

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1825t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16(L)F1825/9 are described within this data sheet. They are available in 14/20 pin packages. Figure 1-1 shows a block diagram of the PIC16(L)F1825/9 devices. Tables 1-2 and 1-3 show the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1:DEVICE PERIPHERALSUMMARY

Peripheral	PIC16(L)F1825	PIC16(L)F1829	
ADC		•	•
Capacitive Sensing (CP	S) Module	•	•
Data EEPROM		٠	•
Digital-to-Analog Conve	erter (DAC)	•	•
Digital Signal Modulator	r (DSM)	•	•
EUSART		•	•
Fixed Voltage Referenc	e (FVR)	•	•
SR Latch	•	•	
Capture/Compare/PWN	1 Modules		
	ECCP1	•	•
	ECCP2	•	•
	CCP3	٠	•
	CCP4	٠	•
Comparators			
	C1	•	•
	C2	٠	•
Master Synchronous Se	erial Ports		
	MSSP1	٠	•
	MSSP2		•
Timers			
	Timer0	•	•
	Timer1	•	•
	Timer2	٠	•
	Timer4	•	•
	Timer6	•	•

PIC16(L)F1825/9

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3	Bank 3										
180h ⁽¹⁾	INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)									XXXX XXXX	xxxx xxxx
181h ⁽¹⁾	INDF1	Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)								XXXX XXXX	xxxx xxxx
182h ⁽¹⁾	PCL	Program Cou	inter (PC) Lea	st Significant E	Byte					0000 0000	0000 0000
183h ⁽¹⁾	STATUS	—	—	-	TO	PD	Z	DC	С	1 1000	q quuu
184h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poir	nter					0000 0000	uuuu uuuu
185h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Poi	nter					0000 0000	0000 0000
186h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu
187h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	nter					0000 0000	0000 0000
188h ⁽¹⁾	BSR	—	—	—			BSR<4:0>			0 0000	0 0000
189h ⁽¹⁾	WREG	Working Reg	ister							0000 0000	uuuu uuuu
18Ah ⁽¹⁾	PCLATH	—	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	r			-000 0000	-000 0000
18Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
18Ch	ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	1 -111	1 -111
18Dh	ANSELB ⁽²⁾	—	—	ANSB5	ANSB4	—	—	—	—	11	11
18Eh	ANSELC	ANSC7 ⁽²⁾	ANSC6 ⁽²⁾	—	—	ANSC3	ANSC2	ANSC1	ANSC0	11 1111	11 1111
18Fh	—	Unimplement	ted							—	—
190h	—	Unimplement	ted							—	—
191h	EEADRL	EEPROM / P	rogram Memo	ry Address Re	gister Low By	te				0000 0000	0000 0000
192h	EEADRH	(4)	EEPROM / P	rogram Memor	ry Address Re	egister High B	yte			1000 0000	1000 0000
193h	EEDATL	EEPROM / P	rogram Memo	ry Read Data I	Register Low	Byte				xxxx xxxx	uuuu uuuu
194h	EEDATH	—	—	EEPROM / Pr	rogram Memo	ry Read Data	Register Hig	jh Byte		xx xxxx	uu uuuu
195h	EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	0000 x000	000p 0000
196h	EECON2	EEPROM co	ntrol register 2							0000 0000	0000 0000
197h	—	Unimplement	ted							—	—
198h	—	Unimplement	ted							—	—
199h	RCREG	REG USART Receive Data Register								0000 0000	0000 0000
19Ah	TXREG	USART Trans	smit Data Reg	ister						0000 0000	0000 0000
19Bh	SPBRGL	Baud Rate G	enerator Data	Register Low						0000 0000	0000 0000
19Ch	SPBRGH	Baud Rate G	enerator Data	Register High						0000 0000	0000 0000
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	01-0 0-00	01-0 0-00

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-8

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: These registers can be addressed from any bank.

PIC16(L)F1829 only.
PIC16(L)F1825 only.

4: Unimplemented, read as '1'.

PIC16(L)F1825/9

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 7										1	1
380h ⁽¹⁾	INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)									XXXX XXXX	XXXX XXXX
381h ⁽¹⁾	INDF1	Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)									XXXX XXXX
382h ⁽¹⁾	PCL	Program Cou	inter (PC) Lea	st Significant B	yte					0000 0000	0000 0000
383h ⁽¹⁾	STATUS	_	—	—	TO	PD	Z	DC	С	1 1000	q quuu
384h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poir	nter					0000 0000	uuuu uuuu
385h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Poi	nter					0000 0000	0000 0000
386h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu
387h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	nter					0000 0000	0000 0000
388h ⁽¹⁾	BSR	_	—	—			BSR<4:0>			0 0000	0 0000
389h ⁽¹⁾	WREG	Working Reg	ister							0000 0000	uuuu uuuu
38Ah ⁽¹⁾	PCLATH	_	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	۲			-000 0000	-000 0000
38Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
38Ch	INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	00 0100	00 0100
38Dh	INLVLB ⁽²⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	_	_	—	_	0000	0000
38Eh	INLVLC ⁽³⁾	_	_	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	00 0000	00 0000
	INLVLC ⁽²⁾	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111
38Fh	—	Unimplement	ed							_	_
390h	—	Unimplement	ed							_	_
391h	IOCAP	_	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
392h	IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
393h	IOCAF	_	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
394h	IOCBP ⁽²⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	_	_	_	0000	0000
395h	IOCBN ⁽²⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	_	_	_	_	0000	0000
396h	IOCBF ⁽²⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	_	_	_	_	0000	0000
397h	—	Unimplement	ed							_	_
398h	—	Unimplement	ed							_	_
399h	—	Unimplement	ed							_	_
39Ah	CLKRCON	CLKREN	CLKROE	CLKRSLR	CLKRD	C<1:0>	(CLKRDIV<2:0	>	0011 0000	0011 0000
39Bh	—	Unimplement	ed							_	_
39Ch	MDCON	MDEN	MDOE	MDSLR	MDOPOL	MDOUT	_	_	MDBIT	00100	00100
39Dh	MDSRC	MDMSODIS	_	_	_		MDMS	S<3:0>		x xxxx	u uuuu
39Eh	MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	_		MDCI	<3:0>		xxx- xxxx	uuu- uuuu
39Fh	MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	—		MDCH	1<3:0>		xxx- xxxx	uuu- uuuu

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-8

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: PIC16(L)F1829 only.

3: PIC16(L)F1825 only.

4: Unimplemented, read as '1'.

REGISTER 4-1: CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0 FOSC<2:0>: Oscillator Selection bits
 - 111 = ECH: External Clock, High-Power mode (4-32 MHz): device clock supplied to CLKIN pin
 - 110 = ECM: External Clock, Medium-Power mode (0.5-4 MHz): device clock supplied to CLKIN pin
 - 101 = ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin
 - 100 = INTOSC oscillator: I/O function on CLKIN pin
 - 011 = EXTRC oscillator: External RC circuit connected to CLKIN pin
 - 010 = HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins
 - 001 = XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins
 - 000 = LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins
- **Note 1:** Enabling Brown-out Reset does not automatically enable Power-up Timer.
 - 2: The entire data EEPROM will be erased when the code protection is turned off during an erase.
 - 3: The entire program memory will be erased when the code protection is turned off.

15.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, *"Use and Calibration of the Internal Temperature Indicator"* (DS01333) for more details regarding the calibration process.

15.1 Circuit Operation

Figure 15-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 15-1 describes the output characteristics of the temperature indicator.

EQUATION 15-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT

The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 14.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 15-1: TEMPERATURE CIRCUIT DIAGRAM

15.2 Minimum Operating VDD vs. Minimum Sensing Temperature

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 15-1 shows the recommended minimum VDD vs. range setting.

TABLE 15-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

15.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital converter. A channel is reserved for the temperature circuit output. Refer to **Section 16.0 "Analog-to-Digital Converter (ADC) Module"** for detailed information.

15.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

16.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Result formatting

16.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 12.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input
	buffer to conduct excess current.

16.1.2 CHANNEL SELECTION

There are up to 15 channel selections available:

- AN<7:0> pins (PIC16(L)F1825 only)
- AN<11:0> pins (PIC16(L)F1829 only)
- Temperature Indicator
- DAC_output
- FVR Buffer1

Refer to Section 17.0 "Digital-to-Analog Converter (DAC) Module", Section 14.0 "Fixed Voltage Reference (FVR)" and Section 15.0 "Temperature Indicator Module" for more information on these channel selections.

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 16.2** "**ADC Operation**" for more information.

16.1.3 ADC VOLTAGE REFERENCE

The ADPREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd
- FVR 2.048V
- FVR 4.096V (Not available on LF devices)

The ADNREF bits of the ADCON1 register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See **Section 14.0** "Fixed Voltage Reference (FVR)" for more details on the Fixed Voltage Reference.

16.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 16-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the A/D conversion requirements in **Section 30.0** "**Electrical Specifications**" for more information. Table 16-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

18.0 SR LATCH

The module consists of a single SR latch with multiple Set and Reset inputs as well as separate latch outputs. The SR latch module includes the following features:

- · Programmable input selection
- SR latch output is available externally
- Separate Q and \overline{Q} outputs
- · Firmware Set and Reset

The SR latch can be used in a variety of analog applications, including oscillator circuits, one-shot circuit, hysteretic controllers, and analog timing applications.

18.1 Latch Operation

The latch is a Set-Reset Latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. The latch can be Set or Reset by:

- Software control (SRPS and SRPR bits)
- Comparator C1 output (sync_C1OUT)
- Comparator C2 output (sync_C2OUT) (PIC16(L)F1829 only)
- SRI pin
- Programmable clock (SRCLK)

The SRPS and the SRPR bits of the SRCON0 register may be used to Set or Reset the SR latch, respectively. The latch is Reset-dominant. Therefore, if both Set and Reset inputs are high, the latch will go to the Reset state. Both the SRPS and SRPR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch Set or Reset operation.

The output from Comparator C1 or C2 can be used as the Set or Reset inputs of the SR latch. The output of either Comparator can be synchronized to the Timer1 clock source. See Section 19.0 "Comparator Module" and Section 21.0 "Timer1 Module with Gate Control" for more information.

An external source on the SRI pin can be used as the Set or Reset inputs of the SR latch.

An internal clock source is available that can periodically Set or Reset the SR latch. The SRCLK<2:0> bits in the SRCON0 register are used to select the clock source period. The SRSCKE and SRRCKE bits of the SRCON1 register enable the clock source to Set or Reset the SR latch, respectively.

18.2 Latch Output

The SRQEN and SRNQEN bits of the SRCON0 register control the Q and \overline{Q} latch outputs. Both of the SR latch outputs may be directly output to an I/O pin at the same time.

The applicable TRIS bit of the corresponding port must be cleared to enable the port pin output driver.

18.3 Effects of a Reset

Upon any device Reset, the SR latch output is not initialized to a known state. The user's firmware is responsible for initializing the latch output before enabling the output pins.

SRCLK	Divider	Fosc = 32 MHz	Fosc = 20 MHz	Fosc = 16 MHz	Fosc = 4 MHz	Fosc = 1 MHz
111	512	62.5 kHz	39.0 kHz	31.3 kHz	7.81 kHz	1.95 kHz
110	256	125 kHz	78.1 kHz	62.5 kHz	15.6 kHz	3.90 kHz
101	128	250 kHz	156 kHz	125 kHz	31.25 kHz	7.81 kHz
100	64	500 kHz	313 kHz	250 kHz	62.5 kHz	15.6 kHz
011	32	1 MHz	625 kHz	500 kHz	125 kHz	31.3 kHz
010	16	2 MHz	1.25 MHz	1 MHz	250 kHz	62.5 kHz
001	8	4 MHz	2.5 MHz	2 MHz	500 kHz	125 kHz
000	4	8 MHz	5 MHz	4 MHz	1 MHz	250 kHz

TABLE 18-1: SRCLK FREQUENCY TABLE

REGISTER 18-1: SRCON0: SR LATCH CONTROL 0 REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/S-0/0	R/S-0/0
SRLEN		SRCLK<2:0>		SRQEN	SRNQEN	SRPS	SRPR
bit 7							bit 0

Legend:			
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is ur	nchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is s	et	'0' = Bit is cleared	S = Bit is set only
bit 7	SRLEN: SR 1 = SR latcl 0 = SR latcl	Latch Enable bit n is enabled n is disabled	
bit 6-4	SRCLK<2:0 000 = Gener 001 = Gener 010 = Gener 100 = Gener 101 = Gener 110 = Gener 111 = Gener	>: SR Latch Clock Divider bits rates a 1 Fosc wide pulse ever rates a 1 Fosc wide pulse ever	s ery 4th Fosc cycle clock ery 8th Fosc cycle clock ery 16th Fosc cycle clock ery 32nd Fosc cycle clock ery 64th Fosc cycle clock ery 128th Fosc cycle clock ery 256th Fosc cycle clock ery 512th Fosc cycle clock
bit 3	SRQEN: SR <u>If SRLEN = 1</u> 1 = Q i 0 = Ex <u>If SRLEN = 1</u> SR latch is d	Latch Q Output Enable bit <u>1</u> : s present on the SRQ pin ternal Q output is disabled <u>2</u> : isabled	
bit 2	SRNQEN: S If SRLEN = 1 1 = Q i 0 = Ex If SRLEN = 1 SR latch	R Latch \overline{Q} Output Enable bit 1: s present on the SRnQ pin ternal \overline{Q} output is disabled 2: n is disabled	
bit 1	SRPS: Pulse 1 = Pulse so 0 = No effect	e Set Input of the SR Latch bi et input for 1 Q-clock period ct on set input.	_t (1)
bit 0	SRPR: Pulse 1 = Pulse R 0 = No effect	e Reset Input of the SR Latch eset input for 1 Q-clock perio ct on Reset input.	bit ⁽¹⁾ d
Note 1:	Set only, always r	eads back '0'.	

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
CxINTP	CxINTN	CxPC	H<1:0>	_	—	CxNCI	H<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	CxINTP: Con	nparator Interru	pt on Positive	Going Edge E	nable bits		
	1 = The CxIF	interrupt flag	will be set upor	n a positive goi	ing edge of the	CxOUT bit	
	0 = No interr	upt flag will be	set on a positiv	ve going edge	of the CxOUT I	bit	
bit 6	CxINTN: Con	nparator Interru	upt on Negative	e Going Edge I	Enable bits		
	1 = The CxIF	F interrupt flag	will be set upor	n a negative go	bing edge of the	e CxOUT bit	
			set on a negat	ive going eage		DIL	
DIT 5-4		•: Comparator I		Jnannel Select	DItS		
	00 = CXVPC	onnects to DAC	v+ pin C voltage refere	ence			
	10 = CxVP c	onnects to FVF	R voltage refere	ence			
	For C1:		C C				
	11 = CxVP c	onnects to CxII	N+ pin				
	$\frac{For C2}{11} = CxVP c$	onnects to Vss					
bit 3-2		ted: Read as '	0'				
bit 1-0		• Comparator I	∘ Negative Input	Channel Sele	rt hits		
Sit 1 0	0.0 = CxVN c	onnects to C12	NO- nin				
	01 = CxVN c	onnects to C12	2IN1- pin				
	10 = CxVN c	onnects to C12	N2- pin				
	11 = CxVN c	onnects to C12	2IN3- pin				

REGISTER 19-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

REGISTER 19-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
_	—	—	—	_	—	MC2OUT	MC10UT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2	Unimplemented: Read as '0'
bit 1	MC2OUT: Mirror Copy of C2OUT bit

bit 0 MC1OUT: Mirror Copy of C1OUT bit

24.4.4 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PxRSEN bit in the PWMxCON register. If auto-restart is enabled, the CCPxASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the CCPxASE bit will be cleared via hardware and normal operation will resume.

25.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP1 AND MSSP2) MODULE

25.1 Master SSPx (MSSPx) Module Overview

The Master Synchronous Serial Port (MSSPx) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSPx module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- · Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 25-1 is a block diagram of the SPI interface module.

FIGURE 25-1: MSSPx BLOCK DIAGRAM (SPI MODE)

25.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCKx line. The master determines when the slave (Processor 2, Figure 25-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDOx output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDIx pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 25-6, Figure 25-8, Figure 25-9 and Figure 25-10, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- · Timer2 output/2
- Fosc/(4 * (SSPxADD + 1))

Figure 25-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDOx data is valid before there is a clock edge on SCKx. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

FIGURE 25-6: SPI MODE WAVEFORM (MASTER MODE)

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 28-4 for more information.

30.3 DC Characteristics: PIC16(L)F1825/9-I/E (Power-Down) (Continued)

PIC16LF1825/9				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended								
PIC16F1825/9				rd Operating temper	ting Cond rature	tions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended						
Param	Device Characteristics	Min.	Тур†	Max.	Max.	Units		Conditions				
NO.				+05 C	+125 C		Vdd	Note				
Desett	Power-down Base Current	(IPD) ⁽²⁾	0.50	1	1							
D026A*			250		_	μA	1.8	A/D Current (Note 1, 3),				
Decent		_	250	_	_	μA	3.0					
D026A*			280		_	μA	1.8	A/D Current (Note 1, 3),				
			280			μA	3.0					
D 007			280			μA	5.0					
D027			2.3	5	6	μA	1.8	Cap Sense Low-Power CPSRM = 0 CPSRNG = 01				
		_	3.5	1	9	μA	3.0	(Note 1)				
D027		_	20	41	45	μA	1.8	Cap Sense Low-Power				
		_	23	47	55	μA	3.0	CPSRM = 0, CPSRNG = 01				
			25	55	75	μA	5.0	(Note 1)				
D027A		_	5	8	10	μA	1.8	Cap Sense Medium-Power				
		_	6.5	13	14	μΑ	3.0	CPSRM = 0, CPSRNG = 10 (Note 1)				
D027A		_	23	44	47	μA	1.8	Cap Sense Medium-Power				
			26	53	60	μA	3.0	CPSRM = 0, CPSRNG = 10				
		—	29	57	71	μA	5.0	(Note 1)				
D027B		_	13	22	24	μA	1.8	Cap Sense High-Power				
			35	45	47	μA	3.0	CPSRM = 0, CPSRNG = 11 (Note 1)				
D027B		_	30	58	65	μA	1.8	Cap Sense High-Power				
		_	55	84	90	μA	3.0	CPSRM = 0, CPSRNG = 11				
		—	59	95	110	μA	5.0					
D028		—	6.8	16	17	μA	1.8	Comparator Current				
			7.3	18	19	μA	3.0	Low-Power mode (Note 1)				
D028			24	45	50	μA	1.8	Comparator Current				
			27	56	61	μA	3.0	Low-Power mode (Note 1)				
		—	29	60	80	μA	5.0					
D028B		—	28	46	48	μA	1.8	Comparator Current				
			29	48	49	μA	3.0	Hign-Power mode (Note 1)				
D028B		_	60	80	85	μA	1.8	Comparator Current,				
		_	62	85	90	μA	3.0	Hign-Power mode (Note 1)				
		—	64	90	105	μA	5.0					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: A/D oscillator source is FRC.

30.4 DC Characteristics: PIC16(L)F1825/9-I/E

	DC CI	HARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature -40°C \le TA \le +85°C for industrial} \\ \mbox{-40°C \le TA \le +125°C for extended} \end{array}$							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
	VIL	Input Low Voltage								
		I/O PORT:								
D030		with TTL buffer	—	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D030A			—	_	0.15 VDD	V	$1.8V \leq V\text{DD} \leq 4.5V$			
D031		with Schmitt Trigger buffer	_		0.2 VDD	V	$2.0V \leq V\text{DD} \leq 5.5V$			
		with I ² C™ levels		_	0.3 VDD	V				
		with SMBus levels		_	0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$			
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	_	_	0.2 VDD	V				
D033		OSC1 (HS mode)	_	_	0.3 VDD	V				
	Viн	Input High Voltage	ļI							
		I/O ports:								
D040		with TTL buffer	2.0	_	_	V	$4.5V \le VDD \le 5.5V$			
D040A			0.25 VDD +		_	V	$1.8V \le VDD \le 4.5V$			
			0.8							
D041		with Schmitt Trigger buffer	0.8 VDD	_	_	V	$2.0V \leq V\text{DD} \leq 5.5V$			
		with I ² C™ levels	0.7 VDD	_	_	V				
		with SMBus levels	2.1	_	_	V	$2.7V \le VDD \le 5.5V$			
D042		MCLR	0.8 VDD	_	_	V				
D043A		OSC1 (HS mode)	0.7 VDD	_	_	V				
D043B		OSC1 (RC mode)	0.9 VDD		_	V	VDD > 2.0V (Note 1)			
	lı∟	Input Leakage Current ⁽²⁾								
D060		I/O ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance at $85^{\circ}C$			
		(2)		± 5	± 1000	nA	125°C			
D061		MCLR ⁽³⁾		± 50	± 200	nA	$Vss \le VPIN \le VDD$ at $85^{\circ}C$			
	IPUR	Weak Pull-up Current								
D070*			25	100	200		VDD = 3.3V, $VPIN = VSS$			
	1/01	Output Low Valtary (4)	25	140	300	μA	VDD = 5.0V, VPIN = VSS			
Daga	VOL	Output Low Voltage	1			1				
D080		I/O ports			0.6	V	IOL = 8MA, VDD = 5V			
					0.0	v	101 = 1.8 mA, VDD = 3.3 V			
	Voh	Output High Voltage ⁽⁴⁾								
D090		I/O ports				1	IOH = 3.5 mA VDD = 5V			
2000			VDD - 0.7	_	_	V	IOH = 3mA, $VDD = 3.3V$			
							Іон = 1mA, Vdd = 1.8V			
		Capacitive Loading Specs on	Output Pins							
D101*	COSC2	OSC2 pin	—	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1			
D101A*	Cio	All I/O pins	_	_	50	pF				
*	T IA A A A A	l · · · · · · · · · · · · · · · · · · ·	mat ta ata d				l			

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are † not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

TABLE 30-25: A/D CONVERTER (ADC) CHARACTERISTICS FOR PIC16F1825/9-H (High Temp.)

PIC16F	1825/9	Standa Operat	ard Ope ting Ten	erating	Condi re: -40°	tions: (unless otherwise stated) $C \le TA \le +150^{\circ}C$ for High Temperature	
Param No.	Sym.	Characteristic	Min. Typ. Max. Units Conditions				
AD04	EOFF	Offset Error	_	_	3.5	LSB	No missing codes VREF = 3.0V

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

- 2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
- 3: ADC VREF is from external VREF, VDD pin or FVR, whichever is selected as reference input.

TABLE 30-26: COMPARATOR SPECIFICATIONS FOR PIC16F1825/9-H (High Temp.)

PIC16F1825/9				d Operat Ig Tempe	ing Cone rature: -4	ditions:(0°C ≤ TA	unless otherwise stated) \leq +150°C for High Temperature
Param No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions
CM01	VIOFF	Input Offset Voltage	—	_	±70	mV	High-Power mode, VICM = VDD/2

TABLE 30-27: CAP SENSE OSCILLATOR SPECIFICATIONS FOR PIC16F1825/9-H (High Temp.)

PIC16F1825/9				ard Ope ting Ten	erating nperatu	Condi re: -40°	tions: (unless otherwise stated) $^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature
Param No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions
All	All	All	_	_	_	_	This module is not intended for use in high temperature devices.

FIGURE 31-17: IDD TYPICAL, HFINTOSC MODE, PIC16F1825/9 ONLY

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	C1		5.90	
Contact Pad Width (X14)	X1			0.45
Contact Pad Length (X14)	Y1			1.45
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2087A