



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 32MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                     |
| Number of I/O              | 11                                                                        |
| Program Memory Size        | 14KB (8K x 14)                                                            |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 256 x 8                                                                   |
| RAM Size                   | 1K x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                               |
| Data Converters            | A/D 8x10b                                                                 |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 16-VQFN Exposed Pad                                                       |
| Supplier Device Package    | 16-QFN (4x4)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f1825-e-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### 3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The High directive will set bit<7> if a label points to a location in program memory.

#### EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

| constants |             |         |      |
|-----------|-------------|---------|------|
| RETLW     | DATA0       | ;Index0 | data |
| RETLW     | DATA1       | ;Index1 | data |
| RETLW     | DATA2       |         |      |
| RETLW     | DATA3       |         |      |
| my_functi | on          |         |      |
| ; LO      | IS OF CODE. |         |      |
| MOVLW     | LOW cons    | tants   |      |
| MOVWF     | FSR1L       |         |      |
| MOVLW     | HIGH con    | stants  |      |
| MOVWF     | FSR1H       |         |      |
| MOVIW     | 0[FSR1]     |         |      |
| ;THE PROG | RAM MEMORY  | IS IN W |      |

### 3.2 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-2):

- · 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.5** "**Indirect Addressing**" for more information.

Data Memory uses a 12-bit address. The upper seven bits of the address define the Bank address and the lower five bits select the registers/RAM in that bank.

#### 3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation of the PIC16(L)F1825/9. These registers are listed below:

- INDF0
- INDF1
- PCL
- STATUS
- FSR0 Low
- FSR0 High
- FSR1 Low
- FSR1 High
- BSR
- WREG
- PCLATH
- INTCON

Note: The core registers are the first 12 addresses of every data memory bank.

# TABLE 3-7: PIC16(L)F1825/9 MEMORY MAP, BANK 31

|         | Bank 31 <sup>(1)</sup> |                      |
|---------|------------------------|----------------------|
| F8Ch    |                        |                      |
|         | Unimplemented          |                      |
|         | Read as '0'            |                      |
|         |                        |                      |
| FE3h    |                        |                      |
| FE4h    | STATUS_SHAD            |                      |
| FE5h    | WREG_SHAD              |                      |
| FE6h    | BSR_SHAD               |                      |
| FE7h    | PCLATH_SHAD            |                      |
| FE8h    | FSR0L_SHAD             |                      |
| FE9h    | FSR0H_SHAD             |                      |
| FEAh    | FSR1L_SHAD             |                      |
| FEBh    | FSR1H_SHAD             |                      |
| FECh    | —                      |                      |
| FEDh    | STKPTR                 |                      |
| FEEh    | TOSL                   |                      |
| FEFh    | TOSH                   |                      |
|         |                        |                      |
| Legend: | = Unimplemented da     | ta memory locations, |
|         | read as '0'.           |                      |

### 3.2.6 SPECIAL FUNCTION REGISTERS SUMMARY

The Special Function Register summary for the device family are as follows:

| Device                         | Bank(s) | Page No. |  |
|--------------------------------|---------|----------|--|
|                                | 0       | 29       |  |
|                                | 1       | 30       |  |
|                                | 2       | 31       |  |
|                                | 3       | 32       |  |
|                                | 4       | 33       |  |
| PIC16(L)F1825<br>PIC16(L)F1829 | 5       | 34       |  |
|                                | 6       | 35       |  |
|                                | 7       | 36       |  |
|                                | 8       | 37       |  |
|                                | 9-30    | 38       |  |
|                                | 31      | 39       |  |

|                     |                                                                                                                             |                                |                                                          |                  |            |              |             |         |           |                      | 1                               |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------|------------------|------------|--------------|-------------|---------|-----------|----------------------|---------------------------------|
| Address             | Name                                                                                                                        | Bit 7                          | Bit 6                                                    | Bit 5            | Bit 4      | Bit 3        | Bit 2       | Bit 1   | Bit 0     | Value on<br>POR, BOR | Value on all<br>other<br>Resets |
| Bank 1              | ank 1                                                                                                                       |                                |                                                          |                  |            |              |             |         |           |                      |                                 |
| 080h <sup>(1)</sup> | <sup>(1)</sup> INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register) |                                |                                                          |                  |            |              |             |         | XXXX XXXX | XXXX XXXX            |                                 |
| 081h <sup>(1)</sup> | INDF1                                                                                                                       | Addressing tl<br>(not a physic | his location us<br>al register)                          | es contents of   | FSR1H/FSR1 | L to address | data memory | 1       |           | xxxx xxxx            | xxxx xxxx                       |
| 082h <sup>(1)</sup> | PCL                                                                                                                         | Program Cou                    | unter (PC) Lea                                           | st Significant E | lyte       |              |             |         |           | 0000 0000            | 0000 0000                       |
| 083h <sup>(1)</sup> | STATUS                                                                                                                      | _                              | _                                                        | —                | TO         | PD           | Z           | DC      | С         | 1 1000               | q quuu                          |
| 084h <sup>(1)</sup> | FSR0L                                                                                                                       | Indirect Data                  | Memory Addr                                              | ess 0 Low Poir   | nter       |              |             |         |           | 0000 0000            | uuuu uuuu                       |
| 085h <sup>(1)</sup> | FSR0H                                                                                                                       | Indirect Data                  | Memory Addr                                              | ess 0 High Poi   | nter       |              |             |         |           | 0000 0000            | 0000 0000                       |
| 086h <sup>(1)</sup> | FSR1L                                                                                                                       | Indirect Data                  | Memory Addr                                              | ess 1 Low Poir   | nter       |              |             |         |           | 0000 0000            | uuuu uuuu                       |
| 087h <sup>(1)</sup> | FSR1H                                                                                                                       | Indirect Data                  | Memory Addr                                              | ess 1 High Poi   | nter       |              |             |         |           | 0000 0000            | 0000 0000                       |
| 088h <sup>(1)</sup> | BSR                                                                                                                         | _                              | _                                                        | _                |            |              | BSR<4:0>    |         |           | 0 0000               | 0 0000                          |
| 089h <sup>(1)</sup> | WREG                                                                                                                        | Working Reg                    | ister                                                    |                  |            |              |             |         |           | 0000 0000            | uuuu uuuu                       |
| 08Ah <sup>(1)</sup> | PCLATH                                                                                                                      | _                              | Write Buffer for the upper 7 bits of the Program Counter |                  |            |              |             |         | -000 0000 | -000 0000            |                                 |
| 08Bh <sup>(1)</sup> | INTCON                                                                                                                      | GIE                            | PEIE                                                     | TMR0IE           | INTE       | IOCIE        | TMR0IF      | INTF    | IOCIF     | 0000 0000            | 0000 0000                       |
| 08Ch                | TRISA                                                                                                                       | _                              | _                                                        | TRISA5           | TRISA4     | TRISA3       | TRISA2      | TRISA1  | TRISA0    | 11 1111              | 11 1111                         |
| 08Dh                | TRISB <sup>(2)</sup>                                                                                                        | TRISB7                         | TRISB6                                                   | TRISB5           | TRISB4     | _            | _           | _       | _         | 1111                 | 1111                            |
| 08Eh                | TRISC                                                                                                                       | TRISC7 <sup>(2)</sup>          | TRISC6 <sup>(2)</sup>                                    | TRISC5           | TRISC4     | TRISC3       | TRISC2      | TRISC1  | TRISC0    | 1111 1111            | 1111 1111                       |
| 08Fh                | —                                                                                                                           | Unimplement                    | ted                                                      |                  |            |              |             |         |           | _                    | _                               |
| 090h                | —                                                                                                                           | Unimplement                    | ted                                                      |                  |            |              |             |         |           | _                    | _                               |
| 091h                | PIE1                                                                                                                        | TMR1GIE                        | ADIE                                                     | RCIE             | TXIE       | SSP1IE       | CCP1IE      | TMR2IE  | TMR1IE    | 0000 0000            | 0000 0000                       |
| 092h                | PIE2                                                                                                                        | OSFIE                          | C2IE                                                     | C1IE             | EEIE       | BCL1IE       | _           | _       | CCP2IE    | 0000 00              | 0000 00                         |
| 093h                | PIE3                                                                                                                        | —                              | —                                                        | CCP4IE           | CCP3IE     | TMR6IE       | —           | TMR4IE  | —         | 00 0-0-              | 00 0-0-                         |
| 094h                | PIE4 <sup>(2)</sup>                                                                                                         | —                              | —                                                        | —                | —          | —            | —           | BCL2IE  | SSP2IE    | 00                   | 00                              |
| 095h                | OPTION_REG                                                                                                                  | WPUEN                          | INTEDG                                                   | TMR0CS           | TMR0SE     | PSA          |             | PS<2:0> |           | 1111 1111            | 1111 1111                       |
| 096h                | PCON                                                                                                                        | STKOVF                         | STKUNF                                                   | —                | —          | RMCLR        | RI          | POR     | BOR       | 00 11qq              | qq qquu                         |
| 097h                | WDTCON                                                                                                                      | —                              | —                                                        |                  | V          | VDTPS<4:0>   |             |         | SWDTEN    | 01 0110              | 01 0110                         |
| 098h                | OSCTUNE                                                                                                                     | _                              | _                                                        |                  |            | TUN<         | 5:0>        |         |           | 00 0000              | 00 0000                         |
| 099h                | OSCCON                                                                                                                      | SPLLEN                         |                                                          | IRCF<            | <3:0>      |              | _           | SCS     | <1:0>     | 0011 1-00            | 0011 1-00                       |
| 09Ah                | OSCSTAT                                                                                                                     | T10SCR                         | PLLR                                                     | OSTS             | HFIOFR     | HFIOFL       | MFIOFR      | LFIOFR  | HFIOFS    | 10q0 0q00            | dddd ddod                       |
| 09Bh                | ADRESL                                                                                                                      | A/D Result R                   | egister Low                                              |                  |            |              |             |         |           | xxxx xxxx            | uuuu uuuu                       |
| 09Ch                | ADRESH                                                                                                                      | A/D Result R                   | egister High                                             |                  |            |              |             |         |           | xxxx xxxx            | uuuu uuuu                       |
| 09Dh                | ADCON0                                                                                                                      |                                |                                                          |                  | CHS<4:0>   |              |             | GO/DONE | ADON      | -000 0000            | -000 0000                       |
| 09Eh                | ADCON1                                                                                                                      | ADFM                           |                                                          | ADCS<2:0>        |            |              | ADNREF      | ADPRE   | F<1:0>    | 0000 -000            | 0000 -000                       |
| 09Fh                | _                                                                                                                           | Unimplement                    | ted                                                      |                  |            |              |             |         |           | _                    | —                               |
|                     |                                                                                                                             |                                |                                                          |                  |            |              |             |         |           |                      |                                 |

#### TABLE 3-8 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: These registers can be addressed from any bank.

PIC16(L)F1829 only.
 PIC16(L)F1825 only.

4: Unimplemented, read as '1'.

### 7.11 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- Stack Overflow Reset (STKOVF)
- Stack Underflow Reset (STKUNF)
- MCLR Reset (RMCLR)

The PCON register bits are shown in Register 7-2.

#### REGISTER 7-2: PCON: POWER CONTROL REGISTER

| R/W/HS-0/q | R/W/HS-0/q | U-0 | U-0 | R/W/HC-1/q | R/W/HC-1/q | R/W/HC-q/u | R/W/HC-q/u |
|------------|------------|-----|-----|------------|------------|------------|------------|
| STKOVF     | STKUNF     | —   | —   | RMCLR      | RI         | POR        | BOR        |
| bit 7      |            |     |     |            |            |            | bit 0      |

| Legend:                        |                                                                                       |                                                               |                                                                 |  |  |
|--------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|--|--|
| HC = Bit is clea               | ared by hardwa                                                                        | are                                                           | HS = Bit is set by hardware                                     |  |  |
| R = Readable                   | bit                                                                                   | W = Writable bit                                              | U = Unimplemented bit, read as '0'                              |  |  |
| u = Bit is uncha               | anged                                                                                 | x = Bit is unknown                                            | -m/n = Value at POR and BOR/Value at all other Resets           |  |  |
| '1' = Bit is set               |                                                                                       | '0' = Bit is cleared                                          | q = Value depends on condition                                  |  |  |
|                                |                                                                                       |                                                               |                                                                 |  |  |
| bit 7                          | STKOVF: Sta                                                                           | ick Overflow Flag bit                                         |                                                                 |  |  |
|                                | 1 = A Stack C                                                                         | Overflow occurred                                             |                                                                 |  |  |
|                                | 0 = A Stack 0                                                                         | Overflow has not occurred or                                  | set to '0' by firmware                                          |  |  |
| bit 6                          | STKUNF: Sta                                                                           | ick Underflow Flag bit                                        |                                                                 |  |  |
| 1 = A Stack Underflow occurred |                                                                                       |                                                               |                                                                 |  |  |
|                                | 0 = A Stack Underflow has not occurred or set to '0' by firmware                      |                                                               |                                                                 |  |  |
| bit 5-4                        | Unimplemen                                                                            | ted: Read as '0'                                              |                                                                 |  |  |
| bit 3                          | RMCLR: MCI                                                                            | R Reset Flag bit                                              |                                                                 |  |  |
|                                | $1 = A \frac{MCLR}{MCLR}$                                                             | Reset has not occurred or se<br>Reset has occurred (set to '0 | t to '1' by firmware<br>' in hardware when a MCLR Reset occurs) |  |  |
| bit 2                          | RI: RESET INS                                                                         | struction Flag bit                                            | ·····,                                                          |  |  |
|                                | 1 <b>= A</b> reset                                                                    | instruction has not been exe                                  | cuted or set to '1' by firmware                                 |  |  |
|                                | 0 <b>= A</b> reset i                                                                  | nstruction has been executed                                  | (set to '0' in hardware upon executing a RESET instruction)     |  |  |
| bit 1                          | POR: Power-                                                                           | on Reset Status bit                                           |                                                                 |  |  |
|                                | 1 = No Power                                                                          | r-on Reset occurred                                           |                                                                 |  |  |
|                                | 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) |                                                               |                                                                 |  |  |
| bit 0                          | BOR: Brown-                                                                           | out Reset Status bit                                          |                                                                 |  |  |
|                                | 1 = No Brown                                                                          | o-out Reset occurred                                          |                                                                 |  |  |
|                                | 0 = A Brown-c                                                                         | out Reset occurred (must be                                   | set in software after a Power-on Reset or Brown-out Reset       |  |  |
|                                | occurs)                                                                               |                                                               |                                                                 |  |  |

#### REGISTER 12-15: PORTC: PORTC REGISTER

| R/W-x/u                                 | R/W-x/u                           | R/W-x/u           | R/W-x/u                                               | R/W-x/u                            | R/W-x/u | R/W-x/u | R/W-x/u |  |
|-----------------------------------------|-----------------------------------|-------------------|-------------------------------------------------------|------------------------------------|---------|---------|---------|--|
| RC7 <sup>(1)</sup>                      | RC6 <sup>(1)</sup>                | RC5               | RC4                                                   | RC3                                | RC2     | RC1     | RC0     |  |
| bit 7                                   |                                   |                   |                                                       |                                    |         |         | bit 0   |  |
|                                         |                                   |                   |                                                       |                                    |         |         |         |  |
| Legend:                                 |                                   |                   |                                                       |                                    |         |         |         |  |
| R = Readable b                          | R = Readable bit W = Writable bit |                   | bit                                                   | U = Unimplemented bit, read as '0' |         |         |         |  |
| u = Bit is unchanged x = Bit is unknown |                                   | iown              | -n/n = Value at POR and BOR/Value at all other Resets |                                    |         |         |         |  |
| '1' = Bit is set                        |                                   | '0' = Bit is clea | ared                                                  |                                    |         |         |         |  |

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits<sup>(1)</sup> 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: RC<7:6> available on PIC16(L)F1829 only. Otherwise, they are unimplemented and read as '0'.

#### REGISTER 12-16: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1               | R/W-1/1               | R/W-1/1 | R/W-1/1 | R/W-1/1 | R/W-1/1 | R/W-1/1 | R/W-1/1 |
|-----------------------|-----------------------|---------|---------|---------|---------|---------|---------|
| TRISC7 <sup>(1)</sup> | TRISC6 <sup>(1)</sup> | TRISC5  | TRISC4  | TRISC3  | TRISC2  | TRISC1  | TRISC0  |
| bit 7                 |                       |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0

- TRISC<7:0>: PORTC Tri-State Control bits<sup>(1)</sup>
  - 1 = PORTC pin configured as an input (tri-stated)
  - 0 = PORTC pin configured as an output

Note 1: TRISC<7:6> available on PIC16(L)F1829 only. Otherwise, they are unimplemented and read as '0'.

#### REGISTER 12-17: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u              | R/W-x/u              | R/W-x/u | R/W-x/u | R/W-x/u | R/W-x/u | R/W-x/u | R/W-x/u |
|----------------------|----------------------|---------|---------|---------|---------|---------|---------|
| LATC7 <sup>(2)</sup> | LATC6 <sup>(2)</sup> | LATC5   | LATC4   | LATC3   | LATC2   | LATC1   | LATC0   |
| bit 7                |                      |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

#### bit 7-0 LATC<7:0>: PORTC Output Latch Value bits<sup>(1, 2)</sup>

- **Note 1:** Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.
  - 2: LATC<7:6> available on PIC16(L)F1829 only. Otherwise, they are unimplemented and read as '0'.

#### 16.3 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 16-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 16-4. **The maximum recommended impedance for analog sources is 10 k** $\Omega$ . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 16-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

#### EQUATION 16-1: ACQUISITION TIME EXAMPLE

sumptions: Temperature = 
$$50^{\circ}C$$
 and external impedance of  $10k\Omega 5.0V$  VDD  
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$   
 $= TAMP + TC + TCOFF$   
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$ 

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} ; [1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} ; [2] V_{CHOLD} charge response to V_{APPLIED} (1 - \frac{1}{(2^{n+1}) - 1}) ; combining [1] and [2]$$

*Note:* Where n = number of bits of the ADC.

Solving for TC:

As

$$Tc = -C_{HOLD}(RIC + RSS + RS) \ln(1/2047)$$
  
= -12.5pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)  
= 1.72\mus

Therefore:

$$TACQ = 2\mu s + 1.72\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$
  
= 4.97\mu s

Note 1: The reference voltage (VREF+) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is  $10 \text{ k}\Omega$ . This is required to meet the pin leakage specification.

#### 22.1 Timer2/4/6 Operation

The clock input to the Timer2/4/6 modules is the system instruction clock (Fosc/4).

TMRx increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, TxCKPS<1:0> of the TxCON register. The value of TMRx is compared to that of the Period register, PRx, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMRx to 00h on the next cycle and drives the output counter/postscaler (see Section 22.2 "Timer2/4/6 Interrupt").

The TMRx and PRx registers are both directly readable and writable. The TMRx register is cleared on any device Reset, whereas the PRx register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMRx register
- · a write to the TxCON register
- · Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

Note: TMRx is not cleared when TxCON is written.

#### 22.2 Timer2/4/6 Interrupt

Timer2/4/6 can also generate an optional device interrupt. The Timer2/4/6 output signal (TMRx-to-PRx match) provides the input for the 4-bit counter/postscaler. This counter generates the TMRx match interrupt flag which is latched in TMRxIF of the PIRx register. The interrupt is enabled by setting the TMRx Match Interrupt Enable bit, TMRxIE of the PIEx register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, TxOUTPS<3:0>, of the TxCON register.

#### 22.3 Timer2/4/6 Output

The unscaled output of TMRx is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSPx modules operating in SPI mode. Additional information is provided in Section 25.0 "Master Synchronous Serial Port (MSSP1 and MSSP2) Module".

#### 22.4 Timer2/4/6 Operation During Sleep

The Timer2/4/6 timers cannot be operated while the processor is in Sleep mode. The contents of the TMRx and PRx registers will remain unchanged while the processor is in Sleep mode.

| Name    | Bit 7                                        | Bit 6                           | Bit 5  | Bit 4  | Bit 3      | Bit 2  | Bit 1  | Bit 0  | Register<br>on Page |
|---------|----------------------------------------------|---------------------------------|--------|--------|------------|--------|--------|--------|---------------------|
| CCP2CON | P2M∙                                         | <1:0>                           | DC2B   | <1:0>  | CCP2M<3:0> |        |        |        | 224                 |
| CCP4CON | _                                            | _                               | DC4B   | <1:0>  | CCP4M<3:0> |        |        | 224    |                     |
| CCP6CON | _                                            |                                 | DC6B   | <1:0>  | CCP6M<3:0> |        |        | 224    |                     |
| INTCON  | GIE                                          | PEIE                            | TMR0IE | INTE   | IOCIE      | TMR0IF | INTF   | IOCIF  | 87                  |
| PIE1    | TMR1GIE                                      | ADIE                            | RCIE   | TXIE   | SSP1IE     | CCP1IE | TMR2IE | TMR1IE | 88                  |
| PIE3    | _                                            | _                               | CCP4IE | CCP3IE | TMR6IE     | —      | TMR4IE | —      | 90                  |
| PIR1    | TMR1GIF                                      | ADIF                            | RCIF   | TXIF   | SSP1IF     | CCP1IF | TMR2IF | TMR1IF | 92                  |
| PIR3    | _                                            | —                               | CCP4IF | CCP3IF | TMR6IF     | —      | TMR4IF | —      | 94                  |
| PR2     | Timer2 Module Period Register                |                                 |        |        |            | 188*   |        |        |                     |
| PR4     | Timer4 Module Period Register                |                                 |        |        |            | 188*   |        |        |                     |
| PR6     | Timer6 Module Period Register                |                                 |        |        |            | 188*   |        |        |                     |
| T2CON   | _                                            | T2OUTPS<3:0>                    |        |        |            | TMR2ON | T2CKP  | S<1:0> | 190                 |
| T4CON   | _                                            | T4OUTPS<3:0> TMR4ON T4CKPS<1:0> |        |        |            | 190    |        |        |                     |
| T6CON   | _                                            | T6OUTPS<3:0> TMR6ON T6CKPS<1:0> |        |        | 190        |        |        |        |                     |
| TMR2    | Holding Register for the 8-bit TMR2 Register |                                 |        |        |            | 188*   |        |        |                     |
| TMR4    | Holding Register for the 8-bit TMR4 Register |                                 |        |        |            | 188*   |        |        |                     |
| TMR6    | Holding Register for the 8-bit TMR6 Register |                                 |        |        | 188*       |        |        |        |                     |

TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6

**Legend:** — Unimplemented location, read as '0'. Shaded cells are not used for Timer2/4/6 module.

\* Page provides register information.

### 25.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP1 AND MSSP2) MODULE

#### 25.1 Master SSPx (MSSPx) Module Overview

The Master Synchronous Serial Port (MSSPx) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSPx module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I<sup>2</sup>C<sup>™</sup>)

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- · Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 25-1 is a block diagram of the SPI interface module.

#### FIGURE 25-1: MSSPx BLOCK DIAGRAM (SPI MODE)









#### 25.5.7 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the  $I^2C$  bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I<sup>2</sup>C protocol, defined as address 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave

software can read SSPxBUF and respond. Figure 25-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCLx. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

#### FIGURE 25-24: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE



#### 25.5.8 SSPX MASK REGISTER

An SSPx Mask (SSPMSK) register (Register 25-5) is available in I<sup>2</sup>C Slave mode as a mask for the value held in the SSPxSR register during an address comparison operation. A zero ('0') bit in the SSPMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSPx operation until written with a mask value.

The SSPx Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSPx mask has no effect during the reception of the first (high) byte of the address.

| Mnemonic,<br>Operands |                      | Description                                   | Cyclos | 14-Bit Opcode |      |      | Status | Notes    |       |
|-----------------------|----------------------|-----------------------------------------------|--------|---------------|------|------|--------|----------|-------|
|                       |                      | Description                                   |        | MSb           |      |      | LSb    | Affected | NOLES |
|                       |                      | CONTROL OPERA                                 | TIONS  |               |      |      |        |          |       |
| BRA                   | k                    | Relative Branch                               | 2      | 11            | 001k | kkkk | kkkk   |          |       |
| BRW                   | _                    | Relative Branch with W                        | 2      | 00            | 0000 | 0000 | 1011   |          |       |
| CALL                  | k                    | Call Subroutine                               | 2      | 10            | 0kkk | kkkk | kkkk   |          |       |
| CALLW                 | -                    | Call Subroutine with W                        | 2      | 00            | 0000 | 0000 | 1010   |          |       |
| GOTO                  | k                    | Go to address                                 | 2      | 10            | 1kkk | kkkk | kkkk   |          |       |
| RETFIE                | k                    | Return from interrupt                         | 2      | 00            | 0000 | 0000 | 1001   |          |       |
| RETLW                 | k                    | Return with literal in W                      | 2      | 11            | 0100 | kkkk | kkkk   |          |       |
| RETURN                | -                    | Return from Subroutine                        | 2      | 00            | 0000 | 0000 | 1000   |          |       |
| INHERENT OPERATIO     |                      |                                               | TIONS  |               |      |      |        | •        |       |
| CLRWDT                | -                    | Clear Watchdog Timer                          | 1      | 00            | 0000 | 0110 | 0100   | TO, PD   |       |
| NOP                   | -                    | No Operation                                  | 1      | 00            | 0000 | 0000 | 0000   |          |       |
| OPTION                | _                    | Load OPTION_REG register with W               | 1      | 00            | 0000 | 0110 | 0010   |          |       |
| RESET                 | -                    | Software device Reset                         | 1      | 00            | 0000 | 0000 | 0001   |          |       |
| SLEEP                 | -                    | Go into Standby mode                          | 1      | 00            | 0000 | 0110 | 0011   | TO, PD   |       |
| TRIS                  | f                    | Load TRIS register with W                     | 1      | 00            | 0000 | 0110 | Offf   |          |       |
|                       | C-COMPILER OPTIMIZED |                                               |        |               |      |      |        |          |       |
| ADDFSR                | n, k                 | Add Literal k to FSRn                         | 1      | 11            | 0001 | 0nkk | kkkk   |          |       |
| MOVIW                 | n mm                 | Move Indirect FSRn to W with pre/post inc/dec | 1      | 00            | 0000 | 0001 | 0nmm   | Z        | 2, 3  |
|                       |                      | modifier, mm                                  |        |               |      |      |        |          |       |
|                       | k[n]                 | Move INDFn to W, Indexed Indirect.            | 1      | 11            | 1111 | 0nkk | kkkk   | Z        | 2     |
| MOVWI                 | n mm                 | Move W to Indirect FSRn with pre/post inc/dec | 1      | 00            | 0000 | 0001 | 1nmm   |          | 2, 3  |
|                       |                      | modifier, mm                                  |        |               |      |      |        |          |       |
|                       | k[n]                 | Move W to INDFn, Indexed Indirect.            | 1      | 11            | 1111 | 1nkk | kkkk   |          | 2     |

### TABLE 29-3: PIC16(L)F1825/9 ENHANCED INSTRUCTION SET (CONTINUED)

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

**3:** See Table in the MOVIW and MOVWI instruction descriptions.

| DECFSZ           | Decrement f, Skip if 0                                                                                                                                                                                                                                                                                                               |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] DECFSZ f,d                                                                                                                                                                                                                                                                                                                   |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                                                                                                                                                                                    |
| Operation:       | (f) - 1 $\rightarrow$ (destination);<br>skip if result = 0                                                                                                                                                                                                                                                                           |
| Status Affected: | None                                                                                                                                                                                                                                                                                                                                 |
| Description:     | The contents of register 'f' are decre-<br>mented. If 'd' is '0', the result is placed<br>in the W register. If 'd' is '1', the result<br>is placed back in register 'f'.<br>If the result is '1', the next instruction is<br>executed. If the result is '0', then a<br>NOP is executed instead, making it a<br>2-cycle instruction. |

| GOTO             | Unconditional Branch                                                                                                                                                                    |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] GOTO k                                                                                                                                                                 |
| Operands:        | $0 \leq k \leq 2047$                                                                                                                                                                    |
| Operation:       | k → PC<10:0><br>PCLATH<6:3> → PC<14:11>                                                                                                                                                 |
| Status Affected: | None                                                                                                                                                                                    |
| Description:     | GOTO is an unconditional branch. The<br>11-bit immediate value is loaded into<br>PC bits <10:0>. The upper bits of PC<br>are loaded from PCLATH<4:3>. GOTO<br>is a 2-cycle instruction. |

| INCFSZ           | Increment f, Skip if 0                                                                                                                                                                                                                                                                                                          |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] INCFSZ f,d                                                                                                                                                                                                                                                                                                              |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                                                                                                                                                                               |
| Operation:       | (f) + 1 $\rightarrow$ (destination),<br>skip if result = 0                                                                                                                                                                                                                                                                      |
| Status Affected: | None                                                                                                                                                                                                                                                                                                                            |
| Description:     | The contents of register 'f' are incre-<br>mented. If 'd' is '0', the result is placed<br>in the W register. If 'd' is '1', the result<br>is placed back in register 'f'.<br>If the result is '1', the next instruction is<br>executed. If the result is '0', a NOP is<br>executed instead, making it a 2-cycle<br>instruction. |

| IORLW            | Inclusive OR literal with W                                                                                        |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Syntax:          | [ <i>label</i> ] IORLW k                                                                                           |  |  |  |  |
| Operands:        | $0 \leq k \leq 255$                                                                                                |  |  |  |  |
| Operation:       | (W) .OR. $k \rightarrow$ (W)                                                                                       |  |  |  |  |
| Status Affected: | Z                                                                                                                  |  |  |  |  |
| Description:     | The contents of the W register are<br>OR'ed with the 8-bit literal 'k'. The<br>result is placed in the W register. |  |  |  |  |

| INCF             | Increment f                                                                                                                                                             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] INCF f,d                                                                                                                                                        |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                      |
| Operation:       | (f) + 1 $\rightarrow$ (destination)                                                                                                                                     |
| Status Affected: | Z                                                                                                                                                                       |
| Description:     | The contents of register 'f' are<br>incremented. If 'd' is '0', the result is<br>placed in the W register. If 'd' is '1', the<br>result is placed back in register 'f'. |

| IORWF            | Inclusive OR W with f                                                                                                                                                    |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Syntax:          | [ <i>label</i> ] IORWF f,d                                                                                                                                               |  |  |  |  |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                       |  |  |  |  |
| Operation:       | (W) .OR. (f) $\rightarrow$ (destination)                                                                                                                                 |  |  |  |  |
| Status Affected: | Z                                                                                                                                                                        |  |  |  |  |
| Description:     | Inclusive OR the W register with<br>register 'f'. If 'd' is '0', the result is<br>placed in the W register. If 'd' is '1', the<br>result is placed back in register 'f'. |  |  |  |  |

| ΜΟΥΨΙ      | Move W to INDFn                                                                                                                                                                                                                                                                                                            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:    | [ <i>label</i> ] MOVWI ++FSRn<br>[ <i>label</i> ] MOVWIFSRn<br>[ <i>label</i> ] MOVWI FSRn++<br>[ <i>label</i> ] MOVWI FSRn<br>[ <i>label</i> ] MOVWI k[FSRn]                                                                                                                                                              |
| Operands:  | n ∈ [0,1]<br>mm ∈ [00,01, 10, 11]<br>-32 ≤ k ≤ 31                                                                                                                                                                                                                                                                          |
| Operation: | <ul> <li>W → INDFn</li> <li>Effective address is determined by</li> <li>FSR + 1 (preincrement)</li> <li>FSR - 1 (predecrement)</li> <li>FSR + k (relative offset)</li> <li>After the Move, the FSR value will be either:</li> <li>FSR + 1 (all increments)</li> <li>FSR - 1 (all decrements)</li> <li>Unchanged</li> </ul> |

Status Affected:

| Mode          | Syntax | mm |
|---------------|--------|----|
| Preincrement  | ++FSRn | 00 |
| Predecrement  | FSRn   | 01 |
| Postincrement | FSRn++ | 10 |
| Postdecrement | FSRn   | 11 |

None

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

| NOP              | No Operation  |
|------------------|---------------|
| Syntax:          | [label] NOP   |
| Operands:        | None          |
| Operation:       | No operation  |
| Status Affected: | None          |
| Description:     | No operation. |
| Words:           | 1             |
| Cycles:          | 1             |
| Example:         | NOP           |

| OPTION           | Load OPTION_REG Register with W                                                                           |
|------------------|-----------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] OPTION                                                                                            |
| Operands:        | None                                                                                                      |
| Operation:       | $(W) \to OPTION\_REG$                                                                                     |
| Status Affected: | None                                                                                                      |
| Description:     | Move data from W register to<br>OPTION_REG register.                                                      |
| Words:           | 1                                                                                                         |
| Cycles:          | 1                                                                                                         |
| Example:         | OPTION                                                                                                    |
|                  | Before Instruction<br>OPTION_REG = 0xFF<br>W = 0x4F<br>After Instruction<br>OPTION_REG = 0x4F<br>W = 0x4F |

| RESET            | Software Reset                                                                 |
|------------------|--------------------------------------------------------------------------------|
| Syntax:          | [label] RESET                                                                  |
| Operands:        | None                                                                           |
| Operation:       | Execute a device Reset. Resets the<br>nRI flag of the PCON register.           |
| Status Affected: | None                                                                           |
| Description:     | This instruction provides a way to<br>execute a hardware Reset by<br>software. |

#### TABLE 30-6: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

| Standard Operating Conditions (unless otherwise stated)<br>Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |                             |                                                      |                                                                                    |                |                                           |        |        |       |                                    |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------|------------------------------------------------------------------------------------|----------------|-------------------------------------------|--------|--------|-------|------------------------------------|
| Param<br>No.                                                                                                             | Sym.                        | Characteristic                                       |                                                                                    |                | Min.                                      | Тур†   | Max.   | Units | Conditions                         |
| 40*                                                                                                                      | TT0H T0CKI High-Pulse Widtl |                                                      | Pulse Width                                                                        | No Prescaler   | 0.5 Tcy + 20                              | —      | -      | ns    |                                    |
|                                                                                                                          |                             | With Prescaler                                       |                                                                                    | 10             | —                                         | _      | ns     |       |                                    |
| 41*                                                                                                                      | TT0L                        | T0CKI Low-Pulse Width No Prescaler<br>With Prescaler |                                                                                    | 0.5 Tcy + 20   | —                                         | _      | ns     |       |                                    |
|                                                                                                                          |                             |                                                      |                                                                                    | With Prescaler | 10                                        | —      | _      | ns    |                                    |
| 42*                                                                                                                      | Тт0Р                        | T0CKI Period                                         | CKI Period                                                                         |                |                                           | —      | _      | ns    | N = prescale value<br>(2, 4,, 256) |
| 45*                                                                                                                      | TT1H                        | T1CKI High<br>Time                                   | Synchronous, No Prescaler                                                          |                | 0.5 Tcy + 20                              | _      |        | ns    |                                    |
|                                                                                                                          |                             |                                                      | Synchronous,<br>with Prescaler                                                     |                | 15                                        | —      |        | ns    |                                    |
|                                                                                                                          |                             |                                                      | Asynchronous                                                                       |                | 30                                        | —      |        | ns    |                                    |
| 46*                                                                                                                      | TT1L                        | T1CKI Low<br>Time                                    | Synchronous, No Prescaler                                                          |                | 0.5 Tcy + 20                              | —      | _      | ns    |                                    |
|                                                                                                                          |                             |                                                      | Synchronous, with Prescaler                                                        |                | 15                                        | _      |        | ns    |                                    |
|                                                                                                                          |                             |                                                      | Asynchronous                                                                       |                | 30                                        | —      |        | ns    |                                    |
| 47*                                                                                                                      | TT1P                        | T1CKI Input<br>Period                                | out Synchronous                                                                    |                | Greater of:<br>30 or <u>Tcy + 40</u><br>N | _      |        | ns    | N = prescale value<br>(1, 2, 4, 8) |
|                                                                                                                          |                             |                                                      | Asynchronous                                                                       |                | 60                                        | —      | _      | ns    |                                    |
| 48                                                                                                                       | F⊤1                         | Timer1 Oscill<br>(oscillator en                      | mer1 Oscillator Input Frequency Range<br>scillator enabled by setting bit T1OSCEN) |                |                                           | 32.768 | 33.1   | kHz   |                                    |
| 49*                                                                                                                      | TCKEZTMR1                   | Delay from E<br>Increment                            | elay from External Clock Edge to Timer                                             |                |                                           | —      | 7 Tosc | —     | Timers in Sync<br>mode             |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

#### FIGURE 30-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)



#### TABLE 30-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

| Standard Operating Conditions (unless otherwise stated)<br>Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |      |                     |                |                       |      |      |       |                    |  |
|--------------------------------------------------------------------------------------------------------------------------|------|---------------------|----------------|-----------------------|------|------|-------|--------------------|--|
| Param<br>No. Sym. Characteristic                                                                                         |      |                     |                | Min.                  | Тур† | Max. | Units | Conditions         |  |
| CC01*                                                                                                                    | TccL | CCP Input Low Time  | No Prescaler   | 0.5Tcy + 20           | _    | _    | ns    |                    |  |
|                                                                                                                          |      |                     | With Prescaler | 20                    | _    |      | ns    |                    |  |
| CC02*                                                                                                                    | TccH | CCP Input High Time | No Prescaler   | 0.5Tcy + 20           | _    |      | ns    |                    |  |
|                                                                                                                          |      |                     | With Prescaler | 20                    | _    |      | ns    |                    |  |
| CC03*                                                                                                                    | TccP | CCP Input Period    |                | <u>3Tcy + 40</u><br>N | _    | _    | ns    | N = prescale value |  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

### TABLE 30-20: DC CHARACTERISTICS FOR IDD SPECIFICATIONS FOR PIC16F1825/9-H (High Temp.)

| PIC16F                       | 1825/9                                | Standard Operating Conditions: (unless otherwise stated)<br>Operating Temperature: $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature |       |       |     |           |                                      |  |  |
|------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----|-----------|--------------------------------------|--|--|
| Param Device Characteristics |                                       |                                                                                                                                                 | _     |       |     | Condition |                                      |  |  |
| No.                          | Device Characteristics                | Characteristics Min. Typ. Max. Units                                                                                                            |       | Units | VDD | Note      |                                      |  |  |
|                              | Supply Voltage (IDD) <sup>(1,2)</sup> |                                                                                                                                                 |       |       |     |           |                                      |  |  |
| D010                         |                                       | —                                                                                                                                               | 13    | 58    | μA  | 2.0       |                                      |  |  |
|                              |                                       | _                                                                                                                                               | 19    | 67    | μA  | 3.0       | FOSC ≤ 32 KHZ<br>I P Oscillator mode |  |  |
|                              |                                       | _                                                                                                                                               | 32    | 92    | μA  | 5.0       |                                      |  |  |
| D011                         |                                       | —                                                                                                                                               | 135   | 316   | μA  | 2.0       |                                      |  |  |
|                              |                                       | _                                                                                                                                               | 185   | 400   | μA  | 3.0       | TOSC ≤ 1 MHZ<br>XT Oscillator mode   |  |  |
|                              |                                       | —                                                                                                                                               | 300   | 537   | μA  | 5.0       |                                      |  |  |
| D012                         |                                       | —                                                                                                                                               | 240   | 495   | μA  | 2.0       |                                      |  |  |
|                              |                                       | _                                                                                                                                               | 360   | 680   | μA  | 3.0       | TFOSC ≤ 4 MHZ<br>XT Oscillator mode  |  |  |
|                              |                                       | —                                                                                                                                               | 0.660 | 1.20  | mA  | 5.0       |                                      |  |  |
| D013                         |                                       | —                                                                                                                                               | 75    | 158   | μA  | 2.0       |                                      |  |  |
|                              |                                       | —                                                                                                                                               | 155   | 338   | μA  | 3.0       | FOSC ≤ 1 MHZ<br>EC Oscillator mode   |  |  |
|                              |                                       | —                                                                                                                                               | 345   | 792   | μA  | 5.0       |                                      |  |  |
| D014                         |                                       | —                                                                                                                                               | 185   | 357   | μA  | 2.0       |                                      |  |  |
|                              |                                       | _                                                                                                                                               | 325   | 625   | μA  | 3.0       | FOSC ≤ 4 MHZ<br>FC Oscillator mode   |  |  |
|                              |                                       | —                                                                                                                                               | 0.665 | 1.30  | mA  | 5.0       |                                      |  |  |
| D016                         |                                       | —                                                                                                                                               | 245   | 476   | μA  | 2.0       |                                      |  |  |
|                              |                                       | _                                                                                                                                               | 360   | 672   | μA  | 3.0       | TFOSC ≤ 4 MHZ<br>INTOSC mode         |  |  |
|                              |                                       | —                                                                                                                                               | 0.620 | 1.10  | mA  | 5.0       |                                      |  |  |
| D017                         |                                       | _                                                                                                                                               | 395   | 757   | μA  | 2.0       |                                      |  |  |
|                              |                                       | _                                                                                                                                               | 0.620 | 1.20  | mA  | 3.0       | INTOSC ≤ 8 MHZ                       |  |  |
|                              |                                       | —                                                                                                                                               | 1.20  | 2.20  | mA  | 5.0       |                                      |  |  |
| D018                         |                                       |                                                                                                                                                 | 175   | 332   | μA  | 2.0       |                                      |  |  |
|                              |                                       |                                                                                                                                                 | 285   | 518   | μA  | 3.0       | FOSC ≤ 4 MHZ<br>FXTRC mode           |  |  |
|                              |                                       |                                                                                                                                                 | 530   | 972   | μA  | 5.0       |                                      |  |  |
| D019                         |                                       | —                                                                                                                                               | 2.20  | 4.10  | mA  | 4.5       | Fosc ≤ 20 MHz                        |  |  |
|                              |                                       | _                                                                                                                                               | 2.80  | 4.80  | mA  | 5.0       | HS Oscillator mode                   |  |  |

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rage, oscillator type, internal code execution pattern, and temperature, also have an impact on the current consumption.



FIGURE 31-17: IDD TYPICAL, HFINTOSC MODE, PIC16F1825/9 ONLY













#### 33.0 **PACKAGING INFORMATION**

#### 33.1 **Package Marking Information**

14-Lead PDIP (300 mil)



| Legend | : XXX<br>Y<br>YY<br>WW<br>NNN<br>@3<br>* | Customer-specific information<br>Year code (last digit of calendar year)<br>Year code (last 2 digits of calendar year)<br>Week code (week of January 1 is week '01')<br>Alphanumeric traceability code<br>Pb-free JEDEC <sup>®</sup> designator for Matte Tin (Sn)<br>This package is Pb-free. The Pb-free JEDEC designator (e3)<br>can be found on the outer packaging for this package. |
|--------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note:  | In the even<br>be carried<br>characters  | nt the full Microchip part number cannot be marked on one line, it will<br>d over to the next line, thus limiting the number of available<br>s for customer-specific information.                                                                                                                                                                                                         |

### 20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                         | MILLIMETERS      |           |                |      |  |  |  |
|-------------------------|------------------|-----------|----------------|------|--|--|--|
| Dimension               | Dimension Limits |           |                | MAX  |  |  |  |
| Number of Terminals     | 20               |           |                |      |  |  |  |
| Pitch                   | е                |           | 0.50 BSC       |      |  |  |  |
| Overall Height          | Α                | 0.45      | 0.45 0.50 0.55 |      |  |  |  |
| Standoff                | A1               | 0.00      | 0.02           | 0.05 |  |  |  |
| Terminal Thickness      | A3               | 0.127 REF |                |      |  |  |  |
| Overall Width           | E                | 4.00 BSC  |                |      |  |  |  |
| Exposed Pad Width       | E2               | 2.60      | 2.70           | 2.80 |  |  |  |
| Overall Length          | D                | 4.00 BSC  |                |      |  |  |  |
| Exposed Pad Length      | D2               | 2.60      | 2.70           | 2.80 |  |  |  |
| Terminal Width          | b                | 0.20      | 0.25           | 0.30 |  |  |  |
| Terminal Length         | L                | 0.30      | 0.40           | 0.50 |  |  |  |
| Terminal-to-Exposed-Pad | ĸ                | 0.20      | -              | -    |  |  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-255A Sheet 2 of 2