

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UQFN Exposed Pad
Supplier Device Package	16-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1825t-i-jq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-5: ACCESSING THE STACK EXAMPLE 2

5.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.

Internal clock sources are contained internally within the oscillator module. The internal oscillator block has two internal oscillators and a dedicated Phase-Lock Loop (HFPLL) that are used to generate three internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC), 500 kHz (MFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See **Section 5.3 "Clock Switching"** for additional information.

5.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in the Configuration Word 1 to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Timer1 Oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

See **Section 5.3 "Clock Switching**" for more information.

5.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through Configuration Word 1:

- High power, 4-32 MHz (FOSC = 111)
- Medium power, 0.5-4 MHz (FOSC = 110)
- Low power, 0-0.5 MHz (FOSC = 101)

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 5-2:

EXTERNAL CLOCK (EC) MODE OPERATION

5.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 5-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 5-3 and Figure 5-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

FIGURE 5-6: EXTERNAL RC MODES

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- threshold voltage variation
- component tolerances
- packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

5.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in Configuration Word 1 to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section 5.3 "Clock Switching"for more information.

In **INTOSC** mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the state of the $\overline{\text{CLKOUTEN}}$ bit in Configuration Word 1.

The internal oscillator block has two independent oscillators and a dedicated Phase-Lock Loop, HFPLL that can produce one of three internal system clock sources.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The HFINTOSC source is generated from the 500 kHz MFINTOSC source and the dedicated Phase-Lock Loop, HFPLL. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- The MFINTOSC (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 3. The **LFINTOSC** (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

FIGURE 5-10: **FSCM TIMING DIAGRAM**

E)	XAMF	PLE 11-4:	ERASING ON	E ROW OF PROGRAM MEMORY					
;	This	row erase i	routine assumes	the following:					
;	1. A	valid addre	ess within the	erase block is loaded in ADDRH:ADDRL					
;	2. ADDRH and ADDRL are located in shared data memory $0x70 - 0x7F$								
		BCF BANKSEL MOVF MOVF MOVF BSF	INTCON, GIE EEADRL ADDRL,W EEADRL ADDRH,W EEADRH EECON1,EEPGD	<pre>; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Point to program memory</pre>					
		BCF	EECON1, CFGS	; Not configuration space					
		BSF	EECON1, FREE	, Specily an erase operation					
	Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP NOP	55h EECON2 0AAh EECON2 EECON1,WR	<pre>; Shart of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; Any instructions here are ignored as processor ; halts to begin erase sequence ; Processor will stop here and wait for erase complete. ; after erase processor continues with 3rd instruction</pre>					
		BCF	EECON1,WREN	; Disable writes					
		BSF	INTCON,GIE	; Enable interrupts					

EXAMPLE 11-5: WRITING TO FLASH PROGRAM MEMORY

;	; This write routine assumes the following:							
;	; 1. The 16 bytes of data are loaded, starting at the address in DATA_ADDR ; 2. Each word of data to be written is made up of two adjacent bytes in DATA ADDR.							
;	 ; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR, ; stored in little endian format 							
;	st	cored in lit	tle endian forma	t				
;	3. A	valid start	ing address (the	least significant bits = 000) is loaded in ADDRH:ADDRL				
;	4. AI	DDRH and ADD	RL are located i	n shared data memory 0x70 - 0x7F				
,		DCF	INTCON CIT	· Diaphle into an required acquerace will execute preperly				
		BANKSET.	FFADRH	: Bank 3				
		MOVE	ADDRH, W	; Load initial address				
		MOVWF	EEADRH	;				
		MOVF	ADDRL,W	;				
		MOVWF	EEADRL	;				
		MOVLW	LOW DATA_ADDR	; Load initial data address				
		MOVWF	FSROL	;				
		MOVLW	HIGH DATA_ADDR	; Load initial data address				
		MOVWF	FSROH	;				
		BSF	EECON1,EEPGD	; Point to program memory				
		BCF	EECON1,CFGS	; Not configuration space				
		BSF	EECON1,WREN	; Enable writes				
		BSF	EECON1,LWLO	; Only Load Write Latches				
LС	UΡ	моуты	FGDUTT	: Load first data bute into lower				
		MOVIW	FEDATI.	:				
		MOVTW	FSR0++	, ; Load second data byte into upper				
		MOVWF	EEDATH	;				
		MOVF	EEADRL,W	; Check if lower bits of address are '000'				
		XORLW	0x07	; Check if we're on the last of 8 addresses				
		ANDLW	0x07	;				
		BTFSC	STATUS, Z	; Exit if last of eight words,				
		GOTO	START_WRITE	;				
		MOVITW	5 5 b	· Start of required write genuerge:				
		MOVE	FECON2	: Write 55h				
		MOVIW	0AAh	:				
	nced	MOVWF	EECON2	; Write AAh				
	quii	BSF	EECON1,WR	; Set WR bit to begin write				
	Sec	NOP		; Any instructions here are ignored as processor				
	_ 0,			; halts to begin write sequence				
		NOP		; Processor will stop here and wait for write to complete.				
				; After write processor continues with 3rd instruction.				
		INCF	EEADRL, F	; Still loading latches Increment address				
		GOTO	LOOP	; Write next latches				
SI	ART_V	VRITE						
		BCF	EECON1,LWLO	; No more loading latches - Actually start Flash program				
				; memory write				
		MOVIW	55h	; Start of required write sequence:				
		MOVWF	EECON2	; Write 55h				
	ы В	MOVLW	0AAh	;				
	enc	MOVWF	EECON2	; Write AAh				
	eqเ €	BSF	EECON1,WR	; Set WR bit to begin write				
	ч %	NOP		; Any instructions here are ignored as processor				
				; halts to begin write sequence				
		NOP		; Processor will stop here and wait for write complete.				
				: after write processor continues with and instruction				
		BCF	EECON1 . WREN	; Disable writes				
		BSF	INTCON, GIE	; Enable interrupts				
				-				

11.7 EEPROM and Flash Control Registers

REGISTER 11-1: EEDATL: EEPROM LOW BYTE DATA REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
	EEDAT<7:0>							
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	3		
u = Bit is unchange	d	x = Bit is unknow	n	-n/n = Value at l	POR and BOR/Val	ue at all other Res	sets	
'1' = Bit is set		'0' = Bit is cleared	d					

bit 7-0

-0 EEDAT<7:0>: Read/write value for EEPROM data byte or Least Significant bits of program memory

REGISTER 11-2: EEDATH: EEPROM DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	EEDAT<13:8>					
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 EEDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 11-3: EEADRL: EEPROM ADDRESS REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EEADR<7:0>							
bit 7							bit 0
Logondy							

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 EEADR<7:0>: Specifies the Least Significant bits for program memory address or EEPROM address

REGISTER 11-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)	EEADR<14:8>						
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 EEADR<14:8>: Specifies the Most Significant bits for program memory address or EEPROM address

Note 1: Unimplemented, read as '1'.

U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u
—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0
bit 7 bit 0							

REGISTER 12-5: LATA: PORTA DATA LATCH REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	LATA<5:4>: RA<5:4> Output Latch Value bits ⁽¹⁾
bit 3	Unimplemented: Read as '0'

bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-6: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0
bit 7	7						bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	 ANSA4: Analog Select between Analog or Digital Function on pins RA4, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
Note 1:	When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

TABLE 16-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock P	eriod (TAD)			uency (Fosc)			
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾
FRC	x11	1.0-6.0 μs ^(1,4)					

Legend: Shaded cells are outside of recommended range.

- Note 1: The FRC source has a typical TAD time of 1.6 μ s for VDD.
 - **2:** These values violate the minimum required TAD time.
 - 3: For faster conversion times, the selection of another clock source is recommended.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 16-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

FIGURE 23-4:	CARRIER LOW SYNCHRONIZATION (MDSHSYNC = 0, MDCLSYNC = 1)
Carrier High (CARH)	
Carrier Low (CARL)	
Modulator (MOD)	
MDCHSYNC = 0 MDCLSYNC = 1	
Active Carrier State	CARH X CARL CARH X CARL

R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
MDCLODIS	MDCLPOL	MDCLSYNC	_		MDCL<3:0>					
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, read	l as '0'				
u = Bit is uncha	anged	x = Bit is unkno	own	-n/n = Value a	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is clea	red							
bit 7	MDCLODIS: 1 = Output s is disable 0 = Output s is enable	Modulator Low (ignal driving the ed ignal driving the ed	Carrier Outp peripheral o peripheral o	ut Disable bit utput pin (selec utput pin (selec	ted by MDCL<3 ted by MDCL<3	3:0> of the MD0 3:0> of the MD0	CARL register) CARL register)			
bit 6	MDCLPOL: I 1 = Selected 0 = Selected	Modulator Low C I low carrier sign I low carrier sign	arrier Polari al is inverteo al is not inve	ity Select bit d erted						
bit 5	<pre>MDCLSYNC 1 = Modulate time car 0 = Modulate</pre>	: Modulator Low or waits for a fallin rier or Output is not s	Carrier Syn ng edge on t synchronized	chronization En he low time carr d to the low time	able bit ier signal before e carrier signal ^{(*}	e allowing a sw 1)	itch to the high			
bit 4	Unimplemer	ted: Read as '0								
bit 3-0	MDCL<3:0> Modulator Data High Carrier Selection bits ⁽¹⁾ 1111 = Reserved. No channel connected. 1000 = Reserved. No channel connected. 0111 = CCP4 output (PWM Output mode only) 0110 = CCP3 output (PWM Output mode only) 0101 = CCP2 output (PWM Output mode only) 0101 = CCP1 output (PWM Output mode only) 0101 = Reference Clock module signal 0010 = MDCIN2 port pin 0001 = MDCIN1 port pin 0000 = Vss									

REGISTER 23-4: MDCARL: MODULATION LOW CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

TABLE 23-1:	SUMMARY OF REGISTERS ASSOCIATED WITH DATA SIGNAL MODULATOR MODE
-	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 3 Bit 2		Bit 2 Bit 1		Bit 0	Register on Page
MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	—		MDCH	<3:0>		199		
MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	—		MDCL	.<3:0>		200		
MDCON	MDEN	MDOE	MDSLR	MDOPOL	MDOUT	—	—	MDBIT	197		
MDSRC	MDMSODIS		—	—		MDMS	\$<3:0>		198		

Legend: — Unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Foso	; = 32.00	0 MHz	Fosc = 20.000 MHz			Foso	: = 18.43	2 MHz	Fosc	= 11.059	92 MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

TABLE 26-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fos	c = 1.000	0 MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	_	_	—

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch					
Syntax:	[<i>label</i>] GOTO k					
Operands:	$0 \leq k \leq 2047$					
Operation:	$k \rightarrow PC < 10:0>$ PCLATH<6:3> $\rightarrow PC < 14:11>$					
Status Affected:	None					
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cvcle instruction.					

INCFSZ	Increment f, Skip if 0				
Syntax:	[<i>label</i>] INCFSZ f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0				
Status Affected:	None				
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.				

IORLW	Inclusive OR literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.					

INCF	Increment f			
Syntax:	[label] INCF f,d			
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$			
Operation:	(f) + 1 \rightarrow (destination)			
Status Affected:	Z			
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.			

IORWF	Inclusive OR W with f					
Syntax:	[<i>label</i>] IORWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .OR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

30.9 High Temperature Operation

This section outlines the specifications for the following devices operating in the high temperature range between -40° C and 150° C.⁽¹⁾

- PIC16F1825⁽⁴⁾
- PIC16F1829⁽⁴⁾

When the value of any parameter is identical for both the 125°C Extended and the 150°C High Temp. temperature ranges, then that value will be found in the standard specification tables shown earlier in this chapter, under the fields listed for the 125°C Extended temperature range. If the value of any parameter is unique to the 150°C High Temp. temperature range, then it will be listed here, in this section of the data sheet.

If a Silicon Errata exists for the product and it lists a modification to the 125°C Extended temperature range value, one that is also shared at the 150°C High Temp. temperature range, then that modified value will apply to both temperature ranges.

- Note 1: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 2: Writes are <u>not allowed</u> for Flash program memory above 125°C.
 - **3:** The temperature range indicator in the catalog part number and device marking is "H" for -40°C to 150°C.

Example: PIC16F1825T-H/SL indicates the device is shipped in a Tape and Reel configuration, in the SOIC package, and is rated for operation from -40° C to 150° C.

- 4: The low voltage versions of these devices, PIC16LF1825 and PIC16LF1829, are not released for operation above +125°C.
- **5:** Errata Sheet DS80517 lists various mask revisions. 150°C operation applies only to revisions A4 and later.
- **6:** The Capacitive Sensing module (CPS) should not be used in high temperature devices. Function and its parametrics are not warranted.
- Only SOIC (SL), TSSOP (ST), SSOP (SS) and QFN (ML) packages will be offered, not PDIP or UQFN.

Parameter	Condition	Value
Max. Current: VDD	Source	15 mA
Max. Current: Vss	Sink	15 mA
Max. Current: Pin	Source	5 mA
Max. Current: Pin	Sink	5 mA
Max. Storage Temperature	—	-65°C to 155°C
Max. Junction Temperature	—	+155°C
Ambient Temperature under Bias	_	-40°C to +150°C

TABLE 30-18: ABSOLUTE MAXIMUM RATINGS

Note: Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

TABLE 30-21: DC CHARACTERISTICS FOR IPD SPECIFICATIONS FOR PIC16F1825/9-H (High Temp.)

PIC16F	I6F1825/9Standard Operating Conditions: (unless otherwise stated) Operating Temperature: $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				herwise stated) for High Temperature		
Param	Device Observatoriation	N41	-		11	Condition	
No.	Device Characteristics	win.	тур.	wax.	Units	Vdd	Note
	Power-Down Base Curren	t (IPD) ⁽²⁾					
		_	0.05	12	μA	2.0	
D020E		—	0.15	13	μA	3.0	IPD Base
		—	0.35	14	μA	5.0	
		—	0.5	20	μA	2.0	
D021E		—	2.5	25	μA	3.0	WDT Current
		—	9.5	36	μA	5.0	
		_	5.0	28	μA	3.0	BOB Current
DUZZE		—	6.0	36	μA	5.0	BOR Current
		_	105	195	μA	2.0	IDD Current (both comparators
D023E		_	110	210	μA	3.0	enabled)
		—	116	220	μA	5.0	
		_	50	105	μA	2.0	
			55	110	μA	3.0	enabled)
		—	60	125	μA	5.0	
			30	58	μA	2.0	
D024E			45	85	μA	3.0	IPD (CVREF, high range)
		—	75	142	μA	5.0	
			39	76	μA	2.0	IPD (CVREF, low range)
D025E			59	114	μA	3.0	
		—	98	190	μA	5.0	
D026E			5.5	30	μA	2.0	
			7.0	35	μA	3.0	IPD (T1 OSC, 32 kHz)
		—	8.5	45	μA	5.0	
D027E			0.2	12	μA	3.0	IPD (ADC on, not converting)
		—	0.3	15	μA	5.0	

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rage, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: A/D oscillator source is FRC.

31.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "MAXIMUM", "Max.", "MINIMUM" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

FIGURE 31-13: IDD, MFINTOSC MODE (Fosc = 500 kHz), PIC16LF1825/9 ONLY

FIGURE 31-14: IDD, MFINTOSC MODE (Fosc = 500 kHz), PIC16F1825/9 ONLY

FIGURE 31-58: COMPARATOR INPUT OFFSET AT 25°C, NORMAL-POWER MODE (CxSP = 1),

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-257A Sheet 1 of 2