

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorPICCore Size8-BitSpeed32MHzConnectivityPC, LINbus, SPI, UART/USARTNumber of I/O11Program Memory Size14KB (8K × 14)Program Memory TypeFLASHEEPROM Size256 × 8RAM Size1.8V ~ 5.5VData ConvertersA/D 8x10bOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPrackage / Case14-SOIC (0.154", 3.90mm Width)Supplier Device Package14-SOICPurchase URLhttps://www.e-xfl.com/product-detail/microchip-technology/pic16f1825t-i-sl	Details	
Core Size8-BitSpeed32MHzConnectivityPC, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O11Program Memory Size14KB (8K x 14)Program Memory TypeFLASHEEPROM Size256 x 8RAM Size1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type14-SOIC (0.154", 3.90mm Width)Supplier Device Package14-SOIC	Product Status	Active
Speed32MHzConnectivityI²C, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O11Program Memory Size14KB (8K x 14)Program Memory TypeFLASHEEPROM Size256 x 8RAM Size1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case14-SOIC (0.154", 3.90mm Width)	Core Processor	PIC
ConnectivityIPC, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O11Program Memory Size14KB (8K × 14)Program Memory TypeFLASHEEPROM Size256 × 8RAM Size1K × 8Voltage - Supply (Vcc/Vdd)1.8V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case14-SOIC (0.154", 3.90mm Width)	Core Size	8-Bit
PeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O11Program Memory Size14KB (8K x 14)Program Memory TypeFLASHEEPROM Size256 x 8RAM Size1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case14-SOIC (0.154", 3.90mm Width)Surface Machine Line Line Line Line Line Line Line L	Speed	32MHz
Number of I/O11Program Memory Size14KB (8K × 14)Program Memory TypeFLASHEEPROM Size256 × 8RAM Size1K × 8Voltage - Supply (Vcc/Vdd)1.8V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case14-SOIC (0.154", 3.90mm Width)	Connectivity	I ² C, LINbus, SPI, UART/USART
Program Memory Size14KB (8K x 14)Program Memory TypeFLASHEEPROM Size256 x 8RAM Size1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case14-SOIC (0.154", 3.90mm Width)Supplier Device Package14-SOIC	Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size256 x 8RAM Size1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case14-SOIC (0.154", 3.90mm Width)Supplier Device Package14-SOIC	Number of I/O	11
EEPROM Size256 x 8RAM Size1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case14-SOIC (0.154", 3.90mm Width)Supplier Device Package14-SOIC	Program Memory Size	14KB (8K x 14)
RAM SizeIK x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case14-SOIC (0.154", 3.90mm Width)Supplier Device Package14-SOIC	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)1.8V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case14-SOIC (0.154", 3.90mm Width)Supplier Device Package14-SOIC	EEPROM Size	256 x 8
Data ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case14-SOIC (0.154", 3.90mm Width)Supplier Device Package14-SOIC	RAM Size	1K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case14-SOIC (0.154", 3.90mm Width)Supplier Device Package14-SOIC	Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Operating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case14-SOIC (0.154", 3.90mm Width)Supplier Device Package14-SOIC	Data Converters	A/D 8x10b
Mounting TypeSurface MountPackage / Case14-SOIC (0.154", 3.90mm Width)Supplier Device Package14-SOIC	Oscillator Type	Internal
Package / Case 14-SOIC (0.154", 3.90mm Width) Supplier Device Package 14-SOIC	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package 14-SOIC	Mounting Type	Surface Mount
	Package / Case	14-SOIC (0.154", 3.90mm Width)
Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic16f1825t-i-sl	Supplier Device Package	14-SOIC
	Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1825t-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripheral Highlights (Continued)

- · Data Signal Modulator Module:
- Selectable modulator and carrier sources
- SR Latch:
- Multiple Set/Reset input options
- Emulates 555 Timer applications

ECCP (Full-Bridge) ECCP (Half-Bridge) MSSP (I²CTM/SPI) Sheet Index Program Memory 10-bit ADC (ch) Data EEPROM CapSense (ch) Flash (words) Comparators Data SRAM (8/16-bit) EUSART SR Latch Timers I/O's⁽²⁾ Debug⁽¹⁾ (bytes) (bytes) СC ХГР Device Data PIC12(L)F1822 (1) 2K 256 128 6 4 4 1 2/1 1 1 0/1/0 Y I/H Υ PIC12(L)F1840 4K 256 256 6 4 4 1 2/1 0/1/0 Y I/H Y (2)1 1 PIC16(L)F1823 (1) 2K 256 128 12 8 8 2 2/1 1 1 1/0/0 Y I/H Y PIC16(L)F1824 (3) 4K 256 256 12 8 8 2 4/1 1 1 1/1/2 Y I/H Υ PIC16(L)F1825 (4)8K 256 1024 12 8 8 2 4/1 1 1 1/1/2 Υ I/H Υ 12 2 1/0/0 I/H Υ PIC16(L)F1826 (5)2K 256 256 16 12 2/1 1 1 Υ PIC16(L)F1827 (5) 4K 256 384 16 12 12 2 4/1 1 2 1/1/2 Y I/H Y Y Y PIC16(L)F1828 (3)4K 256 256 18 12 12 2 4/1 1 1 1/1/2I/H PIC16(L)F1829 (4)8K 256 1024 18 12 12 2 4/1 1 2 1/1/2 Υ I/H Υ PIC16(L)F1847 8K 256 16 12 12 2 4/1 2 1/1/2 Y I/H Y (6)1024 1

PIC12(L)F1822/1840/PIC16(L)F182x/1847 Family Types

Note 1: I - Debugging, Integrated on Chip; H - Debugging, available using Debug Header.

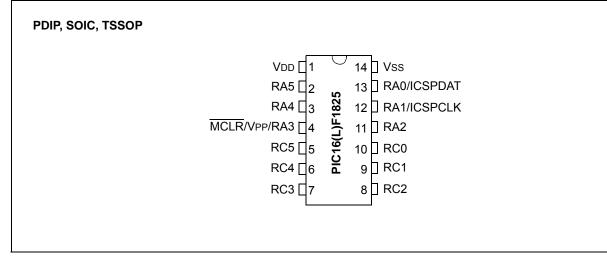
2: One pin is input-only.

Data Sheet Index: (Unshaded devices are described in this document.)

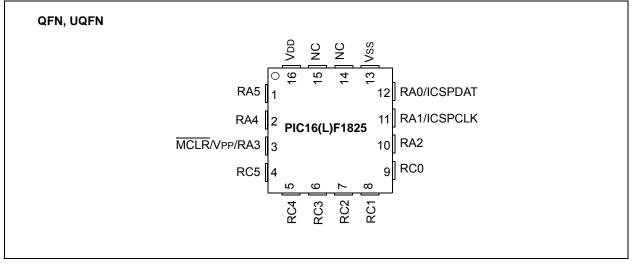
1: DS41413 PIC12(L)F1822/PIC16(L)F1823 Data Sheet, 8/14-Pin Flash Microcontrollers.

2: DS41441 PIC12(L)F1840 Data Sheet, 8-Pin Flash Microcontrollers.

3: DS41419 PIC16(L)F1824/1828 Data Sheet, 28/40/44-Pin Flash Microcontrollers.


4: DS41440 PIC16(L)F1825/1829 Data Sheet, 14/20-Pin Flash Microcontrollers.

5: DS41391 PIC16(L)F1826/1827 Data Sheet, 18/20/28-Pin Flash Microcontrollers.


6: DS41453 PIC16(L)F1847 Data Sheet, 18/20/28-Pin Flash Microcontrollers.

Note: For other small form-factor package availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative Addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- Automatic Interrupt Context Saving
- 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 8.5 "Automatic Context Saving"**, for more information.

2.2 16-level Stack with Overflow and Underflow

These devices have an external stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled will cause a software Reset. See section **Section 3.4** "**Stack**" for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.5 "Indirect Addressing"** for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 29.0** "Instruction Set Summary" for more details.

TABLE 3-3: PIC16(L)F1825/9 MEMORY MAP, BANKS 0-7

	BANK 0	010(BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	INDF0	080h	INDF0	100h	INDF0	180h	INDF0	200h	INDF0	280h	INDF0	300h	INDF0	380h	INDF0
001h	INDF1	081h	INDF1	101h	INDF1] 181h [INDF1	201h	INDF1	281h	INDF1	301h	INDF1	381h	INDF1
002h	PCL	082h	PCL	102h	PCL	182h	PCL	202h	PCL	282h	PCL	302h	PCL	382h	PCL
003h	STATUS	083h	STATUS	103h	STATUS	183h	STATUS	203h	STATUS	283h	STATUS	303h	STATUS	383h	STATUS
004h	FSR0L	084h	FSR0L	104h	FSR0L	184h	FSR0L	204h	FSR0L	284h	FSR0L	304h	FSR0L	384h	FSR0L
005h	FSR0H	085h 086h	FSR0H FSR1L	105h	FSR0H FSR1L	185h	FSR0H FSR1L	205h	FSR0H FSR1L	285h 286h	FSR0H FSR1L	305h	FSR0H FSR1L	385h	FSR0H FSR1L
006h 007h	FSR1L FSR1H	086h 087h	FSR1L FSR1H	106h 107h	FSR1L FSR1H	186h 187h	FSR1L FSR1H	206h 207h	FSR1L FSR1H	286n 287h	FSR1L FSR1H	306h 307h	FSR1L FSR1H	386h 387h	FSR1L FSR1H
007h 008h	BSR	088h	BSR	10711 108h	BSR	188h	BSR	20711 208h	BSR	288h	BSR	308h	BSR	388h	BSR
009h	WREG	089h	WREG	109h	WREG	189h	WREG	209h	WREG	289h	WREG	309h	WREG	389h	WREG
00Ah	PCLATH	08Ah	PCLATH	10Ah	PCLATH	18Ah	PCLATH	20Ah	PCLATH	28Ah	PCLATH	30Ah	PCLATH	38Ah	PCLATH
00Bh	INTCON	08Bh	INTCON	10Bh	INTCON	18Bh	INTCON	20Bh	INTCON	28Bh	INTCON	30Bh	INTCON	38Bh	INTCON
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	_	30Ch	_	38Ch	INLVLA
00Dh	PORTB ⁽¹⁾	08Dh	TRISB ⁽¹⁾	10Dh	LATB ⁽¹⁾	18Dh	ANSELB ⁽¹⁾	20Dh	WPUB ⁽¹⁾	28Dh		30Dh	—	38Dh	INLVLB ⁽¹⁾
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	-	30Eh	—	38Eh	INLVLC
00Fh	—	08Fh	—	10Fh	_	18Fh	_	20Fh	_	28Fh	_	30Fh	_	38Fh	_
010h	_	090h	—	110h	_	190h	_	210h	_	290h	—	310h		390h	_
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	EEADRL	211h	SSP1BUF	291h	CCPR1L	311h	CCPR3L	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSP1ADD	292h	CCPR1H	312h	CCPR3H	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	EEDATL	213h	SSP1MSK	293h	CCP1CON	313h	CCP3CON	393h	IOCAF
014h	PIR4 ⁽¹⁾	094h	PIE4 ⁽¹⁾	114h	CM2CON1	194h	EEDATH	214h	SSP1STAT	294h	PWM1CON	314h	_	394h	IOCBP ⁽¹⁾
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	EECON1	215h	SSP1CON1	295h	CCP1AS	315h	_	395h	IOCBN ⁽¹⁾
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSP1CON2	296h	PSTR1CON	316h	_	396h	IOCBF ⁽¹⁾
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	_	217h	SSP1CON3	297h	—	317h	—	397h	_
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	—	218h	_	298h	CCPR2L	318h	CCPR4L	398h	_
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	SSP2BUF ⁽¹⁾	299h	CCPR2H	319h	CCPR4H	399h	—
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TXREG	21Ah	SSP2ADD ⁽¹⁾	29Ah	CCP2CON	31Ah	CCP4CON	39Ah	CLKRCON
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh	SSP2MSK ⁽¹⁾	29Bh	PWM2CON	31Bh	_	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	SSP2STAT ⁽¹⁾	29Ch	CCP2AS	31Ch	—	39Ch	MDCON
01Dh	_	09Dh	ADCON0	11Dh	APFCON0	19Dh	RCSTA	21Dh	SSP2CON1 ⁽¹⁾	29Dh	PSTR2CON	31Dh	—	39Dh	MDSRC
01Eh	CPSCON0	09Eh	ADCON1	11Eh	APFCON1	19Eh	TXSTA	21Eh	SSP2CON2 ⁽¹⁾	29Eh	CCPTMRS	31Eh	—	39Eh	MDCARL
01Fh	CPSCON1	09Fh	—	11Fh	_	19Fh	BAUDCON	21Fh	SSP2CON3 ⁽¹⁾	29Fh	_	31Fh	_	39Fh	MDCARH
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General		General		General		General		General		General		General		General
	Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose
	Register		Register		Register		Register		Register		Register		Register		Register
	96 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
	Common RAM		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
07Fh		0FFh	/011 – /FII	17Fh	/ UII – / FII	1FFh	/011 - / FII	27Fh	/011 – / FII	2FFh	-	37Fh	/011 – / F11	3FFh	/011-/F11
07FN		UFFN		l ı⁄⊢u l		liteu		_ ∠/⊦n [ZEEN		37FN		3FFN	

Legend: = Unimplemented data memory locations, read as '0'

Note 1: Available only on PIC16(L)F1829.

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH REFERENCE CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CLKRCON	CLKREN	CLKROE	CLKRSLR	CLKRI	DC<1:0>	C	LKRDIV<2:0	>	72
1			1 (-1				al a al cara coma a		

Legend: — Unimplemented locations read as '0'. Shaded cells are not used by reference clock sources.

TABLE 6-2: SUMMARY OF CONFIGURATION WORD WITH REFERENCE CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	FCMEN	IESO	CLKOUTEN	BOREI	N<1:0>	CPD	40
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE	=<1:0>		FOSC<2:0>		48

Legend: — Unimplemented locations read as '0'. Shaded cells are not used by reference clock sources.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0>			—	SCS	<1:0>	68
STATUS	—	—	—	TO	PD	Z	DC	С	22
WDTCON	_	_			WDTPS<4:0>	>		SWDTEN	100

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	FCMEN	IESO	CLKOUTEN	BOREI	N<1:0>	CPD	40
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE	=<1:0>		FOSC<2:0>		48

Legend: — Unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

REGISTER 12-12: ANSELB: PORTB ANALOG SELECT REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
_	—	ANSB5	ANSB4	—	_	—	—
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimpleme	ented bit, read as	'0'	
u = Bit is unchanged x = Bit is unknown				-n/n = Value at	POR and BOR/V	alue at all other F	Resets
'1' = Bit is set		'0' = Bit is clear	ed				
bit 7-6	Unimplement	ed: Read as '0'					
bit 5-4	0 = Digital I/C). Pin is assigned	to port or digita	r Digital Function al special function nput ⁽¹⁾ . Digital inpu		. ,	
bit 3-0	Unimplement	ed: Read as '0'					

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 12-13: WPUB: WEAK PULL-UP PORTB REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
WPUB7	WPUB6	WPUB5	WPUB4	—	—	_	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 WPUB<7:4>: Weak Pull-up Register bits^(1,2) 1 = Pull-up enabled

0 =Pull-up disabled

bit 3-0 Unimplemented: Read as '0'

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 12-14: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	_	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	INLVLB<7:4>: PORTB Input Level Select bits
	For RB<7:4> pins, respectively
	1 = ST input used for PORT reads and interrupt-on-change
	0 = TTL input used for PORT reads and interrupt-on-change
bit 7-6	Unimplemented: Read as '0'

PIC16(L)F1825/9

REGISTER 12-18:	ANSELC: PORTC ANALOG SELECT REGISTER	

R/W-1/1	R/W-1/1	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
ANSC7 ⁽²⁾	ANSC6 ⁽²⁾	_		ANSC3	ANSC2	ANSC1	ANSC0			
bit 7										
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets			
'1' = Bit is set		'0' = Bit is cle	ared							
bit 7-6	0 = Digital I/	Analog Select O. Pin is assigr nput. Pin is ass	ned to port or d	ligital special fu	inction.		ectively ⁽²⁾			
bit 5-4	Unimplemen	nted: Read as '	0'							
bit 3-0	 ANSC<3:0>: Analog Select between Analog or Digital Function on pins RC<3:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 									

- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: ANSELC<7:6> available on PIC16(L)F1829 only. Otherwise, they are unimplemented and read as '0'.

REGISTER 12-19: WPUC: WEAK PULL-UP PORTC REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUC7 ⁽³⁾	WPUC6 ⁽³⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7	•			•			bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits^(1, 2) 1 = Pull-up enabled 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

- 2: The weak pull-up device is automatically disabled if the pin is in configured as an output.
- 3: WPUC<7:6> available on PIC16(L)F1829 only. Otherwise, they are unimplemented and read as '0'.

PIC16(L)F1825/9

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	_			CHS<4:0>			GO/DONE	GO/DONE ADON	
ADCON1	ADFM		ADCS<2:0>		—	ADNREF	ADPR	EF<1:0	151
ADRESH	A/D Result Re	egister High							152, 153
ADRESL	A/D Result Re	egister Low							152, 153
ANSELA	—	_	_	ANSA4	—	ANSA2	ANSA1	ANSA0	123
ANSELB ⁽¹⁾	—	—	ANSB5	ANSB4	_	—	—	—	129
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	_	_	ANSC3	ANSC2	ANSC1	ANSC0	134
CCP4CON	P4M	<1:0>	DC4E	<1:0>	CCP4M<3:0>				224
INLVLA	—	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	124
INLVLB ⁽¹⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	_	_	—	_	129
INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	135
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92
TRISA	—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	—	—	—	128
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	133
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADEVE	२<1:0>	142
DACCON0	DACEN	DACLPS	DACOE	_	DACPS	SS<1:0> — [DACNSS	160
DACCON1	—	—	—			DACR<4:0>			160

TABLE 16-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC Legend: module. PIC16(L)F1829 only.

Note 1:

19.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 registers (see Register 19-1) contain Control and Status bits for the following:

- Enable
- · Output selection
- Output polarity
- · Speed/Power selection
- · Hysteresis enable
- · Output synchronization

The CMxCON1 registers (see Register 19-2) contain Control bits for the following:

- · Interrupt enable
- · Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

19.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

19.2.2 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- · CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- · CxON bit of the CMxCON0 register must be set

Note 1:	The CxOE bit of the CMxCON0 register
	overrides the PORT data latch. Setting
	the CxON bit of the CMxCON0 register
	has no impact on the port override.

2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

19.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 19-1 shows the output state versus input conditions, including polarity control.

TABLE 19-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

19.2.4 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the Normal Speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

19.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See **Section 30.0 "Electrical Specifications"** for more information.

19.9 Interaction with ECCP Logic

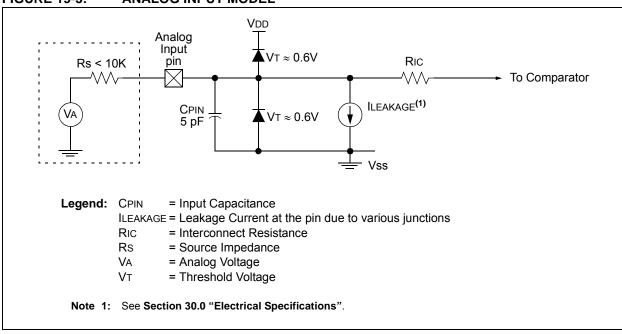
In some devices, a comparator output signal can be used to trigger the auto-shutdown feature found within the ECCP module. When the ECCP auto-shutdown feature is enabled and a comparator output signal is selected as the source, the comparator can be used simultaneously as a general purpose comparator and as the ECCP auto-shutdown source. In addition, the comparator output signal can also be routed to the designated I/O pin. If the ECCP Auto-Restart mode is also enabled, the comparators can be used as a closed loop analog feedback circuit to the ECCP, thereby creating an analog controlled PWM.

Please see section

for more information.

Note: When the comparator module is first initialized the output state is unknown. Upon initialization, the user should verify the output state of the comparator prior to relying on the result, primarily when using the result in connection with other peripheral features, such as the ECCP Auto-Shutdown mode.

FIGURE 19-3: ANALOG INPUT MODEL


19.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 19-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD.

If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

20.2 Option and Timer0 Control Register

REGISTER 20-1: OPTION_REG: OPTION REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>				
bit 7	÷	÷		÷			bit (
Legend:										
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'				
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value a	t POR and BOR	Value at all oth	er Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7		ak Pull-up Enabl	o hit							
		pull-ups are disa		ICLR if it is ena	bled)					
		ll-ups are enable	· ·		,					
bit 6	INTEDG: Inte	errupt Edge Sele	ct bit							
		on rising edge of								
	0 = Interrupt	on falling edge o	f INT pin							
bit 5	TMR0CS: Tir	mer0 Clock Sour	ce Select bit							
		on on TOCKI pin								
	0 = Internal ir	nstruction cycle of	clock (Fosc/4)							
bit 4		Timer0 Source Edge Select bit								
		t on high-to-low		•						
		t on low-to-high								
bit 3		ler Assignment b								
		r is not assigned r is assigned to t								
bit 2-0		escaler Rate Sel								
	Bit	Value Timer0	Rate							
		000 1:2								
		001 1:4								
		010 1:8								
		011 1:1 100 1:3								
		100 1:3 101 1:6								
		110 1 :1								
		111 1:2								

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CPSCON0	CPSON	CPSRM	_	_	CPSRN	G<1:0>	CPSOUT	T0xCS	315	
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	DAFVR<1:0> ADF		२<1:0>	142	
INLVLA	_		INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	124	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87	
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		176			
TMR0	Timer0 Mod	Timer0 Module Register								
TRISA	_		TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122	

Legend: — Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

* Page provides register information.

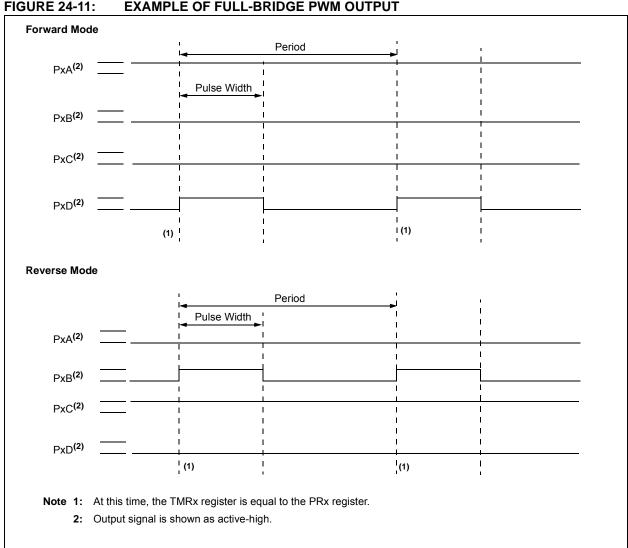
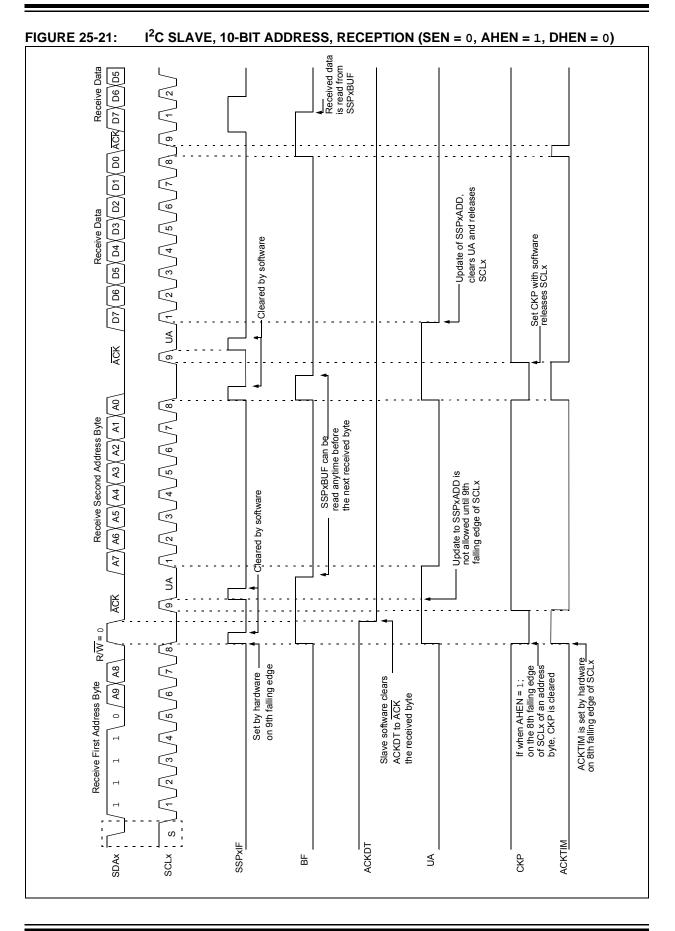



FIGURE 24-11: **EXAMPLE OF FULL-BRIDGE PWM OUTPUT**

PIC16(L)F1825/9

25.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDAx pin after the falling edge of SCLx is asserted. SCLx is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCLx is released high. When the SCLx pin is released high, it is held that way for TBRG. The data on the SDAx pin must remain stable for that duration and some hold time after the next falling edge of SCLx. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDAx. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCLx low and SDAx unchanged (Figure 25-28).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCLx until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDAx pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDAx pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCLx low and allowing SDAx to float.

25.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPxSTAT register is set when the CPU writes to SSPxBUF and is cleared when all eight bits are shifted out.

25.6.6.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

WCOL must be cleared by software before the next transmission.

25.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPxCON2 register is cleared when the slave has sent an Acknowledge ($\overline{ACK} = 0$) and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

25.6.6.4 Typical Transmit Sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. The MSSPx module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPxBUF with the slave address to transmit.
- 6. Address is shifted out the SDAx pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- The MSSPx module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 9. The user loads the SSPxBUF with eight bits of data.
- 10. Data is shifted out the SDAx pin until all eight bits are transmitted.
- 11. The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPxCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

26.5 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

26.5.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Reception (see Section 26.4.2.4 "Synchronous Slave Reception Setup:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the GIE, Global Interrupt Enable, bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

26.5.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for synchronous slave transmission (see Section 26.4.2.2 "Synchronous Slave Transmission Setup:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXIE of the PIE1 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXREG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

26.5.3 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFCON0 and APFCON1. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 12.1 "Alternate Pin Function"** for more information.

PIC16LF	1825/9	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for extended						
PIC16F1	825/9							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
D001	Vdd	Supply Voltage (VDDMIN, VDDMAX)						
		PIC16LF1825/9	1.8 2.5	_	3.6 3.6	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)	
D001		PIC16F1825/9	1.8 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾				•		
		PIC16LF1825/9	1.5	-	_	V	Device in Sleep mode	
D002*		PIC16F1825/9	1.7	-	_	V	Device in Sleep mode	
	VPOR*	Power-on Reset Release Voltage	_	1.6		V		
D002B*	VPORR*	Power-on Reset Rearm Voltage	-		-			
		PIC16LF1825/9	_	0.8	_	V	Device in Sleep mode	
		PIC16F1825/9	_	1.5	_	V	Device in Sleep mode	
D003	VADFVR	Fixed Voltage Reference Voltage for ADC	-8	_	6	%	1.024V, VDD ≥ 2.5V 2.048V, VDD ≥ 2.5V 4.096V, VDD ≥ 4.75V	
D003A	VCDAFVR	Fixed Voltage Reference Voltage for Comparator and DAC	-11	_	7	%	1.024V, VDD ≥ 2.5V 2.048V, VDD ≥ 2.5V 4.096V, VDD ≥ 4.75V	
D003C*	TCVFVR	Temperature Coefficient, Fixed Voltage Reference	—	-130	—	ppm/°C		
D003D*	$\Delta VFVR/$ ΔVIN	Line Regulation, Fixed Voltage Reference	_	0.270	—	%/V		
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See Section 7.1 "Power-on Reset (POR)" for details.	

30.1 DC Characteristics: PIC16(L)F1825/9-I/E (Industrial, Extended)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: PLL required for 32 MHz operation.

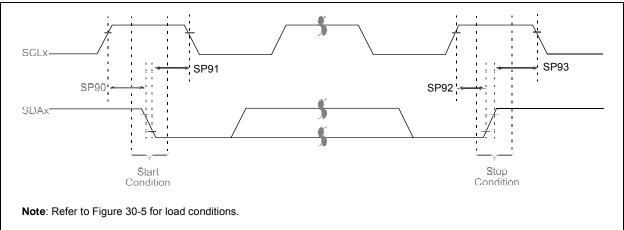
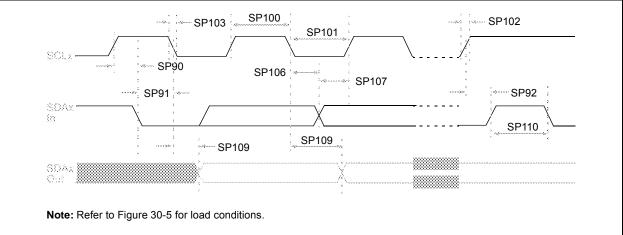



TABLE 30-16: I²C[™] BUS START/STOP BITS REQUIREMENTS

Param No.	Symbol	Characteristic		Min.	Тур	Max.	Units	Conditions
SP90*	TSU:STA	Start condition	100 kHz mode	4700	_	—	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	—	—		Start condition
SP91*	THD:STA	Start condition	100 kHz mode	4000	_	—	ns	After this period, the first
		Hold time	400 kHz mode	600	_	—		clock pulse is generated
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	—	—	ns	
		Setup time	400 kHz mode	600	_	_		
SP93	THD:STO	Stop condition	100 kHz mode	4000		—	ns	
		Hold time	400 kHz mode	600	_			

* These parameters are characterized but not tested.

31.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "MAXIMUM", "Max.", "MINIMUM" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

32.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

32.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]