interfaces to dual enhanced three-speed 10/100/1000 Mbps Ethernet controllers, a DDR1/DDR2 SDRAM memory controller, an enhanced local bus controller, a 32-bit PCI controller, a dedicated security engine, a USB 2.0 dual-role controller and an on-chip high-speed PHY, a programmable interrupt controller, dual I²C controllers, a 4-channel DMA controller, and a general-purpose I/O port. This figure shows a block diagram of the MPC8313E.

Figure 1. MPC8313E Block Diagram

The MPC8313E security engine (SEC 2.2) allows CPU-intensive cryptographic operations to be offloaded from the main CPU core. The security-processing accelerator provides hardware acceleration for the DES, 3DES, AES, SHA-1, and MD-5 algorithms.

1.1 MPC8313E Features

The following features are supported in the MPC8313E:

- Embedded PowerPCTM e300 processor core built on Power ArchitectureTM technology; operates at up to 333 MHz.
- High-performance, low-power, and cost-effective host processor
- DDR1/DDR2 memory controller—one 16-/32-bit interface at up to 333 MHz supporting both DDR1 and DDR2
- 16-Kbyte instruction cache and 16-Kbyte data cache, a floating point unit, and two integer units
- Peripheral interfaces such as 32-bit PCI interface with up to 66-MHz operation, 16-bit enhanced local bus interface with up to 66-MHz operation, and USB 2.0 (high speed) with an on-chip PHY.
- Security engine provides acceleration for control and data plane security protocols
- Power management controller for low-power consumption
- High degree of software compatibility with previous-generation PowerQUICC processor-based designs for backward compatibility and easier software migration

1.10 Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) allows the MPC8313E to exchange data between other PowerQUICC family chips, Ethernet PHYs for configuration, and peripheral devices such as EEPROMs, real-time clocks, A/D converters, and ISDN devices.

The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface (receive, transmit, clock, and slave select). The SPI block consists of transmitter and receiver sections, an independent baud-rate generator, and a control unit.

1.11 DMA Controller, Dual I²C, DUART, Local Bus Controller, and Timers

The MPC8313E provides an integrated four-channel DMA controller with the following features:

- Allows chaining (both extended and direct) through local memory-mapped chain descriptors (accessible by local masters)
- Supports misaligned transfers

There are two I²C controllers. These synchronous, multi-master buses can be connected to additional devices for expansion and system development.

The DUART supports full-duplex operation and is compatible with the PC16450 and PC16550 programming models. The 16-byte FIFOs are supported for both the transmitter and the receiver.

The MPC8313E local bus controller (LBC) port allows connections with a wide variety of external DSPs and ASICs. Three separate state machines share the same external pins and can be programmed separately to access different types of devices. The general-purpose chip select machine (GPCM) controls accesses to asynchronous devices using a simple handshake protocol. The three user programmable machines (UPMs) can be programmed to interface to synchronous devices or custom ASIC interfaces. Each chip select can be configured so that the associated chip interface can be controlled by the GPCM or UPM controller. The FCM provides a glueless interface to parallel-bus NAND Flash E2PROM devices. The FCM contains three basic configuration register groups—BR*n*, OR*n*, and FMR. Both may exist in the same system. The local bus can operate at up to 66 MHz.

The MPC8313E system timers include the following features: periodic interrupt timer, real time clock, software watchdog timer, and two general-purpose timer blocks.

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8313E. The MPC8313E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

This table provides the absolute maximum ratings.

Table	1. Absolute	Maximum	Ratings ¹
-------	-------------	---------	----------------------

	Characteristic	Symbol	Max Value	Unit	Note
Core supply volta	age	V _{DD}	-0.3 to 1.26	V	
PLL supply voltage		AV _{DD}	-0.3 to 1.26	V	—
Core power supp	ly for SerDes transceivers	XCOREV _{DD}	-0.3 to 1.26	V	—
Pad power supply	y for SerDes transceivers	XPADV _{DD}	-0.3 to 1.26	V	—
DDR and DDR2	DRAM I/O voltage	GV _{DD}	-0.3 to 2.75 -0.3 to 1.98	V	_
PCI, local bus, DUART, system control and power management, I^2C , and JTAG I/O voltage		NV _{DD} /LV _{DD}	-0.3 to 3.6	V	—
eTSEC, USB		LV _{DDA} /LV _{DDB}	-0.3 to 3.6	V	
Input voltage	DDR DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
Enhanced three-speed Ethernet signals		LV _{IN}	-0.3 to (LV _{DDA} + 0.3) or -0.3 to (LV _{DDB} + 0.3)	V	4, 5
Local bus, DUART, SYS_CLK_IN, system control, and power management, I ² C, and JTAG signals		NV _{IN}	–0.3 to (NV _{DD} + 0.3)	V	3, 5
	PCI	NV _{IN}	–0.3 to (NV _{DD} + 0.3)	V	6
Storage tempera	Storage temperature range		–55 to 150	°C	

Notes:

- 1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 3. **Caution:** NV_{IN} must not exceed NV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- Caution: LV_{IN} must not exceed LV_{DDA}/LV_{DDB} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

2.1.2 Power Supply Voltage Specification

This table provides the recommended operating conditions for the MPC8313E. Note that the values in this table are the recommended and tested operating conditions. If a particular block is given a voltage falling within the range in the Recommended Value column, the MPC8313E is capable of delivering the amount of current listed in the Current Requirement column; this is the maximum current possible. Proper device operation outside of these conditions is not guaranteed.

This figure provides the AC test load for the DDR bus.

Figure 7. DDR AC Test Load

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface.

7.1 DUART DC Electrical Characteristics

This table provides the DC electrical characteristics for the DUART interface.

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2.0	NV _{DD} + 0.3	V
Low-level input voltage NV _{DD}	V _{IL}	-0.3	0.8	V
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	$NV_{DD} - 0.2$	—	V
Low-level output voltage, I _{OL} = 100 μA	V _{OL}	—	0.2	V
Input current (0 V \leq V _{IN} \leq NV _{DD})	I _{IN}	—	±5	μA

7.2 DUART AC Electrical Specifications

This table provides the AC timing parameters for the DUART interface.

Table 23. DUART AC Timing Specifications

Parameter	Value	Unit	Note
Minimum baud rate	256	baud	
Maximum baud rate	> 1,000,000	baud	1
Oversample rate	16	_	2

Notes:

1. Actual attainable baud rate is limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

Parameters	Symbol	C	conditions	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	LV_{DDA} or $LV_{DDB} = Min$	2.00	LV _{DDA} + 0.3 or LV _{DDB} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV_{DDA} or $LV_{DDB} = Min$	V _{SS} – 0.3	0.40	V
Input high voltage	V _{IH}	_	LV_{DDA} or $LV_{DDB} = Min$	1.7	LV _{DDA} + 0.3 or LV _{DDB} + 0.3	V
Input low voltage	V _{IL}			-0.3	0.70	V
Input high current	Ι _{ΙΗ}	$V_{IN}^{1} = LV_{DDA} \text{ or } LV_{DDB}$		—	10	μA
Input low current	۱ _{IL}	N	$V_{\rm IN}^{1} = V_{\rm SS}^{1}$	-15	_	μA

Table 25. RGMII/RTBI DC Electrical Characteristics (continued)

Note:

1. Note that the symbol V_{IN}, in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.2 MII, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for MII, RMII, RGMII, and RTBI are presented in this section.

8.2.1 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.1.1 MII Transmit AC Timing Specifications

This table provides the MII transmit AC timing specifications.

Table 26. MII Transmit AC Timing Specifications

At recommended operating conditions with $LV_{DDA}/LV_{DDB}/NV_{DD}$ of 3.3 V ± 0.3 V.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	_	400	—	ns
TX_CLK clock period 100 Mbps	t _{MTX}	_	40	—	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	_	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise V _{IL} (min) to V _{IH} (max)	t _{MTXR}	1.0	_	4.0	ns
TX_CLK data clock fall $V_{IH}(max)$ to $V_{IL}(min)$	t _{MTXF}	1.0		4.0	ns

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub></sub>

8.2.2 RGMII and RTBI AC Timing Specifications

This table presents the RGMII and RTBI AC timing specifications.

Table 30. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LV_{DDA}/LV_{DDB} of 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
Data to clock output skew (at transmitter)	t _{SKRGT}	-0.5	_	0.5	ns
Data to clock input skew (at receiver) ²	t _{SKRGT}	1.0		2.6	ns
Clock cycle duration ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ^{4, 5}	t _{RGTH} /t _{RGT}	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX ^{3, 5}	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{RGTR}	_	_	0.75	ns
Fall time (20%–80%)	t _{RGTF}	_	_	0.75	ns
GTX_CLK125 reference clock period	t _{G12} 6	_	8.0	—	ns
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	47		53	%

Note:

- Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the RTBI (T) receive (RX) clock. Note also that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).
- 2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns is added to the associated clock signal.
- 3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.
- Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.
- 5. Duty cycle reference is $LV_{DDA}/2$ or $LV_{DDB}/2$.
- 6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.
- 7. The frequency of RX_CLK should not exceed the GTX_CLK125 by more than 300 ppm

8.3.2 AC Requirements for SGMII SD REF CLK and SD REF CLK

This table lists the SGMII SerDes reference clock AC requirements. Note that SD_REF_CLK and SD REF CLK are not intended to be used with, and should not be clocked by, a spread spectrum clock source.

Symbol	Parameter Description	Min	Тур	Мах	Unit
t _{REF}	REFCLK cycle time	—	8	—	ns
t _{REFCJ}	REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles	_	—	100	ps
t _{REFPJ}	Phase jitter. Deviation in edge location with respect to mean edge location	-50	_	50	ps

Table 31. SD_REF_CLK and SD_REF_CLK AC Requirements

8.3.3 SGMII Transmitter and Receiver DC Electrical Characteristics

Table 32 and Table 33 describe the SGMII SerDes transmitter and receiver AC-coupled DC electrical characteristics. Transmitter DC characteristics are measured at the transmitter outputs (SD TX[n] and SD_TX[*n*]) as depicted in Figure 16.

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	XCOREV _{DD}	0.95	1.0	1.05	V	
Output high voltage	V _{OH}	—	—	XCOREV _{DD-Typ} /2 + V _{OD} _{-max} /2	mV	1
Output low voltage	V _{OL}	XCOREV _{DD-Typ} /2 - V _{OD} _{-max} /2	—	—	mV	1
Output ringing	V _{RING}	—	_	10	%	
Output differential voltage ^{2, 3}	V _{OD}	323	500	725	mV	Equalization setting: 1.0x
Output offset voltage	V _{OS}	425	500	575	mV	1, 4
Output impedance (single-ended)	R _O	40	—	60	Ω	
Mismatch in a pair	ΔR _O	—	—	10	%	
Change in V _{OD} between 0 and 1	$\Delta V_{OD} $	—	—	25	mV	
Change in V _{OS} between 0 and 1	ΔV _{OS}	—	—	25	mV	
Output current on short to GND	I _{SA} , I _{SB}	_	_	40	mA	

Table 32. SGMII DC Transmitter Electrical Characteristics

Notes:

- 1. This will not align to DC-coupled SGMII. XCOREV_{DD-Typ} = 1.0 V. 2. $|V_{OD}| = |V_{TXn} V_{\overline{TXn}}|$. $|V_{OD}|$ is also referred as output differential peak voltage. $V_{TX-DIFFp-p} = 2^*|V_{OD}|$.
- 3. The $|V_{OD}|$ value shown in the Typ column is based on the condition of $XCOREV_{DD-Typ} = 1.0$ V, no common mode offset variation (V_{OS} = 500 mV), SerDes transmitter is terminated with 100- Ω differential load between TX[*n*] and TX[*n*].
- 4. V_{OS} is also referred to as output common mode voltage.

Figure 25. Differential Reference Clock Input DC Requirements (External AC-Coupled)

9.2.3 Interfacing With Other Differential Signaling Levels

- With on-chip termination to XCOREV_{SS}, the differential reference clocks inputs are HCSL (high-speed current steering logic) compatible DC coupled.
- Many other low voltage differential type outputs like LVDS (low voltage differential signaling) can be used but may need to be AC coupled due to the limited common mode input range allowed (100 to 400 mV) for DC-coupled connection.
- LVPECL outputs can produce a signal with too large of an amplitude and may need to be DC-biased at the clock driver output first, then followed with series attenuation resistor to reduce the amplitude, in addition to AC coupling.

NOTE

Figure 27 through Figure 30 are for conceptual reference only. Due to the fact that the clock driver chip's internal structure, output impedance, and termination requirements are different between various clock driver chip manufacturers, it is possible that the clock circuit reference designs provided by clock driver chip vendors are different from what is shown in the figures. They might also vary from one vendor to the other. Therefore, Freescale can neither provide the optimal clock driver reference circuits, nor guarantee the correctness of the following clock driver connection reference circuits. It is recommended that the system designer contact the selected clock driver chip vendor for the optimal reference circuits for the MPC8313E SerDes reference clock receiver requirement provided in this document.

assumes that the LVPECL clock driver's output impedance is 50 Ω . R1 is used to DC-bias the LVPECL outputs prior to AC coupling. Its value could be ranged from 140 to 240 Ω depending on the clock driver vendor's requirement. R2 is used together with the SerDes reference clock receiver's 50- Ω termination resistor to attenuate the LVPECL output's differential peak level such that it meets the MPC8313E SerDes3 reference clock's differential input amplitude requirement (between 200 and 800 mV differential peak). For example, if the LVPECL output's differential peak is 900 mV and the desired SerDes reference clock input amplitude is selected as 600 mV, the attenuation factor is 0.67, which requires R2 = 25 Ω . Consult with the clock driver chip manufacturer to verify whether this connection scheme is compatible with a particular clock driver chip.

Figure 29. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for a single-ended clock driver. It assumes the DC levels of the clock driver are compatible with the MPC8313E SerDes reference clock input's DC requirement.

Figure 30. Single-Ended Connection (Reference Only)

11 Enhanced Local Bus

This section describes the DC and AC electrical specifications for the local bus interface.

11.1 Local Bus DC Electrical Characteristics

This table provides the DC electrical characteristics for the local bus interface.

Table 44. Local Bus DC Electrical Chara	cteristics at 3.3 V
---	---------------------

Parameter	Symbol	Min	Мах	Unit
High-level input voltage for Rev 1.0	V _{IH}	2.0	LV _{DD} + 0.3	V
High-level input voltage for Rev 2.x or later	V _{IH}	2.1	LV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current, $(V_{IN}^{1} = 0 V \text{ or } V_{IN} = LV_{DD})$	I _{IN}	—	±5	μA
High-level output voltage, (LV _{DD} = min, $I_{OH} = -2$ mA)	V _{OH}	LV _{DD} - 0.2	—	V
Low-level output voltage, (LV _{DD} = min, I _{OH} = 2 mA)	V _{OL}	—	0.2	V

Note: The parameters stated in above table are valid for all revisions unless explicitly mentioned.

11.2 Local Bus AC Electrical Specifications

This table describes the general timing parameters of the local bus interface.

Table 45. Local Bus General Timing Parameters

Parameter	Symbol ¹	Min	Мах	Unit	Note
Local bus cycle time	t _{LBK}	15	_	ns	2
Input setup to local bus clock	t _{LBIVKH}	7	—	ns	3, 4
Input hold from local bus clock	t _{LBIXKH}	1.0	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	—	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	—	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	—	ns	7
LALE output rise to LCLK negative edge	t _{LALEHOV}	—	3.0	ns	
LALE output fall to LCLK negative edge	t _{LALETOT1}	-1.5	—	ns	5
LALE output fall to LCLK negative edge	t _{LALETOT2}	-5.0	—	ns	6
LALE output fall to LCLK negative edge	t _{LALETOT3}	-4.5	—	ns	7
Local bus clock to output valid	t _{LBKHOV}	—	3	ns	3
Local bus clock to output high impedance for LAD	t _{LBKHOZ}	—	4	ns	8

Figure 39. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4

12 JTAG

This section describes the DC and AC electrical specifications for the IEEE Std 1149.1TM (JTAG) interface.

12.1 JTAG DC Electrical Characteristics

This table provides the DC electrical characteristics for the IEEE Std 1149.1 (JTAG) interface.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	_	2.1	NV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	_	_	±5	μΑ
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 46. JTAG Interface DC Electrical Characteristics

12.2 JTAG AC Timing Specifications

This section describes the AC electrical specifications for the IEEE Std 1149.1 (JTAG) interface. This table provides the JTAG AC timing specifications as defined in Figure 41 through Figure 45.

Table 47. JTAG AC Timing Specifications (Independent of SYS_CLK_IN)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Мах	Unit	Note
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	
JTAG external clock cycle time	t _{JTG}	30	—	ns	
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15	—	ns	
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4	_	ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns	4
Valid times: Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	2 2	11 11	ns	5
Output hold times: Boundary-scan data TDO	t _{JTKLDX} t _{JTKLOX}	2 2		ns	5

This figure shows the PCI input AC timing conditions.

Figure 49. PCI Input AC Timing Measurement Conditions

This figure shows the PCI output AC timing conditions.

15 Timers

This section describes the DC and AC electrical specifications for the timers.

15.1 Timers DC Electrical Characteristics

This table provides the DC electrical characteristics for the MPC8313E timers pins, including TIN, $\overline{\text{TOUT}}$, $\overline{\text{TGATE}}$, and RTC_CLK.

Characteristic	Symbol	Condition	Min	Max	Unit
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V
Input high voltage	V _{IH}	_	2.1	NV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	$0~V \leq V_{IN} \leq NV_{DD}$	_	±5	μA

Table 53. Timers DC Electrical Characteristics

MEMC_MDQ29A20MEMC_MDQ30C22MEMC_MDQ31B22MEMC_MDM0B7MEMC_MDM1E6MEMC_MDM2E18	I/O I/O I/O O O O I/O I/O	$\begin{array}{c} {\rm GV}_{\rm DD} \\ {\rm GV}_{\rm DD} \end{array}$	
MEMC_MDQ30C22MEMC_MDQ31B22MEMC_MDM0B7MEMC_MDM1E6MEMC_MDM2E18	I/O I/O O O O I/O I/O I/O I/O I/O O	$\begin{array}{c} {\rm GV}_{\rm DD} \\ {\rm GV}_{\rm DD} \end{array}$	
MEMC_MDQ31 B22 MEMC_MDM0 B7 MEMC_MDM1 E6 MEMC_MDM2 E18	I/O O O O I/O I/O I/O I/O O	$\begin{array}{c} {\rm GV}_{\rm DD} \\ {\rm GV}_{\rm DD} \end{array}$	
MEMC_MDM0B7MEMC_MDM1E6MEMC_MDM2E18	0 0 0 1/0 1/0 1/0 1/0 1/0 0	$\begin{array}{c} {\rm GV}_{\rm DD} \\ {\rm GV}_{\rm DD} \end{array}$	
MEMC_MDM1E6MEMC_MDM2E18	0 0 1/0 1/0 1/0 1/0 1/0 0	$\begin{array}{c} {\rm GV}_{\rm DD} \\ {\rm GV}_{\rm DD} \end{array}$	
MEMC_MDM2 E18	0 0 1/0 1/0 1/0 1/0 0	$\begin{array}{c} {\rm GV}_{\rm DD} \\ {\rm GV}_{\rm DD} \end{array}$	
	0 1/0 1/0 1/0 1/0 0	GV _{DD} GV _{DD} GV _{DD} GV _{DD} GV _{DD}	
MEMC_MDM3 E20	/O /O /O /O	$\begin{array}{c} {\rm GV}_{\rm DD} \\ {\rm GV}_{\rm DD} \\ {\rm GV}_{\rm DD} \\ {\rm GV}_{\rm DD} \end{array}$	
MEMC_MDQS0 A7	I/O I/O I/O O	GV _{DD} GV _{DD} GV _{DD}	
MEMC_MDQS1 E7	I/O I/O O	GV _{DD} GV _{DD}	_
MEMC_MDQS2 B19	I/O O	GV _{DD}	
MEMC_MDQS3 A23	0		—
MEMC_MBA0 D15		GV _{DD}	_
MEMC_MBA1 A18	0	GV _{DD}	_
MEMC_MBA2 A15	0	GV _{DD}	_
MEMC_MA0 E12	0	GV _{DD}	_
MEMC_MA1 D11	0	GV _{DD}	_
MEMC_MA2 B11	0	GV _{DD}	_
MEMC_MA3 A11	0	GV _{DD}	_
MEMC_MA4 A12	0	GV _{DD}	_
MEMC_MA5 E13	0	GV _{DD}	_
MEMC_MA6 C12	0	GV _{DD}	_
MEMC_MA7 E14	0	GV _{DD}	_
MEMC_MA8 B15	0	GV _{DD}	_
MEMC_MA9 C17	0	GV _{DD}	_
MEMC_MA10 C13	0	GV _{DD}	_
MEMC_MA11 A16	0	GV _{DD}	_
MEMC_MA12 C15	0	GV _{DD}	_
MEMC_MA13 C16	0	GV _{DD}	_
MEMC_MA14 E15	0	GV _{DD}	_
MEMC_MWE B18	0	GV _{DD}	—
MEMC_MRAS C11	0	GV _{DD}	—
MEMC_MCAS B10	0	GV _{DD}	_

Table 62. MPC8313E TEPBGAII Pinout Listing (continued)

Table 62. MPC8313E TEPBGAII Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Note				
LA14/TSEC_1588_TRIG1	L24	0	LV _{DD}	8				
LA15/TSEC_1588_ALARM2	K26	0	LV _{DD}	8				
	DUART		·					
UART_SOUT1/MSRCID0	N2	0	NV _{DD}	—				
UART_SIN1/MSRCID1	M5	I/O	NV _{DD}	—				
UART_CTS1/GPIO8/MSRCID2	M1	I/O	NV _{DD}	—				
UART_RTS1/GPIO9/MSRCID3	K1	I/O	NV _{DD}	—				
UART_SOUT2/MSRCID4/TSEC_1588_CLK	M3	0	NV _{DD}	8				
UART_SIN2/MDVAL/TSEC_1588_GCLK	L1	I/O	NV _{DD}	8				
UART_CTS2/TSEC_1588_PP1	L5	I/O	NV _{DD}	8				
UART_RTS2/TSEC_1588_PP2	L3	I/O	NV _{DD}	8				
I ² C interface								
IIC1_SDA/CKSTOP_OUT/TSEC_1588_TRIG1	J4	I/O	NV _{DD}	2, 8				
IIC1_SCL/CKSTOP_IN/TSEC_1588_ALARM2	J2	I/O	NV _{DD}	2, 8				
IIC2_SDA/PMC_PWR_OK/GPIO10	J3	I/O	NV _{DD}	2				
IIC2_SCL/GPIO11	H5	I/O	NV _{DD}	2				
	Interrupts							
MCP_OUT	G5	0	NV _{DD}	2				
IRQ0/MCP_IN	K5	I	NV _{DD}	—				
IRQ1	K4	I	NV _{DD}	—				
IRQ2	K2	I	NV _{DD}	—				
IRQ3/CKSTOP_OUT	К3	I/O	NV _{DD}	—				
IRQ4/CKSTOP_IN/GPIO12	J1	I/O	NV _{DD}	—				
Configuration								
CFG_CLKIN_DIV	D5	I	NV _{DD}	—				
EXT_PWR_CTRL	J5	0	NV _{DD}	—				
CFG_LBIU_MUX_EN	R24	I	NV _{DD}	—				
	JTAG							
ТСК	E1	I	NV _{DD}	_				
TDI	E2	I	NV _{DD}	4				
TDO	E3	0	NV _{DD}	3				

Signal	Package Pin Number	Pin Type	Power Supply	Note
V _{SS}	B1,B2,B8,B9,B16,B17,C1, C2,C3,C4,C5,C24,C25, C26,D3,D4,D12,D13,D20, D21,F8,F11,F13,F16,F17, F21,G2,G25,H2,H6,H21, H25,L4,L6,L11,L12,L13, L14,L15,L16,L21,L23,M4, M11,M12,M13,M14,M15, M16,M23,N6,N11,N12, N13,N14,N15,N16, N21,N23,P11,P12,P13, P14,P15,P16,P23,P25, R11,R12,R13,R14,R15, R16,R25,T6,T11,T12,T13, T14,T15,T16,T21,T25,U5, U6,U21,W4,W23,Y4,Y23, AA8,AA11,AA13,AA16, AA17,AA21,AC4,AC5, AC12,AC13,AC20,AC21, AD1,AE2,AE8,AE9,AE16, AE17,AF2			
XCOREV _{DD}	T1,U2,V2	Core power for SerDes transceivers (1.0 V)	_	_
XCOREV _{SS}	P2,R2,T3	—		
XPADV _{DD}	P5,U4	Pad power for SerDes transceivers (1.0 V)		
XPADV _{SS}	P3,V4		—	

Table 62. MPC8313E TEPBGAII Pinout Listing (continued)

Notes:

- 1. This pin is an open drain signal. A weak pull-up resistor (1 k Ω) should be placed on this pin to NV_{DD}.
- 2. This pin is an open drain signal. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to NV_{DD} .
- 3. This output is actively driven during reset rather than being three-stated during reset.
- 4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.
- 6. This pin must always be tied to V_{SS}.
- 7. Internal thermally sensitive resistor, resistor value varies linearly with temperature. Useful for determining the junction temperature.
- 8. 1588 signals are available on these pins only in MPC8313 Rev 2.x or later.
- 9. LB_POR_CFG_BOOT_ECC_DIS is available only in MPC8313 Rev 2.x or later.
- 10. This pin has an internal pull-up.
- 11. This pin has an internal pull-down.
- 12. In MII mode, GTX_CLK should be pulled down by 300Ω to V_{SS}.

The primary clock source for the MPC8313E can be one of two inputs, SYS_CLK_IN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. When the device is configured as a PCI host device, SYS_CLK_IN is its primary input clock. SYS_CLK_IN feeds the PCI clock divider (÷2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input selects whether SYS_CLK_IN or SYS_CLK_IN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCICOEn] parameters select whether the PCI_SYNC_OUT is driven out on the PCI_CLK_OUTn signals.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, with equal delay to all PCI agent devices in the system, to allow the device to function. When the device is configured as a PCI agent device, PCI_CLK is the primary input clock. When the device is configured as a PCI agent device the SYS_CLK_IN signal should be tied to VSS.

As shown in Figure 57, the primary clock input (frequency) is multiplied up by the system phase-locked loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the DDR controller (ddr_clk), and the internal clock for the local bus interface unit (lbc_clk).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

$$csb_clk = \{PCI_SYNC_IN \times (1 + \sim \overline{CFG_CLKIN_DIV})\} \times SPMF$$

In PCI host mode, PCI_SYNC_IN \times (1 + \sim CFG_CLKIN_DIV) is the SYS_CLK_IN frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL) which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, "Reset, Clocking, and Initialization," in the *MPC8313E PowerQUICC II Pro Integrated Processor Family Reference Manual*, for more information on the clock subsystem.

The internal *ddr_clk* frequency is determined by the following equation:

 $ddr_clk = csb_clk \times (1 + \text{RCWL}[\text{DDRCM}])$

Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the same frequency as ddr_clk .

The internal *lbc_clk* frequency is determined by the following equation:

 $lbc_clk = csb_clk \times (1 + \text{RCWL[LBCM]})$

Note that *lbc_clk* is not the external local bus frequency; *lbc_clk* passes through the a LBC clock divider to create the external local bus clock outputs (LCLK[0:1]). The LBC clock divider ratio is controlled by LCRR[CLKDIV].

In addition, some of the internal units may be required to be shut off or operate at lower frequency than the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory mapped register after the device comes out of reset. Table 63 specifies which units have a configurable clock frequency.

RCWL[SPMF]	System PLL Multiplication Factor
0100	× 4
0101	× 5
0110	× 6
0111–1111	Reserved

Table 65. System PLL Multiplication Factors (continued)

Note:

1. If RCWL[DDRCM] and RCWL[LBCM] are both cleared, the system PLL VCO frequency = (CSB frequency) × (System PLL VCO Divider).

2. If either RCWL[DDRCM] or RCWL[LBCM] are set, the system PLL VCO frequency = 2 × (CSB frequency) × (System PLL VCO Divider).

3. The VCO divider needs to be set properly so that the System PLL VCO frequency is in the range of 450–750 MHz

As described in Section 20, "Clocking," the LBCM, DDRCM, and SPMF parameters in the reset configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (SYS_CLK_IN or PCI_SYNC_IN) and the internal coherent system bus clock (*csb_clk*). This table shows the expected frequency values for the CSB frequency for select *csb_clk* to SYS_CLK_IN/PCI_SYNC_IN ratios.

			Inp	out Clock Fre	equency (MH	lz) ²
CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> :Input Clock Ratio ²	24	25	33.33	66.67
			csb_clk Frequency (MHz))
High	0010	2:1				133
High	0011	3:1			100	
High	0100	4:1		100	133	
High	0101	5:1	120	125	167	
High	0110	6:1	144	150		
Low	0010	2:1				133
Low	0011	3:1			100	
Low	0100	4:11		100	133	
Low	0101	5:1	120	125	167	
Low	0110	6:1	144	150		

Table 66. CSB Frequency Options

¹ CFG_CLKIN_DIV select the ratio between SYS_CLK_IN and PCI_SYNC_OUT.

² SYS_CLK_IN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the airflow around the device, the interface material, the mounting arrangement on the printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device.

To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been simulated with a few commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, airflow, adjacent component power dissipation) and the physical space available. Because there is not a standard application environment, a standard heat sink is not required.

Heat Sink Assuming Thermal Grease	Airflow	Thermal Resistance (°C/W)
Wakefield 53 \times 53 \times 2.5 mm pin fin	Natural convection	13.0
	0.5 m/s	10.6
	1 m/s	9.7
	2 m/s	9.2
	4 m/s	8.9
Aavid 35 $\times~$ 31 \times 23 mm pin fin	Natural convection	14.4
	0.5 m/s	11.3
	1 m/s	10.5
	2 m/s	9.9
	4 m/s	9.4
Aavid $30 \times 30 \times 9.4$ mm pin fin	Natural convection	16.5
	0.5 m/s	13.5
	1 m/s	12.1
	2 m/s	10.9
	4 m/s	10.0
Aavid 43 \times 41 \times 16.5 mm pin fin	Natural convection	14.5
	0.5 m/s	11.7
	1 m/s	10.5
	2 m/s	9.7
	4 m/s	9.2

Table 70. Thermal Resistance for TEPBGAII with Heat Sink in Open Flow

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in Table 70. More detailed thermal models can be made available on request.

Table 73	. Document	Revision	History	(continued)
----------	------------	----------	---------	-------------

Rev. Number	Date	Substantive Change(s)
1	3/2008	 In Table 63, added LBC_PM_REF_10 & LSRCID3 as muxed with USBDR_PCTL1 In Table 63, added LSRCID2 as muxed with USBDR_PCTL0 In Table 63, added LSRCID0 as muxed with USBDR_PWRFAULT In Table 63, added LSRCID0 as muxed with USBDR_DRIVE_VBUS In Table 63, moved T1, U2,& V2 from V_{DD} to XCOREVDD. In Table 63, moved P2, R2, & T3 from V_{SS} to XCOREVSS. In Table 63, moved P3, & V4 from V_{DD} to XPADVDD. In Table 63, neved "Double with pad" for AV_{DD1} and AV_{DD2} and moved AV_{DD1} and AV_{DD2} to Power and Ground Supplies section In Table 63, added muxing in pinout to show new options for selecting IEEE 1588 functionality. Added footnote 8 In Table 63, updated muxing in pinout to show new LBC ECC boot enable control muxed with eTSEC1_MDC Added pin type information for power supplies. Removed N1 and N3 from Vss section of Table 63. Added Therm0 and Therm1 (N1 and N3, respectively). Added note 7 to state: "Internal thermally sensitive resistor value varies linearly with temperature. Useful for determining the junction temperature." In Table 65 corrected maximum frequency of Local Bus Frequency from "33–66" to 66 MHz In Table 65 corrected maximum frequency of PCI from "24–66" to 66 MHz Added "which is determined by RCWLR[COREPLL]," to the note in Section 20.2, "Core PLL Configuration" about the VCO divider.
0	6/2007	 Added "(VCOD)" next to VCO divider column in Table 68. Added footnote stating that core_clk frequency must not exceed its maximum, so 2.5:1 and 3:1 <i>core_clk:csb_clk</i> ratios are invalid for certain <i>csb_clk</i> values. In Table 69, notes were confusing. Added note 3 for VCO column, note 4 for CSB (<i>csb_clk</i>) column, note 5 for USB ref column, and note 6 to replace "Note 1". Clarified note 4 to explain erratum eTSEC40. In Table 69, updated note 6 to specify USB reference clock frequencies limited to 24 and 48 for rev. 2 silicon. Replaced Table 71 "Thermal Resistance for TEPBGAII with Heat Sink in Open Flow". Removed last row of Table 19. Removed last row of Table 19. Removed 200 MHz rows from Table 21 and Table 5. Changed VIH minimum spec from 2.0 to 2.1 for clock, PIC, JTAG, SPI, and reset pins in Table 9, Table 47, Table 54, Table 59, and Table 61. Added Figure 4 showing the DDR input timing diagram. In Table 19, removed "MDM" from the "MDQS-MDQ/MECC/MDM" text under the Parameter column for the tCISKEW parameter. MDM is an output signal and should be removed from the input AC timing spec table (tCISKEW). Added "and power" to rows 2 and 3 in Table 10 Added the sentence "Once both the power supplies" and PORESET to Section 2.2, "Power Sequencing," and Figure 3. In Figure 35, corrected "USB0_CLK/USB1_CLK/DR_CLK" with "USBDR_CLK" In Table 42, clarified that AC specs are for ULPI only.
0	6/2007	Initial release.