

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UQFN Exposed Pad
Supplier Device Package	16-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1825-e-jq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Enhanced Mid-range CPU	
3.0	Memory Organization	
4.0	Device Configuration	
5.0	Oscillator Module (With Fail-Safe Clock Monitor)	
6.0	Reference Clock Module	
7.0	Resets	
8.0	Interrupts	
9.0	Power-Down Mode (Sleep)	
10.0		
11.0		
12.0		
13.0		
14.0		
15.0		
16.0		
17.0	- 3	
	SR Latch	
	Comparator Module	
	Timer0 Module	
	Timer1 Module with Gate Control	
	Timer2/4/6 Modules	
23.0		
24.0		
25.0		
	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	
	Capacitive Sensing (CPS) Module	
	In-Circuit Serial Programming™ (ICSP™)	
	Instruction Set Summary	
30.0		
31.0		
32.0		
	Packaging Information	
	endix A: Data Sheet Revision History	
	endix B: Migrating From Other PIC® Devices	
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
Prod	uct Identification System	

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

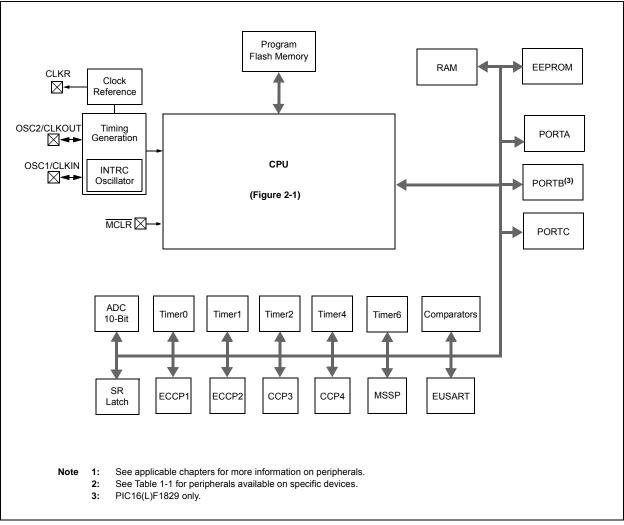
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip's Worldwide Web site; http://www.microchip.com


• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 3-6:PIC16(L)F1825/9 MEMORY MAP, BANKS 24-31

IADE		0.0(1	-)1 1023/3 Wit												
	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	INDF0	C80h	INDF0	D00h	INDF0	D80h	INDF0	E00h	INDF0	E80h	INDF0	F00h	INDF0	F80h	INDF0
C01h	INDF1	C81h	INDF1	D01h	INDF1	D81h	INDF1	E01h	INDF1	E81h	INDF1	F01h	INDF1	F81h	INDF1
C02h	PCL	C82h	PCL	D02h	PCL	D82h	PCL	E02h	PCL	E82h	PCL	F02h	PCL	F82h	PCL
C03h	STATUS	C83h	STATUS	D03h	STATUS	D83h	STATUS	E03h	STATUS	E83h	STATUS	F03h	STATUS	F83h	STATUS
C04h	FSR0L	C84h	FSR0L	D04h	FSR0L	D84h	FSR0L	E04h	FSR0L	E84h	FSR0L	F04h	FSR0L	F84h	FSR0L
C05h	FSR0H	C85h	FSR0H	D05h	FSR0H	D85h	FSR0H	E05h	FSR0H	E85h	FSR0H	F05h	FSR0H	F85h	FSR0H
C06h	FSR1L	C86h	FSR1L	D06h	FSR1L	D86h	FSR1L	E06h	FSR1L	E86h	FSR1L	F06h	FSR1L	F86h	FSR1L
C07h	FSR1H	C87h	FSR1H	D07h	FSR1H	D87h	FSR1H	E07h	FSR1H	E87h	FSR1H	F07h	FSR1H	F87h	FSR1H
C08h	BSR	C88h	BSR	D08h	BSR	D88h	BSR	E08h	BSR	E88h	BSR	F08h	BSR	F88h	BSR
C09h	WREG	C89h	WREG	D09h	WREG	D89h	WREG	E09h	WREG	E89h	WREG	F09h	WREG	F89h	WREG
C0Ah	PCLATH	C8Ah	PCLATH	D0Ah	PCLATH	D8Ah	PCLATH	E0Ah	PCLATH	E8Ah	PCLATH	F0Ah	PCLATH	F8Ah	PCLATH
C0Bh	INTCON	C8Bh	INTCON	D0Bh	INTCON	D8Bh	INTCON	E0Bh	INTCON	E8Bh	INTCON	F0Bh	INTCON	F8Bh	INTCON
C0Ch	—	C8Ch		D0Ch		D8Ch		E0Ch		E8Ch	_	F0Ch		F8Ch	
C0Dh	—	C8Dh		D0Dh		D8Dh		E0Dh		E8Dh	_	F0Dh		F8Dh	
C0Eh	-	C8Eh	_	D0Eh	_	D8Eh	_	E0Eh	_	E8Eh	-	F0Eh	_	F8Eh	
C0Fh	—	C8Fh	—	D0Fh	—	D8Fh	—	E0Fh	—	E8Fh	—	F0Fh	—	F8Fh	
C10h	—	C90h	—	D10h	—	D90h	—	E10h	—	E90h	—	F10h	—	F90h	
C11h	—	C91h	—	D11h	—	D91h	—	E11h	—	E91h	—	F11h	—	F91h	
C12h	_	C92h	—	D12h	—	D92h	—	E12h	—	E92h	_	F12h	—	F92h	
C13h	_	C93h	—	D13h	—	D93h	—	E13h	—	E93h	_	F13h	_	F93h	
C14h	—	C94h	_	D14h	_	D94h	_	E14h	_	E94h	—	F14h	_	F94h	
C15h	_	C95h	—	D15h	—	D95h	—	E15h	—	E95h	_	F15h	_	F95h	
C16h	—	C96h	—	D16h	—	D96h	—	E16h	—	E96h	—	F16h	—	F96h	
C17h	—	C97h	—	D17h	—	D97h	—	E17h	—	E97h	—	F17h	—	F97h	One Table 0 7 fee
C18h	—	C98h	—	D18h	—	D98h	—	E18h	—	E98h	—	F18h	—	F98h	See Table 3-7 for register mapping
C19h	_	C99h	—	D19h	—	D99h	—	E19h	—	E99h	_	F19h	—	F99h	details
C1Ah	—	C9Ah	—	D1Ah	—	D9Ah	—	E1Ah	—	E9Ah	_	F1Ah	—	F9Ah	
C1Bh	_	C9Bh	—	D1Bh	—	D9Bh	—	E1Bh	—	E9Bh	_	F1Bh	_	F9Bh	
C1Ch	_	C9Ch	—	D1Ch	—	D9Ch	—	E1Ch	—	E9Ch	_	F1Ch	_	F9Ch	
C1Dh	—	C9Dh	—	D1Dh	—	D9Dh	—	E1Dh	—	E9Dh	—	F1Dh	—	F9Dh	
C1Eh	—	C9Eh	—	D1Eh	—	D9Eh	—	E1Eh	—	E9Eh	—	F1Eh	—	F9Eh	
C1Fh	—	C9Fh	—	D1Fh	—	D9Fh	—	E1Fh	—	E9Fh	—	F1Fh	—	F9Fh	
C20h		CA0h		D20h		DA0h		E20h		EA0h		F20h		FA0h	
	Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		
	Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	

Legend: = Unimplemented data memory locations, read as '0'.

4.2 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data EEPROM protection are controlled independently. Internal access to the program memory and data EEPROM are unaffected by any code protection setting.

4.2.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Word 1. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See **Section 4.3** "Write **Protection**" for more information.

4.2.2 DATA EEPROM PROTECTION

The entire data EEPROM is protected from external reads and writes by the CPD bit. When CPD = 0, external reads and writes of data EEPROM are inhibited. The CPU can continue to read and write data EEPROM regardless of the protection bit settings.

4.3 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as bootloader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Word 2 define the size of the program memory block that is protected.

4.4 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See **Section 11.5 "User ID, Device ID and Configuration Word Access"** for more information on accessing these memory locations. For more information on checksum calculation, see the "*PIC16F/LF182X/PIC12F/LF1822 Memory Programming Specification*" (DS41390).

5.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.

Internal clock sources are contained internally within the oscillator module. The internal oscillator block has two internal oscillators and a dedicated Phase-Lock Loop (HFPLL) that are used to generate three internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC), 500 kHz (MFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See **Section 5.3 "Clock Switching"** for additional information.

5.2.1 EXTERNAL CLOCK SOURCES

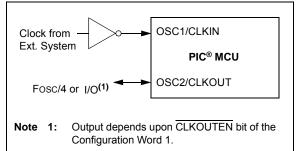
An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in the Configuration Word 1 to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Timer1 Oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

See **Section 5.3 "Clock Switching**" for more information.

5.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode.


EC mode has three power modes to select from through Configuration Word 1:

- High power, 4-32 MHz (FOSC = 111)
- Medium power, 0.5-4 MHz (FOSC = 110)
- Low power, 0-0.5 MHz (FOSC = 101)

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 5-2:

EXTERNAL CLOCK (EC) MODE OPERATION

5.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 5-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

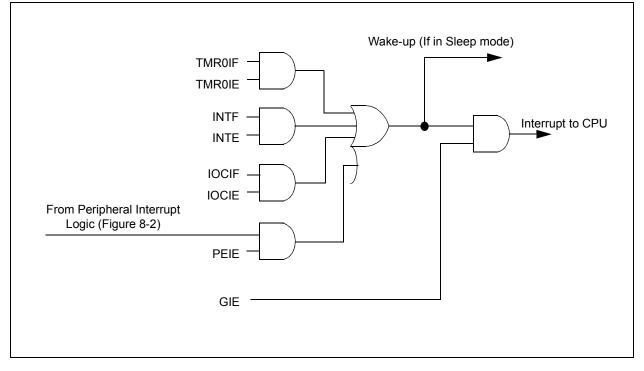
XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 5-3 and Figure 5-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

8.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.


This chapter contains the following information for Interrupts:

- · Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce Interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 8-1.

FIGURE 8-1: INTERRUPT LOGIC

8.6.3 PIE2 REGISTER

The PIE2 register contains the interrupt enable bits, as shown in Register 8-3.

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt.

REGISTER 8-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	—	CCP2IE
bit 7							bit 0

Legend:						
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is ur	nchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is s	et	'0' = Bit is cleared				
bit 7	OSFIE: Os	scillator Fail Interrupt Enable	bit			
		es the Oscillator Fail interrup les the Oscillator Fail interrup				
bit 6	C2IE: Con	nparator C2 Interrupt Enable	bit			
		es the Comparator C2 interrules the Comparator C2 interrules the Comparator C2 interr	•			
bit 5	C1IE: Con	nparator C1 Interrupt Enable	bit			
		es the Comparator C1 interrules the Comparator C1 interrules the Comparator C1 interr				
bit 4	EEIE: EEF	ROM Write Completion Inter	rrupt Enable bit			
		es the EEPROM write compl les the EEPROM write comp	•			
bit 3	BCL1IE: N	ISSP Bus Collision Interrupt	Enable bit			
 1 = Enables the MSSP bus collision interrupt 0 = Disables the MSSP bus collision interrupt 						
bit 2-1 Unimplemented: Read as '0'						
bit 0	CCP2IE: (CCP2 Interrupt Enable bit				
	1 = Enabl	es the CCP2 interrupt				
	0 = Disab	les the CCP2 interrupt				

— — LATA5 LATA4 — LATA2 LATA1 LATA0	I a manual.							
— — LATA5 LATA4 — LATA2 LATA1 LATA0								
	bit 7							bit 0
U-0 U-0 R/W-x/u R/W-x/u U-0 R/W-x/u R/W-x/u R/W-x/u	—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0
	U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u

REGISTER 12-5: LATA: PORTA DATA LATCH REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	LATA<5:4>: RA<5:4> Output Latch Value bits ⁽¹⁾
bit 3	Unimplemented: Read as '0'

bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-6: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	 ANSA4: Analog Select between Analog or Digital Function on pins RA4, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
Note 1:	When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	-	ANSB5	ANSB4	_	—	_	—	129
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	_	—	_	—	129
LATB	LATB7	LATB6	LATB5	LATB4	—	—	_	—	128
PORTB	RB7	RB6	RB5	RB4	—	—	_	—	128
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—	_	_	—	128
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	_	_		_	129

TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB⁽¹⁾

Legend:x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.Note1:PIC16(L)F1829 only.

20.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (independent of Watchdog Timer)
- · Programmable internal or external clock source
- Programmable external clock edge selection
- · Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 20-1 is a block diagram of the Timer0 module.

20.1 Timer0 Operation

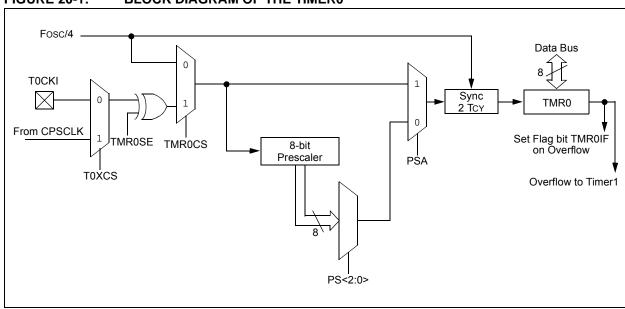
The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

20.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION_REG register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.


20.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin or the Capacitive Sensing Oscillator (CPSCLK) signal.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1' and resetting the T0XCS bit in the CPSCON0 register to '0'.

8-Bit Counter mode using the Capacitive Sensing Oscillator (CPSCLK) signal is selected by setting the TMR0CS bit in the OPTION_REG register to '1' and setting the T0XCS bit in the CPSCON0 register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

FIGURE 20-1: BLOCK DIAGRAM OF THE TIMER0

21.11 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 21-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 21-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u	
TMR1	CS<1:0>	T1CKF	'S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit. read	l as '0'		
u = Bit is unc	hanged	W = Writable bitU = Unimplemented bit, read as '0'x = Bit is unknown-n/n = Value at POR and BOR/Value at all other F						
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-6	11 = Timer1 c 10 = Timer1 c <u>If T10SC</u> External <u>If T10SC</u> Crystal c 01 = Timer1 c	clock source is <u>CEN = 0</u> : clock from T10	Capacitive Ser pin or oscillato CKI pin (on the OSI/T1OSO pi system clock (nsing Oscillator r: e rising edge) ins Fosc)	- (CAPOSC)			
bit 5-4	11 = 1:8 Pres 10 = 1:4 Pres 01 = 1:2 Pres	scale value scale value	t Clock Presca	ale Select bits				
bit 3	 00 = 1:1 Prescale value T1OSCEN: LP Oscillator Enable Control bit 1 = Dedicated Timer1 oscillator circuit enabled 0 = Dedicated Timer1 oscillator circuit disabled 							
bit 2	<u>TMR1CS<1:0</u> 1 = Do not sy 0 = Synchror) <u>> = 1x:</u> ynchronize exte nize external cl	ernal clock inp	nchronization C ut system clock (F				
	TMR1CS<1:0 This bit is ign							
bit 1	Unimplemen	ted: Read as '	0'					
bit 0	TMR1ON: Tir 1 = Enables 0 = Stops Tir Clears Ti	Timer1	ilop					

22.1 Timer2/4/6 Operation

The clock input to the Timer2/4/6 modules is the system instruction clock (Fosc/4).

TMRx increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, TxCKPS<1:0> of the TxCON register. The value of TMRx is compared to that of the Period register, PRx, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMRx to 00h on the next cycle and drives the output counter/postscaler (see Section 22.2 "Timer2/4/6 Interrupt").

The TMRx and PRx registers are both directly readable and writable. The TMRx register is cleared on any device Reset, whereas the PRx register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMRx register
- · a write to the TxCON register
- · Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- · Watchdog Timer (WDT) Reset
- Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

Note: TMRx is not cleared when TxCON is written.

22.2 Timer2/4/6 Interrupt

Timer2/4/6 can also generate an optional device interrupt. The Timer2/4/6 output signal (TMRx-to-PRx match) provides the input for the 4-bit counter/postscaler. This counter generates the TMRx match interrupt flag which is latched in TMRxIF of the PIRx register. The interrupt is enabled by setting the TMRx Match Interrupt Enable bit, TMRxIE of the PIEx register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, TxOUTPS<3:0>, of the TxCON register.

22.3 Timer2/4/6 Output

The unscaled output of TMRx is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSPx modules operating in SPI mode. Additional information is provided in Section 25.0 "Master Synchronous Serial Port (MSSP1 and MSSP2) Module".

22.4 Timer2/4/6 Operation During Sleep

The Timer2/4/6 timers cannot be operated while the processor is in Sleep mode. The contents of the TMRx and PRx registers will remain unchanged while the processor is in Sleep mode.

R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
MDCHODIS	MDCHPOL	MDCHSYNC	_		MDCH	1<3:0>			
bit 7	•						bit 0		
Logondy									
Legend: R = Readable	hit	W = Writable b	i+	LI – Unimplor	nented bit, read	L ac. 'O'			
				•	at POR and BO		thar Deceta		
u = Bit is uncha	angeu	x = Bit is unknown			al FOR and BO	R/Value at all t	Siner Reseis		
'1' = Bit is set		'0' = Bit is clear	rea						
bit 7	MDCHODIS:	: Modulator High	Carrier Ou	tout Disable bit					
		signal driving the		•	ted by MDCH<	3:0>) is disable	ed		
	0 = Output s	signal driving the	, peripheral	output pin (seled	ted by MDCH<	3:0>) is enable	ed		
bit 6	MDCHPOL: Modulator High Carrier Polarity Select bit								
	1 = Selected	d high carrier sigr	nal is invert	ed					
	0 = Selected	d high carrier sigr	nal is not in	verted					
bit 5	MDCHSYNC	: Modulator High	Carrier Sy	nchronization E	nable bit				
		or waits for a fall	ing edge o	n the high time o	carrier signal be	efore allowing	a switch to the		
	low time		voobroniza	d to the high tim		(1)			
		or Output is not s		ed to the high th	le carrier signal	(')			
bit 4	-	nted: Read as '0'			(1)				
bit 3-0		Modulator Data	-		(')				
	1111 = Res	served. No chanr	nel connect	ted.					
	•								
	•								
		served. No chann							
		P4 output (PWM							
	0110 = CCP3 output (PWM Output mode only)								
	0101 = CCP2 output (PWM Output mode only)								
	0100 = CCP1 output (PWM Output mode only) 0011 = Reference Clock module signal (CLKR)								
		CIN2 port pin	aalo olgilai						
		CIN1 port pin							
	0000 = Vss	5							
Note 1. Nar	manual comics			occur in the signs	l atraam if the	annian ia matau	un a la ra a im a d		

REGISTER 23-3: MDCARH: MODULATION HIGH CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
MDCLODIS	MDCLPOL	MDCLSYNC			MDCL	_<3:0>			
bit 7		·					bit 0		
Legend:									
R = Readable	bit	W = Writable bi	t	U = Unimplen	nented bit, read	l as '0'			
u = Bit is uncha	anged	x = Bit is unkno	wn	•	t POR and BO		other Resets		
'1' = Bit is set	•	'0' = Bit is clear	ed						
bit 7	MDCLODIS:	Modulator Low C	arrier Out	out Disable bit					
		signal driving the peripheral output pin (selected by MDCL<3:0> of the MDCARL register)							
	is disabl	ea signal driving the p	erinheral (outout nin (select	ted by MDCI <3	3.0> of the MD(CARL register		
	is enable	• • •	, on photon (
bit 6	MDCLPOL:	Modulator Low Ca	arrier Polar	ity Select bit					
	 1 = Selected low carrier signal is inverted 0 = Selected low carrier signal is not inverted 								
5.4 <i>C</i>		•			abla bit				
bit 5	MDCLSYNC: Modulator Low Carrier Synchronization Enable bit 1 = Modulator waits for a falling edge on the low time carrier signal before allowing a switch to the high								
	time car	rier			•		iterite the high		
		or Output is not s	ynchronize	d to the low time	e carrier signal ⁽	1)			
bit 4	-	nted: Read as '0'			~				
bit 3-0	MDCL<3:0> Modulator Data High Carrier Selection bits ⁽¹⁾ 1111 = Reserved. No channel connected.								
	1111 = Res	served. No chann	el connect	ed.					
	•								
	•								
		erved. No chann P4 output (PWM (
		P3 output (PWM (
	0101 = CCP2 output (PWM Output mode only)								
		P1 output (PWM (erence Clock mod							
		CIN2 port pin	ଯା ତ ରାହା ାଣା						
	0001 = MD	CIN1 port pin							
	0000 = Vss	5							

REGISTER 23-4: MDCARL: MODULATION LOW CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	—		MDCF	<3:0>		199
MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	_	MDCL<3:0>				200
MDCON	MDEN	MDOE	MDSLR	MDOPOL	MDOUT	_	—	MDBIT	197
MDSRC	MDMSODIS		—	_		MDMS	6<3:0>		198

Legend: — Unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

25.6.13.1 Bus Collision During a Start Condition

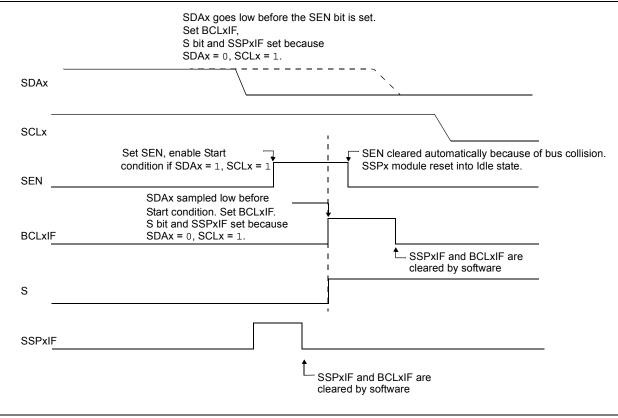
During a Start condition, a bus collision occurs if:

- a) SDAx or SCLx are sampled low at the beginning of the Start condition (Figure 25-33).
- b) SCLx is sampled low before SDAx is asserted low (Figure 25-34).

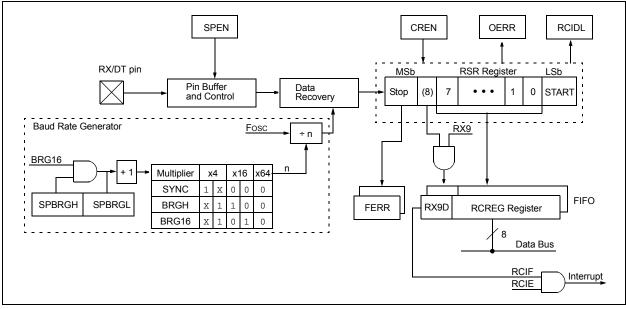
During a Start condition, both the SDAx and the SCLx pins are monitored.

If the SDAx pin is already low, or the SCLx pin is already low, then all of the following occur:

- · the Start condition is aborted,
- · the BCLxIF flag is set and
- the MSSPx module is reset to its Idle state (Figure 25-33).

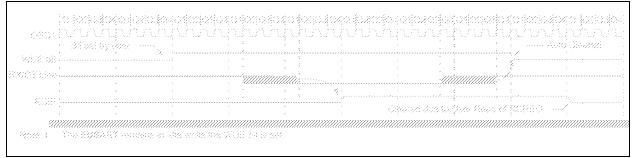

The Start condition begins with the SDAx and SCLx pins deasserted. When the SDAx pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCLx pin is sampled low while SDAx is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDAx pin is sampled low during this count, the BRG is reset and the SDAx line is asserted early (Figure 25-35). If, however, a '1' is sampled on the


SDAx pin, the SDAx pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCLx pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCLx pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDAx before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 26-2: EUSART RECEIVE BLOCK DIAGRAM


The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These registers are detailed in Register 26-1, Register 26-2 and Register 26-3, respectively.

When the receiver or transmitter section is not enabled then the corresponding RX or TX pin may be used for general purpose input and output.

FIGURE 26-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

FIGURE 26-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

97 The SUS-ABT revealed is the white he will be a set.

29.0 INSTRUCTION SET SUMMARY

Each PIC16 instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- · Byte Oriented
- · Bit Oriented
- · Literal and Control

The literal and control category contains the most varied instruction word format.

Table 29-3 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of four oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

29.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 29-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 29-2: ABBREVIATION DESCRIPTIONS

Field	Description				
PC	Program Counter				
TO	Time-out bit				
С	Carry bit				
DC	Digit carry bit				
Z	Zero bit				
PD	Power-down bit				

30.4 DC Characteristics: PIC16(L)F1825/9-I/E

	DC CI	HARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
	VIL	Input Low Voltage								
		I/O PORT:								
D030		with TTL buffer	—	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D030A			—		0.15 VDD	V	$1.8V \le V\text{DD} \le 4.5V$			
D031		with Schmitt Trigger buffer	—	_	0.2 VDD	V	$2.0V \le V\text{DD} \le 5.5V$			
		with I ² C™ levels	—	_	0.3 VDD	V				
		with SMBus levels		_	0.8	V	$2.7V \le V\text{DD} \le 5.5V$			
D032		MCLR, OSC1 (RC mode) ⁽¹⁾		_	0.2 VDD	V				
D033		OSC1 (HS mode)		_	0.3 VDD	V				
	VIH	Input High Voltage	<u>,</u> 1		•					
		I/O ports:								
D040		with TTL buffer	2.0	_	_	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D040A			0.25 VDD + 0.8	—	_	V	$1.8V \leq V\text{DD} \leq 4.5V$			
D041		with Schmitt Trigger buffer	0.8 VDD	_	_	V	$2.0V \le V\text{DD} \le 5.5V$			
		with I ² C [™] levels	0.7 VDD	_	_	V				
		with SMBus levels	2.1	_	_	V	$2.7V \le V\text{DD} \le 5.5V$			
D042		MCLR	0.8 VDD	_	_	V				
D043A		OSC1 (HS mode)	0.7 VDD	_	_	V				
D043B		OSC1 (RC mode)	0.9 VDD	_	_	V	VDD > 2.0V (Note 1)			
	lı∟	Input Leakage Current ⁽²⁾								
D060		I/O ports	—	± 5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high- impedance at 85°C			
		(3)		± 5	± 1000	nA	125°C			
D061	<u> </u>	MCLR ⁽³⁾	—	± 50	± 200	nA	$Vss \le VPIN \le VDD$ at $85^{\circ}C$			
	IPUR	Weak Pull-up Current	, , , , , , , , , , , , , , , , , , ,			1				
D070*			25	100	200		VDD = 3.3V, $VPIN = VSS$			
	Vo	Output Low Voltage ⁽⁴⁾	25	140	300	μA	VDD = 5.0V, VPIN = VSS			
Daga	Vol		<u>т</u> г			1				
D080		I/O ports	—	—	0.6	v	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V			
	Voh	Output High Voltage ⁽⁴⁾								
D090		I/O ports					Юн = 3.5mA, VDD = 5V			
			Vdd - 0.7		—	V	IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V			
		Capacitive Loading Specs on	Output Pins							
D101*	COSC2	OSC2 pin	-	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1			
D101A*	Cio	All I/O pins		_	50	pF				
*		arameters are characterized but	not tested			۳.				

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are † not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.