

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I²C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PS2, PWM, WDT
Number of I/O	20
Program Memory Size	68KB (68K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/nuc123zd4an0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NUC123

6.15	I ² S Controller (I ² S)63
6.15.	1 Overview
6.15.	2 Features
6.16	USB Device Controller (USB)64
6.16.	1 Overview
6.16.	2 Features
6.17	Analog-to-Digital Converter (ADC)65
6.17.	1 Overview
6.17.	2 Features
7 EL	ECTRICAL CHARACTERISTICS (NUC123xxxANx)
7.1	Absolute Maximum Ratings66
7.2	DC Electrical Characteristics67
7.3	AC Electrical Characteristics71
7.3.1	External 4~24 MHz High Speed Oscillator71
7.3.2	External 4~24 MHz High Speed Crystal71
7.3.3	Internal 22.1184 MHz High Speed Oscillator72
7.3.4	Internal 10 kHz Low Speed Oscillator72
7.4	Analog Characteristics73
7.4.1	10-bit SARADC Specifications73
7.4.2	LDO and Power Management Specifications74
7.4.3	Low Voltage Reset Specifications74
7.4.4	Brown-out Detector Specifications75
7.4.5	Power-On Reset (5V) Specifications75
7.4.6	USB PHY Specifications
7.5	Flash DC Electrical Characteristics77
7.6	SPI Dynamic Characteristics78
8 EL	ECTRICAL CHARACTERISTICS (NUC123xxxAEx)
8.1	Absolute Maximum Ratings80
8.2	DC Electrical Characteristics81
8.3	AC Electrical Characteristics
8.3.1	External 4~24 MHz High Speed Oscillator85
8.3.2	External 4~24 MHz High Speed Crystal85
8.3.3	Internal 22.1184 MHz High Speed Oscillator86
8.3.4	Internal 10 kHz Low Speed Oscillator86
8.4	Analog Characteristics

1 GENERAL DESCRIPTION

The NuMicro[®] NUC123 series is a new 32-bit Cortex[®]-M0 microcontroller with USB 2.0 Full-speed devices and a 10-bit ADC. The NUC123 series provides the high 72 MHz operating speed, large 20 Kbytes SRAM, 8 USB endpoints and three sets of SPI controllers, which make it powerful in USB communication and data processing. The NUC123 series is ideal for industrial control, consumer electronics, and communication system applications such as printers, touch panel, gaming keyboard, gaming joystick, USB audio, PC peripherals, and alarm systems.

The NUC123 series runs up to 72 MHz and supports 32-bit multiplier, structure NVIC (Nested Vector Interrupt Control), dual-channel APB and PDMA (Peripheral Direct Memory Access) with CRC function. Besides, the NUC123 series is equipped with 36/68 Kbytes Flash memory, 12/20 Kbytes SRAM, and 4 Kbytes loader ROM for the ISP. It operates at a wide voltage range of 2.5V ~ 5.5V and temperature range of -40° C ~ $+105^{\circ}$ C and -40° C ~ $+85^{\circ}$ C. It is also equipped with plenty of peripheral devices, such as 8-channel 10-bit ADC, UART, SPI, I²C, I²S, USB 2.0 FS devices, and offers low-voltage reset and Brown-out detection, PWM (Pulse-width Modulation), capture and compare features, four sets of 32-bit timers, Watchdog Timer, and internal RC oscillator. All these peripherals have been incorporated into the NUC123 series to reduce component count, board space and system cost.

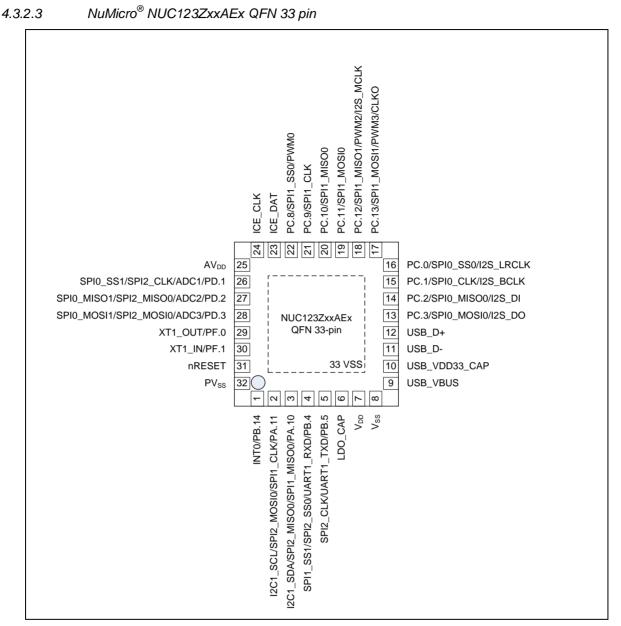
Additionally, the NUC123 series is equipped with ISP (In-System Programming), IAP (In-Application-Programming) and ICP (In-Circuit Programming) functions, which allows the user to update the program under software control through the on-chip connectivity interface, such as SWD, UART and USB.

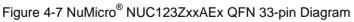
Product Line	UART	SPI	l ² C	USB	PS/2	l²S	PWM	ADC
NUC123	2	3	2	1	1	1	4	8

Table 1-1 Key Features Support Table

2 FEATURES

2.1 NuMicro[®] NUC123 Series Features


- Core
 - ARM[®] Cortex[®]-M0 core runs up to 72 MHz
 - One 24-bit system timer
 - Supports low power sleep mode
 - Single-cycle 32-bit hardware multiplier
 - NVIC for the 32 interrupt inputs, each with 4-levels of priority
 - Supports Serial Wire Debug with 2 watchpoints/4 breakpoints
- Built-in LDO for wide operating voltage ranges from 2.5 V to 5.5 V
- Flash Memory
 - 36/68 KB Flash for program code
 - 4 KB flash for ISP loader
 - Supports In-System Program (ISP) application code update
 - 512 byte page erase for flash
 - Configurable Data Flash address and size for both 36KB and 68KB system
 - Supports 2-wire ICP update through SWD/ICE interface
 - Supports fast parallel programming mode by external programmer
- SRAM Memory
 - 12/20 KB embedded SRAM
 - Supports PDMA mode
- PDMA (Peripheral DMA)
 - Supports 6 channels PDMA for automatic data transfer between SRAM and peripherals such as SPI, UART, I²S, USB 2.0 FS device, PWM and ADC
 - Supports CRC calculation with four common polynomials, CRC-CCITT, CRC-8, CRC-16 and CRC-32
- Clock Control
 - Flexible selection for different applications
 - Built-in 22.1184 MHz high speed oscillator (Trimmed to 1%) for system operation, and low power 10 kHz low speed oscillator for watchdog and wake-up operation
 - Supports one PLL, up to 144 MHz, for high performance system operation
 - External 4~24 MHz high speed crystal input for precise timing operation
- GPIO
 - Four I/O modes:
 - Quasi bi-direction
 - Push-Pull output
 - Open-Drain output
 - Input only with high impendence
 - TTL/Schmitt trigger input selectable
 - I/O pin configured as interrupt source with edge/level setting
 - Supports High Driver and High Sink I/O mode
- Timer
 - Supports 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit pre-scale counter
 - Independent clock source for each timer
 - Provides one-shot, periodic, toggle and continuous counting operation modes
 - Supports event counting function
- Watchdog/Windowed-Watchdog Timer
 - Multiple clock sources


NUC123

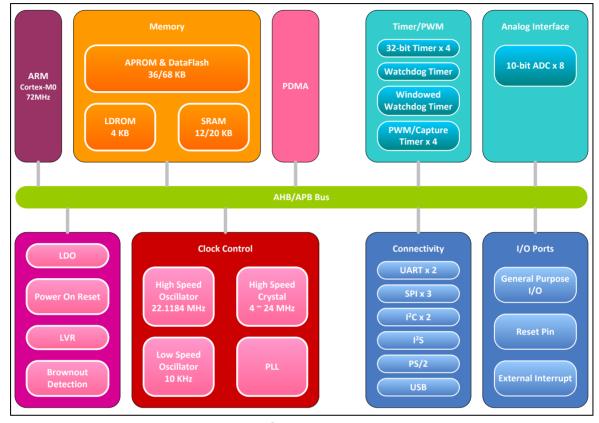
- 8 selectable time-out period from 1.6ms ~ 26.0sec (depending on clock source)
- Wake-up from Power-down or Idle mode
- Interrupt or reset selectable on watchdog timer time-out
- Interrupt on windowed-watchdog timer time-out
- Reset on windowed-watchdog timer time-out or reload in an unexpected time window
- PWM/Capture
 - Up to two built-in 16-bit PWM generators provided with four PWM outputs or two complementary paired PWM outputs
 - Each PWM generator equipped with one clock source selector, one clock divider, one 8-bit prescaler and one Dead-zone generator for complementary paired PWM
 - Up to four 16-bit digital Capture timers (shared with PWM timers) provided with four rising/falling capture inputs
 - Supports Capture interrupt
- UART
 - Up to two UART controllers
 - UART ports with flow control (TXD, RXD, CTS and RTS)
 - UART0/1 with 16-byte FIFO for standard device
 - Support IrDA (SIR) function
 - Supports RS-485 9-bit mode and direction control.
 - Programmable baud-rate generator up to 1/16 system clock
 - Supports PDMA mode
- SPI
 - Up to three sets of SPI controllers
 - Supports SPI master/Slave mode
 - Full duplex synchronous serial data transfer
 - Variable length of transfer data from 8 to 32 bits
 - MSB or LSB first data transfer
 - Up to two slave/device select lines in Master mode
 - Supports Byte Suspend mode in 16/24/32-bit transmission
 - Supports PDMA transfer
- I²C
 - Up to two sets of I²C devices
 - Master/Slave mode
 - Bidirectional data transfer between masters and slaves
 - Multi-master bus (no central master)
 - Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
 - Serial clock synchronization allows devices with different bit rates to communicate via one serial bus
 - Serial clock synchronization used as a handshake mechanism to suspend and resume serial transfer
 - Programmable clocks allowing versatile rate control
 - Supports multiple address recognition (four slave address with mask option)
 - Supports wake-up by address recognition (for 1st slave address only)
- I²S
 - Interface with external audio CODEC
 - Operated as either master or Slave mode
 - Capable of handling 8-, 16-, 24- and 32-bit word sizes
 - Supports Mono and stereo audio data
 - Supports I²S and MSB justified data format
 - Two 8 word FIFO data buffers are provided, one for transmitting and the other for receiving

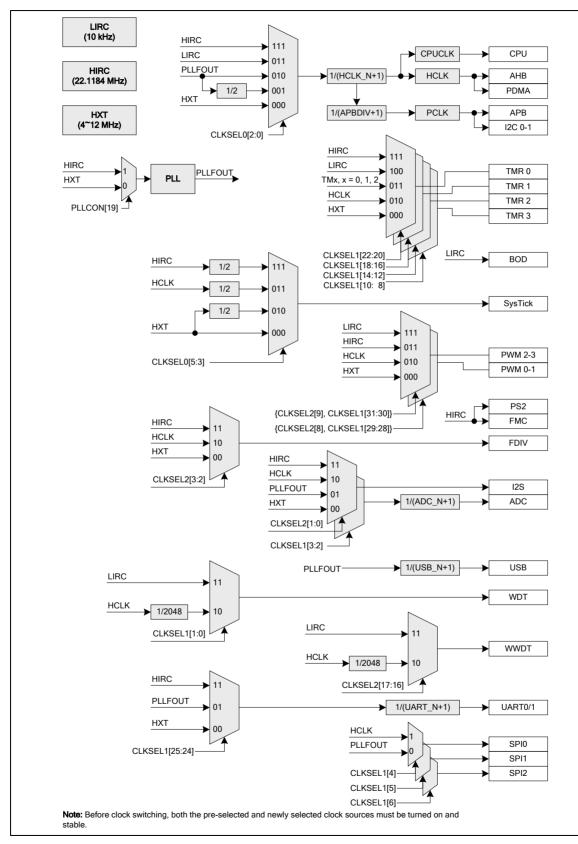
3 ABBREVIATIONS

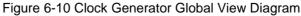
Acronym	Description
ACMP	Analog Comparator Controller
ADC	Analog-to-Digital Converter
AES	Advanced Encryption Standard
APB	Advanced Peripheral Bus
АНВ	Advanced High-Performance Bus
BOD	Brown-out Detection
CAN	Controller Area Network
DAP	Debug Access Port
DES	Data Encryption Standard
EBI	External Bus Interface
EPWM	Enhanced Pulse Width Modulation
FIFO	First In, First Out
FMC	Flash Memory Controller
FPU	Floating-point Unit
GPIO	General-Purpose Input/Output
HCLK	The Clock of Advanced High-Performance Bus
HIRC	22.1184 MHz Internal High Speed RC Oscillator
НХТ	4~20 MHz External High Speed Crystal Oscillator
IAP	In Application Programming
ICP	In Circuit Programming
ISP	In System Programming
LDO	Low Dropout Regulator
LIN	Local Interconnect Network
LIRC	10 kHz internal low speed RC oscillator (LIRC)
MPU	Memory Protection Unit
NVIC	Nested Vectored Interrupt Controller
PCLK	The Clock of Advanced Peripheral Bus
PDMA	Peripheral Direct Memory Access
PLL	Phase-Locked Loop
PWM	Pulse Width Modulation
QEI	Quadrature Encoder Interface
SD	Secure Digital
SPI	Serial Peripheral Interface

5 BLOCK DIAGRAM

5.1 NuMicro[®] NUC123 Block Diagram




Figure 5-1 NuMicro[®] NUC123 Block Diagram


6.2.5 System Memory Map

The NuMicro[®] NUC123 series provides 4G-byte addressing space. The memory locations assigned to each on-chip controllers are shown in the Table 6-5. The detailed register definition, memory space, and programming detailed will be described in the following sections for each on-chip peripherals. The NuMicro[®] NUC123 Series only supports little-endian data format.

Address Space	Token	Controllers
Flash and SRAM Memory Space		
0x0000_0000 – 0x0000_FFFF	FLASH_BA	FLASH Memory Space (64KB)
0x2000_0000 – 0x2000_4FFF	SRAM_BA	SRAM Memory Space (20KB)
AHB Controllers Space (0x5000_00	00 – 0x501F_FFFF	F)
0x5000_0000 – 0x5000_01FF	GCR_BA	System Global Control Registers
0x5000_0200 – 0x5000_02FF	CLK_BA	Clock Control Registers
0x5000_0300 – 0x5000_03FF	INT_BA	Interrupt Multiplexer Control Registers
0x5000_4000 – 0x5000_7FFF	GPIO_BA	GPIO Control Registers
0x5000_8000 – 0x5000_BFFF	PDMA_BA	Peripheral DMA Control Registers
0x5000_C000 – 0x5000_FFFF	FMC_BA	Flash Memory Control Registers
APB1 Controllers Space (0x4000_0	000 ~ 0x400F_FFF	F)
0x4000_4000 – 0x4000_7FFF	WDT_BA	Watchdog/Window Watchdog Timer Control Registers
0x4001_0000 – 0x4001_3FFF	TMR01_BA	Timer0/Timer1 Control Registers
0x4002_0000 – 0x4002_3FFF	I2C0_BA	I ² C0 Interface Control Registers
0x4003_0000 – 0x4003_3FFF	SPI0_BA	SPI0 with master/slave function Control Registers
0x4003_4000 – 0x4003_7FFF	SPI1_BA	SPI1 with master/slave function Control Registers
0x4004_0000 – 0x4004_3FFF	PWMA_BA	PWM0/1/2/3 Control Registers
0x4005_0000 – 0x4005_3FFF	UART0_BA	UART0 Control Registers
0x4006_0000 – 0x4006_3FFF	USBD_BA	USB 2.0 FS device Controller Registers
0x400E_0000 - 0x400E_FFFF	ADC_BA	Analog-Digital-Converter (ADC) Control Registers
APB2 Controllers Space (0x4010_0	000 ~ 0x401F_FFF	F)
0x4010_0000 – 0x4010_3FFF	PS2_BA	PS/2 Interface Control Registers
0x4011_0000 – 0x4011_3FFF	TMR23_BA	Timer2/Timer3 Control Registers
0x4012_0000 – 0x4012_3FFF	I2C1_BA	I ² C1 Interface Control Registers
0x4013_0000 – 0x4013_3FFF	SPI2_BA	SPI2 with master/slave function Control Registers
0x4015_0000 – 0x4015_3FFF	UART1_BA	UART1 Control Registers
0x401A_0000 – 0x401A_3FFF	I2S_BA	I ² S Interface Control Registers
System Controllers Space (0xE000_	_E000 ~ 0xE000_E	:FFF)
0xE000_E010 - 0xE000_E0FF	SCS_BA	System Timer Control Registers

NUC123

6.8 PWM Generator and Capture Timer (PWM)

6.8.1 Overview

The NuMicro[®] NUC123 series has 1 set of PWM group supporting 1 set of PWM generators which can be configured as 4 independent PWM outputs, PWM0~PWM3, or as 2 complementary PWM pairs, (PWM0, PWM1), (PWM2, PWM3) with two programmable dead-zone generators. PWM output function can be alternated to capture function.

Each PWM generator has one 8-bit prescaler, one clock divider with 5 divided frequencies (1, 1/2, 1/4, 1/8, 1/16), two PWM Timers including two clock selectors, two 16-bit PWM down-counters for PWM period control, two 16-bit comparators for PWM duty control and one dead-zone generator. The PWM generators provide four independent PWM interrupt flags which are set by hardware when the corresponding PWM period down counter reaches zero.

Each PWM interrupt source with its corresponding enable bit can cause CPU to request PWM interrupt. The PWM generators can be configured as one-shot mode to produce only one PWM cycle signal or auto-reload mode to output PWM waveform continuously. PWM can be used to trigger ADC when operation in center-aligned mode.

6.8.2 Features

PWM function:

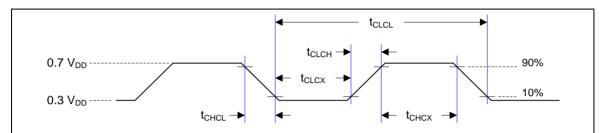
- Up to 1 PWM group (PWMA) to support 4 PWM channels or 2 PWM paired channels
- Supports 8-bit prescaler from 1 to 255
- Up to 16-bit resolution PWM timer
- PWM timer supports down and up-down operation type
- One-shot or Auto-reload mode PWM
- PWM Interrupt request synchronized with PWM period or duty
- Supports dead-zone generator with 8-bit resolution for 2 PWM paired channels
- Supports trigger ADC on center point in center-aligned mode

Capture function:

- Supports 4 Capture input channels shared with 4 PWM output channels
- Supports rising or falling capture condition
- Supports rising or falling capture interrupt
- Supports PDMA transfer function for each channel

6.12 PS/2 Device Controller (PS2D)

6.12.1 Overview


PS/2 device controller provides basic timing control for PS/2 communication. All communication between the device and the host is managed through the CLK and DATA pins. Unlike PS/2 keyboard or mouse device controller, the received/transmit code needs to be translated as meaningful code by firmware. The device controller generates the CLK signal after receiving a request to send, but host has ultimate control over communication. DATA sent from the host to the device is read on the rising edge and DATA sent from device to the host is change after rising edge. A 16 bytes FIFO is used to reduce CPU intervention. Software can select 1 to 16 bytes for a continuous transmission.

6.12.2 Features

- Host communication inhibit and request to send detection
- Reception frame error detection
- Programmable 1 to 16 bytes transmit buffer to reduce CPU intervention
- Double buffer for data reception
- S/W override bus

7.3 AC Electrical Characteristics

7.3.1 External 4~24 MHz High Speed Oscillator

Note: Duty cycle is 50%.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
t _{CHCX}	Clock High Time		10	-	-	nS
t _{CLCX}	Clock Low Time		10	-	-	nS
t _{CLCH}	Clock Rise Time		2	-	15	nS
t _{CHCL}	Clock Fall Time		2	-	15	nS

7.3.2 External 4~24 MHz High Speed Crystal

PARAMETER	CONDITIONS	MIN	ТҮР	МАХ	UNIT
Input clock frequency	External crystal	4	12	24	MHz
Temperature	-	-40	-	85	°C
V _{DD}	-	2.5	5	5.5	V

7.3.2.1 Typical Crystal Application Circuits

CRYSTAL	C1	C2	R
4 MHz ~ 24 MHz	without	without	without

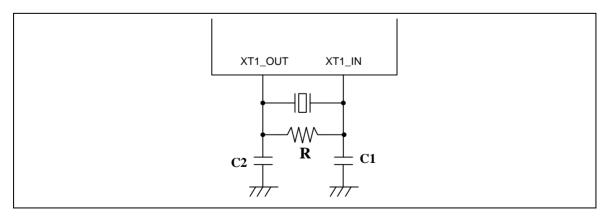


Figure 7-1 Typical Crystal Application Circuit

7.3.3 Internal 22.1184 MHz High Speed Oscillator

PARAMETER	CONDITIONS	MIN	TYP	МАХ	UNIT
Supply voltage ^[1]	-	2.5	-	5.5	V
Center Frequency	-	-	22.1184	-	MHz
	+25℃; V _{DD} =5 V	-1	-	+1	%
Calibrated Internal Oscillator Frequency	-40°C ~+85°C ; V _{DD} =2.5 V~5.5 V	-3	-	+3	%
Operation Current	V _{DD} =5 V	-	500	-	uA

7.3.4 Internal 10 kHz Low Speed Oscillator

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Supply voltage ^[1]	-	2.5	-	5.5	V
Center Frequency	-	-	10	-	kHz
	+25℃; V _{DD} =5 V	-30	-	+30	%
Calibrated Internal Oscillator Frequency	-40°C ~+85°C; V _{DD} =2.5 V~5.5 V	-50	-	+50	%

Note: Internal operation voltage comes from LDO.

7.4.2 LDO and Power Management Specifications

PARAMETER	MIN	ТҮР	МАХ	UNIT	NOTE
Input Voltage	2.5	5	5.5	V	V_{DD} input voltage
Output Voltage	1.62	1.8	1.98	V	$V_{DD} > 2.5V$
Temperature	-40	25	85	°C	
Сbр	-	1	-	uF	Resr = 1Ω

Notes:

1. It is recommended that a 10uF or higher capacitor and a 100nF bypass capacitor are connected between $V_{\mbox{\scriptsize DD}}$ and the closest $V_{\mbox{\scriptsize SS}}$ pin of the device.

2. To ensure power stability, a 1uF (Cbp) or higher capacitor must be connected between LDO pin and the closest VSS pin of the device.

7.4.3 Low Voltage Reset Specifications

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Operation voltage	-	1.7	-	5.5	V
Quiescent current	$V_{DD} = 5.5 V$	-	-	5	uA
Temperature	-	-40	25	85	°C
	Temperature = 25° C	1.7	2.0	2.3	V
Threshold voltage	Temperature = $-40^{\circ}C$	-	2.4	-	V
	Temperature = 85° C	-	1.6	-	V
Hysteresis	-	0	0	0	V

C _{bp}	External Bypass Capacitor		1.0	-	uF

7.5 Flash DC Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DD}	Supply voltage		1.62	1.8	1.98	V ^[1]
T _{RET}	Data Retention	Temp=85 ℃	10			year
T _{ERASE}	Page Erase Time			20		ms
T _{MER}	Mass Erase Time			40		ms
T _{PROG}	Program Time			40		us
I _{DD1}	Read Current				0.25	mA
I _{DD2}	Program/Erase Current				7	mA
I _{PD}	Power Down Current			1	20	uA

Note: V_{DD} is source from chip LDO output voltage.

8 ELECTRICAL CHARACTERISTICS (NUC123XXXAEX)

8.1 Absolute Maximum Ratings

Symbol	Parameter	Min	Мах	Unit
$V_{\text{DD}}-V_{\text{SS}}$	DC Power Supply	-0.3	+7.0	V
V _{IN}	Input Voltage	V _{SS} - 0.3	V _{DD} + 0.3	V
1/t _{CLCL}	Oscillator Frequency	4	24	MHz
T _A	Operating Temperature	-40	+105	°C
T _{ST}	Storage Temperature	-55	+150	°C
I _{DD}	Maximum Current into V _{DD}	-	120	mA
I _{SS}	Maximum Current out of V_{SS}		120	mA
	Maximum Current sunk by a I/O pin		35	mA
	Maximum Current sourced by a I/O pin		35	mA
10	I _{IO} Maximum Current sunk by total I/O pins		100	mA
	Maximum Current sourced by total I/O pins		100	mA

Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affect the lift and reliability of the device.

PARAMETER	SYM	SPECIFICATIONS				
PARAMETER	SYM	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS
at 4 MHz	I _{DD10}		5		mA	V _{DD} = 5V at 4 MHz, All IP and PLL Disabled, XTAL = 4 MHz
	I _{DD11}		4		mA	V_{DD} = 3V at 4 MHz, All IP Enabled and PLL Disabled, XTAL = 4 MHz
	I _{DD12}		3		mA	V_{DD} = 3V at 4 MHz, All IP and PLL Disabled, XTAL = 4 MHz
	I _{IDLE1}		28		mA	V_{DD} = 5.5V at 72 MHz, All IP and PLL Enabled, XTAL = 12 MHz
Operating current	I _{IDLE2}		12		mA	V_{DD} = 5.5V at 72 MHz, All IP Disabled and PLL Enabled, XTAL = 12 MHz
at 72 MHz	I _{IDLE3}		25		mA	V_{DD} = 3V at 72 MHz, All IP and PLL Enabled, XTAL = 12 MHz
	I _{IDLE4}		10		mA	$V_{DD} = 3V$ at 72 MHz, All IP Disabled and PLL Enabled, XTAL=12 MHz
	I _{IDLE5}		6		mA	V_{DD} = 5.5V at 12 MHz, All IP Enabled and PLL Disabled, XTAL = 12 MHz
Operating current	I _{IDLE6}		3		mA	V_{DD} = 5.5V at 12 MHz, All IP and PLL Disabled, XTAL = 12 MHz
Idle mode at 12 MHz	I _{IDLE7}		5		mA	V_{DD} = 3V at 12 MHz, All IP Enabled and PLL Disabled, XTAL = 12 MHz
	I _{IDLE8}		2		mA	$V_{DD} = 3 V$ at 12 MHz, All IP and PLL Disabled, XTAL = 12 MHz
	I _{IDLE9}		5		mA	V_{DD} = 5V at 4 MHz, All IP Enabled and PLL Disabled, XTAL = 4 MHz
Operating current	I _{IDLE10}		4		mA	V_{DD} = 5V at 4 MHz, All IP and PLL Disabled, XTAL = 4 MHz
Idle mode at 4 MHz	I _{IDLE11}		3		mA	V_{DD} = 3V at 4 MHz, All IP Enabled and PLL Disabled, XTAL = 4 MHz
	I _{IDLE12}		2		mA	V _{DD} = 3V at 4 MHz, All IP and PLL Disabled, XTAL = 4 MHz

8.4.2 LDO and Power Management Specifications

PARAMETER	MIN	TYP	МАХ	UNIT	NOTE
Input Voltage	2.5	5	5.5	V	V_{DD} input voltage
Output Voltage	1.62	1.8	1.98	V	$V_{DD} > 2.5V$
Temperature	-40	25	105	°C	
Сbр	-	1	-	uF	Resr = 1Ω

Notes:

1. It is recommended that a 10uF or higher capacitor and a 100nF bypass capacitor are connected between V_{DD} and the closest V_{SS} pin of the device.

2. To ensure power stability, a 1uF (Cbp) or higher capacitor must be connected between LDO pin and the closest V_{SS} pin of the device.

8.4.3 Low Voltage Reset Specifications

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Operation voltage	-	1.7	-	5.5	V
Quiescent current	$V_{DD} = 5.5 V$	-	-	5	uA
Temperature	-	-40	25	105	°C
	Temperature = $25^{\circ}C$	1.7	2.0	2.3	V
Threshold voltage	Temperature = -40°C	-	- 1.8	-	V
	Temperature = $85^{\circ}C$	-	2.2	-	V
Hysteresis	-	0	0	0	V

8.6 SPI Dynamic Characteristics

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNIT			
SPI Master mode	SPI Master mode (V _{DD} = 4.5V ~ 5.5V, 30pF loading Capacitor)							
t _{DS}	Data setup time	4	2	-	ns			
t _{DH}	Data hold time	0	-	-	ns			
t _v	Data output valid time	-	7	11	ns			
SPI Master mode	$e (V_{DD} = 3.0V \sim 3.6V, 30pF loading Capac$	itor)						
t _{DS}	Data setup time	5	3	-	ns			
t _{DH}	Data hold time	0	-	-	ns			
t _v	Data output valid time	-	13	18	ns			
SPI Slave mode	SPI Slave mode (V _{DD} = 4.5V ~ 5.5V, 30pF loading Capacitor)							
t _{DS}	Data setup time	0	-	-	ns			
t _{DH}	Data hold time	2*PCLK+4	-	-	ns			
t _V	Data output valid time	-	2*PCLK+11	2*PCLK+19	ns			
SPI Slave mode	SPI Slave mode (V _{DD} = 3.0V ~ 3.6V, 30pF loading Capacitor)							
t _{DS}	Data setup time	0	-	-	ns			
t _{DH}	Data hold time	2*PCLK+6	-	-	ns			
t _v	Data output valid time	-	2*PCLK+19	2*PCLK+25	ns			

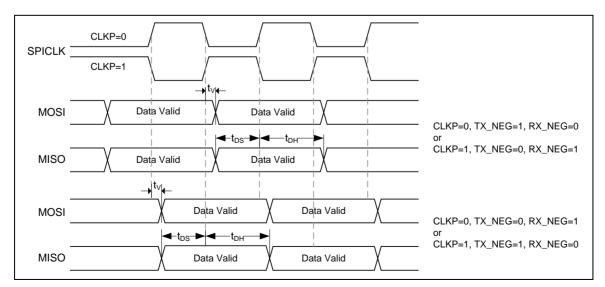


Figure 8-2 SPI Master Dynamic Characteristics timing

10 REVISION HISTORY

Date	Revision	Description
2012.04.01	1.00	Preliminary version.
2015.05.29	2.00	1. Merged NUC123xxxANx & NUC123xxxAEx into this document.
2015.11.04	2.01	1. Removed ADC function pins of NUC123 QFN33 package type in section 4.3.1.3, 4.3.2.3 and 4.4.1.
2016.01.12	2.02	1. Revised section 8.2 Source Current PA, PB, PC, PD, PE, PF (Push-pull Mode).
2016.07.06	2.03	1. Updated ADC function pins of NUC123 QFN33 package type in section 4.3.1.3, 4.3.2.3 and 4.4.1.