

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1825t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-6:PIC16(L)F1825/9 MEMORY MAP, BANKS 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	INDF0	C80h	INDF0	D00h	INDF0	D80h	INDF0	E00h	INDF0	E80h	INDF0	F00h	INDF0	F80h	INDF0
C01h	INDF1	C81h	INDF1	D01h	INDF1	D81h	INDF1	E01h	INDF1	E81h	INDF1	F01h	INDF1	F81h	INDF1
C02h	PCL	C82h	PCL	D02h	PCL	D82h	PCL	E02h	PCL	E82h	PCL	F02h	PCL	F82h	PCL
C03h	STATUS	C83h	STATUS	D03h	STATUS	D83h	STATUS	E03h	STATUS	E83h	STATUS	F03h	STATUS	F83h	STATUS
C04h	FSR0L	C84h	FSR0L	D04h	FSR0L	D84h	FSR0L	E04h	FSR0L	E84h	FSR0L	F04h	FSR0L	F84h	FSR0L
C05h	FSR0H	C85h	FSR0H	D05h	FSR0H	D85h	FSR0H	E05h	FSR0H	E85h	FSR0H	F05h	FSR0H	F85h	FSR0H
C06h	FSR1L	C86h	FSR1L	D06h	FSR1L	D86h	FSR1L	E06h	FSR1L	E86h	FSR1L	F06h	FSR1L	F86h	FSR1L
C07h	FSR1H	C87h	FSR1H	D07h	FSR1H	D87h	FSR1H	E07h	FSR1H	E87h	FSR1H	F07h	FSR1H	F87h	FSR1H
C08h	BSR	C88h	BSR	D08h	BSR	D88h	BSR	E08h	BSR	E88h	BSR	F08h	BSR	F88h	BSR
C09h	WREG	C89h	WREG	D09h	WREG	D89h	WREG	E09h	WREG	E89h	WREG	F09h	WREG	F89h	WREG
C0Ah	PCLATH	C8Ah	PCLATH	D0Ah	PCLATH	D8Ah	PCLATH	E0Ah	PCLATH	E8Ah	PCLATH	F0Ah	PCLATH	F8Ah	PCLATH
C0Bh	INTCON	C8Bh	INTCON	D0Bh	INTCON	D8Bh	INTCON	E0Bh	INTCON	E8Bh	INTCON	F0Bh	INTCON	F8Bh	INTCON
C0Ch	_	C8Ch		D0Ch	—	D8Ch	_	E0Ch	_	E8Ch	—	F0Ch	_	F8Ch	
C0Dh	_	C8Dh	—	D0Dh	_	D8Dh	_	E0Dh	_	E8Dh	_	F0Dh	_	F8Dh	
C0Eh	_	C8Eh	—	D0Eh	—	D8Eh	—	E0Eh	_	E8Eh	—	F0Eh	—	F8Eh	
C0Fh	—	C8Fh	—	D0Fh	—	D8Fh	—	E0Fh	—	E8Fh	—	F0Fh	—	F8Fh	
C10h	—	C90h	—	D10h	—	D90h	—	E10h	—	E90h	—	F10h	—	F90h	
C11h	—	C91h	—	D11h	—	D91h	—	E11h	—	E91h	—	F11h	—	F91h	
C12h	_	C92h	—	D12h	_	D92h	_	E12h	_	E92h	_	F12h	_	F92h	
C13h	—	C93h	_	D13h	_	D93h	—	E13h	_	E93h		F13h	—	F93h	
C14h	—	C94h	_	D14h	_	D94h	—	E14h	—	E94h		F14h	—	F94h	
C15h	-	C95h	—	D15h	_	D95h	—	E15h	—	E95h	—	F15h	—	F95h	
C16h	—	C96h		D16h		D96h	—	E16h	_	E96h		F16h	—	F96h	
C17h	—	C97h		D17h		D97h	—	E17h	_	E97h		F17h	—	F97h	Soo Toblo 2 7 for
C18h	—	C98h	_	D18h	_	D98h	_	E18h	_	E98h	_	F18h	_	F98h	register mapping
C19h	—	C99h	_	D19h	_	D99h	—	E19h	_	E99h	—	F19h	—	F99h	details
C1Ah	—	C9Ah	_	D1Ah	—	D9Ah	_	E1Ah	_	E9Ah	—	F1Ah	_	F9Ah	
C1Bh	—	C9Bh		D1Bh		D9Bh	_	E1Bh	_	E9Bh		F1Bh	_	F9Bh	
C1Ch	—	C9Ch	_	D1Ch	—	D9Ch	—	E1Ch	—	E9Ch	—	F1Ch	—	F9Ch	
C1Dh	—	C9Dh	—	D1Dh		D9Dh	_	E1Dh	_	E9Dh		F1Dh	_	F9Dh	
C1Eh	—	C9Eh	—	D1Eh		D9Eh	_	E1Eh	_	E9Eh		F1Eh	_	F9Eh	
C1Fh	—	C9Fh		D1Fh		D9Fh	_	E1Fh	_	E9Fh	_	F1Fh	_	F9Fh	
C20h		CA0h		D20h		DA0h		E20h		EA0h		F20h		FA0h	
C6Eb	Unimplemented Read as '0'	CEEb	Unimplemented Read as '0'	D6Eb	Unimplemented Read as '0'	DEEb	Unimplemented Read as '0'	F6Fb	Unimplemented Read as '0'	FFFh	Unimplemented Read as '0'	E6Eb	Unimplemented Read as '0'	FFFh	
C70h		CF0h		D70h		DF0h		F70h		EE0h		F70h		FF0h	
CEEP	Accesses 70h – 7Fh	CFFh	Accesses 70h – 7Fh	D7Fh	Accesses 70h – 7Fh	DFFh	Accesses 70h – 7Fh	E7Fh	Accesses 70h – 7Fh	EFFh	Accesses 70h – 7Fh	F7Fh	Accesses 70h – 7Fh	FFFh	Accesses 70h – 7Fh

Legend: = Unimplemented data memory locations, read as '0'.

	00.0										-
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 5											
280h ⁽¹⁾	INDF0	Addressing th (not a physic	nis location us al register)	es contents of	FSR0H/FSR0	L to address	data memory	1		XXXX XXXX	xxxx xxxx
281h ⁽¹⁾	INDF1	Addressing th (not a physic	nis location us al register)	es contents of	FSR1H/FSR1	L to address	data memory	1		XXXX XXXX	XXXX XXXX
282h ⁽¹⁾	PCL	Program Cou	Program Counter (PC) Least Significant Byte								0000 0000
283h ⁽¹⁾	STATUS	—	— — — <u>TO</u> <u>PD</u> <u>Z</u> <u>DC</u> <u>C</u>							1 1000	q quuu
284h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poi	nter					0000 0000	uuuu uuuu
285h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Po	inter					0000 0000	0000 0000
286h ⁽¹⁾	FSR1L	Indirect Data	direct Data Memory Address 1 Low Pointer								uuuu uuuu
287h ⁽¹⁾	FSR1H	Indirect Data	irect Data Memory Address 1 High Pointer							0000 0000	0000 0000
288h ⁽¹⁾	BSR	—	— — — BSR<4:0> -							0 0000	0 0000
289h ⁽¹⁾	WREG	Working Reg	/orking Register								uuuu uuuu
28Ah ⁽¹⁾	PCLATH	—	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	er			-000 0000	-000 0000
28Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
28Ch	—	Unimplement	ted							_	_
28Dh	—	Unimplement	ted							_	_
28Eh	—	Unimplement	ted							_	_
28Fh	_	Unimplement	ted							_	—
290h	—	Unimplement	ted							_	_
291h	CCPR1L	Capture/Com	pare/PWM Re	egister 1 (LSB))					XXXX XXXX	uuuu uuuu
292h	CCPR1H	Capture/Com	pare/PWM Re	egister 1 (MSB)					XXXX XXXX	uuuu uuuu
293h	CCP1CON	P1M	<1:0>	DC1B	<1:0>		CCP1	N<3:0>		0000 0000	0000 0000
294h	PWM1CON	P1RSEN			F	P1DC<6:0>				0000 0000	0000 0000
295h	CCP1AS	CCP1ASE		CCP1AS<2:0>	•	PSS1A	C<1:0>	PSS1B	D<1:0>	0000 0000	0000 0000
296h	PSTR1CON	_	_	_	STR1SYNC	STR1D	STR1C	STR1B	STR1A	0 0001	0 0001
297h	—	Unimplement	ted							_	_
298h	CCPR2L	Capture/Com	pare/PWM Re	egister 2 (LSB)						xxxx xxxx	uuuu uuuu
299h	CCPR2H	Capture/Com	pare/PWM Re	egister 2 (MSB)					xxxx xxxx	uuuu uuuu
29Ah	CCP2CON	P2M1	P2M0	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	0000 0000	0000 0000
29Bh	PWM2CON	P2RSEN	P2DC6	P2DC5	P2DC4	P2DC3	P2DC2	P2DC1	P2DC0	0000 0000	0000 0000
29Ch	CCP2AS	CCP2ASE	CCP2AS2	CCP2AS1	CCP2AS0	PSS2AC1	PSS2AC0	PSS2BD1	PSS2BD0	0000 0000	0000 0000
29Dh	PSTR2CON	_	_		STR2SYNC	STR2D	STR2C	STR2B	STR2A	0 0001	0 0001
29Eh	CCPTMRS	C4TSEL1	C4TSEL0	C3TSEL1	C3TSEL0	C2TSEL1	C2TSEL0	C1TSEL1	C1TSEL0	0000 0000	0000 0000
29Fh	_	Unimplement	ted							-	_

TABLE 3-8 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: These registers can be addressed from any bank.

PIC16(L)F1829 only.
PIC16(L)F1825 only.

4: Unimplemented, read as '1'.

5.2.2.7 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-7). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 5-7 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-1.

Start-up delay specifications are located in the oscillator tables of **Section 30.0** "**Electrical Specifications**"

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH REFERENCE CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CLKRCON	CLKREN	CLKROE	CLKRSLR	CLKRDC<1:0>		C	72		
				<u>.</u>					

Legend: — Unimplemented locations read as '0'. Shaded cells are not used by reference clock sources.

TABLE 6-2: SUMMARY OF CONFIGURATION WORD WITH REFERENCE CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	_	_	FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD	40
	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		<1:0> FOSC<2:0>			48

Legend: — Unimplemented locations read as '0'. Shaded cells are not used by reference clock sources.

EXAMPLE 11-5: WRITING TO FLASH PROGRAM MEMORY

;	; This write routine assumes the following:									
;	1. Tł	ne 16 bytes	of data are load	ed, starting at the address in DATA_ADDR						
;	2. Ea	ach word of	data to be writt	en is made up of two adjacent bytes in DATA_ADDR,						
;	st	cored in lit	tle endian forma	t						
;	3. A	valid start	ing address (the	least significant bits = 000) is loaded in ADDRH:ADDRL						
;	4. AI	DDRH and ADD	RL are located i	n shared data memory 0x70 - 0x7F						
,		DCF	INTCON CIT	· Diaphle into an required acquerace will execute preperly						
		BANKSET.	FFADRH	: Bank 3						
		MOVE	ADDRH, W	; Load initial address						
		MOVWF	EEADRH	;						
		MOVF	ADDRL,W	;						
		MOVWF	EEADRL	;						
		MOVLW	LOW DATA_ADDR	; Load initial data address						
		MOVWF	FSROL	;						
		MOVLW	HIGH DATA_ADDR	; Load initial data address						
		MOVWF	FSROH	;						
		BSF	EECON1,EEPGD	; Point to program memory						
		BCF	EECON1,CFGS	; Not configuration space						
		BSF	EECON1,WREN	; Enable writes						
		BSF	EECON1,LWLO	; Only Load Write Latches						
LС	UΡ	моуты	FCDUTT	: Load first data bute into lower						
		MOVIW	FEDATI.	:						
		MOVTW	FSR0++	, ; Load second data byte into upper						
		MOVWF	EEDATH	;						
		MOVF	EEADRL,W	; Check if lower bits of address are '000'						
		XORLW	0x07	; Check if we're on the last of 8 addresses						
		ANDLW	0x07	;						
		BTFSC	STATUS, Z	; Exit if last of eight words,						
		GOTO	START_WRITE	;						
		MOVITW	5 5 b	· Start of required write genuerge:						
		MOVE	FECON2	: Write 55h						
		MOVIW	0AAh	:						
	nced	MOVWF	EECON2	; Write AAh						
	quii	BSF	EECON1,WR	; Set WR bit to begin write						
	Sec	NOP		; Any instructions here are ignored as processor						
	_ 0,			; halts to begin write sequence						
		NOP		; Processor will stop here and wait for write to complete.						
				; After write processor continues with 3rd instruction.						
		INCF	EEADRL, F	; Still loading latches Increment address						
		GOTO	LOOP	; Write next latches						
SI	ART_V	VRITE								
		BCF	EECON1,LWLO	; No more loading latches - Actually start Flash program						
				; memory write						
		MOVIW	55h	; Start of required write sequence:						
		MOVWF	EECON2	; Write 55h						
	ы В	MOVLW	0AAh	;						
	enc	MOVWF	EECON2	; Write AAh						
	eqเ €	BSF	EECON1,WR	; Set WR bit to begin write						
	ъ "	NOP		; Any instructions here are ignored as processor						
				; halts to begin write sequence						
		NOP		; Processor will stop here and wait for write complete.						
				: after write processor continues with and instruction						
		BCF	EECON1 . WREN	; Disable writes						
		BSF	INTCON, GIE	; Enable interrupts						
				-						

R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0				
EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
S = Bit can onl	y be set	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets				
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is cleared by hardware							
bit 7	FEPGD: Flas	h Program/Dat	a FEPROM M	emory Select	bit						
	1 = Accesses program space Flash memory 0 = Accesses data EEPROM memory										
bit 6	CFGS: Flash	Program/Data	EEPROM or C	Configuration	Select bit						
	1 = Accesses Configuration, User ID and Device ID Registers										
	0 = Accesses	s Flash Progra	m or data EEP	ROM Memory	/						
bit 5	LWLO: Load	Write Latches	Only bit			— , , ,					
	$\frac{\text{If CFGS} = 1}{1 - 1}$	Configuration s	<u>space)</u> OR <u>CF(</u>	<u>GS = 0 and E</u>	<u>EPGD = 1 (proc</u>	<u>gram Flash)</u> :	ny latahan ara				
	upda	ated.	imanu uoes no	ol miliale a w	nite, only the p	logram memor	ly latenes are				
	0 = The	next WR comn	nand writes a v	alue from EE	DATH:EEDATL	into program m	emory latches				
	and	initiates a write	e of all the data	stored in the	program memo	ory latches.					
	If CFGS = 0 a	and EEPGD =	o: (Accessing o	data EEPRON	1)						
	LWLO is ignor	red. The next \	NR command	initiates a writ	e to the data E	EPROM.					
bit 4	FREE: Progra	am Flash Erase	e Enable bit								
	<u>If CFGS = 1 (</u>	Configuration s	space) OR CF	<u>GS = 0</u> and E	EPGD = 1 (proc	<u>gram Flash)</u> :					
	1 = Perfe	orms an eras	e operation o	on the next	NR command	(cleared by h	ardware after				
	0 = Perfe	orms a write or	peration on the	next WR con	nmand.						
	$\frac{\text{If EEPGD} = 0}{\text{EREE is ignore}}$	and CFGS = (<u>0:</u> (Accessing (MR command)	data EEPRON will initiate bot	/I) th a erase cycle	and a write cv					
bit 3	WRFRR: FFF	PROM Error Fl	ag bit			and a write cyc	510.				
Sit O	1 = Condition	indicates an	improper prog	ram or erase	sequence atte	mpt or termina	tion (bit is set				
	automatio	cally on any se	t attempt (write	e '1') of the W	R bit).	·	,				
	0 = The prog	ram or erase o	peration comp	leted normally	y.						
bit 2	WREN: Progr	am/Erase Ena	ble bit								
	1 = Allows pr 0 = Inhibits p	ogram/erase c rogramming/er	ycles asing of progra	am Flash and	data EEPROM						
bit 1	WR: Write Co	ntrol bit	doing of progra								
	1 = Initiates a	a program Flas	h or data EEP	ROM program	n/erase operatio	on.					
	The oper	ation is self-tin	ned and the bit	is cleared by	hardware once	operation is co	mplete.				
	The WR	bit can only be	set (not cleare	ed) in software	e. OM is complete	o and inactivo					
bit 0	BD. Read Co	ntrol bit		UI UALA EEPP							
Dit U	1 = Initiates	an program F	lash or data F	FPROM rea	d. Read takes	one cycle RD	is cleared in				
	hardware	e. The RD bit c	an only be set	(not cleared)	in software.	5.10 0yolo. 10D					
	0 = Does not	initiate a prog	ram Flash or d	ata EEPROM	data read.						

REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER

12.2.2 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the lowest number in the following lists.

Analog input functions, such as ADC, comparator and Cap Sense inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below.

Pin Name	Function Priority ⁽¹⁾
RA0	ICSPDAT ICDDAT DACOUT
RA1	ICSPCLK ICDCLK RX/DT ⁽²⁾
RA2	SRQ C1OUT CCP3
RA3	None (input only)
RA4	CLKOUT T1OSO CLKR SDO1 P2B ⁽²⁾
RA5	SDO2 (PIC16(L)F1829 only) CCP2 ⁽²⁾ /P2A ⁽²⁾

TABLE 12-2: PORTA OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

2: Pin function is selectable via the APFCON0 or APFCON1 register.

21.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 21-1 displays the Timer1 enable selections.

TABLE 21-1:	TIMER1 ENABLE
	SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

21.2 Clock Source Selection

The TMR1CS<1:0> and T1OSCEN bits of the T1CON register are used to select the clock source for Timer1. Table 21-2 displays the clock source selections.

21.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1 gate
- C1 or C2 comparator input to Timer1 gate

21.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI or the capacitive sensing oscillator signal. Either of these external clock sources can be synchronized to the microcontroller system clock or they can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated internal oscillator circuit.

- **Note:** In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
 - Timer1 enabled after POR
 - Write to TMR1H or TMR1L
 - Timer1 is disabled
 - Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TMR1CS1	TMR1CS0	T10SCEN	Clock Source			
0	0	x	Instruction Clock (Fosc/4)			
0	1	x	System Clock (FOSC)			
1	0	0	External Clocking on T1CKI Pin			
1	0	0	External Clocking on T1CKI Pin			
1	1	x	Capacitive Sensing Oscillator			

TABLE 21-2: CLOCK SOURCE SELECTIONS

25.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a chip select known as Slave Select.

The SPI bus specifies four signal connections:

- · Serial Clock (SCKx)
- Serial Data Out (SDOx)
- Serial Data In (SDIx)
- Slave Select (SSx)

Figure 25-1 shows the block diagram of the MSSPx module when operating in SPI Mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 25-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 25-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDOx output pin which is connected to, and received by, the slave's SDIx input pin. The slave device transmits information out on its SDOx output pin, which is connected to, and received by, the master's SDIx input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on

its SDOx pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDOx pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

25.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCKx line. The master determines when the slave (Processor 2, Figure 25-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDOx output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDIx pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 25-6, Figure 25-8, Figure 25-9 and Figure 25-10, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- · Timer2 output/2
- Fosc/(4 * (SSPxADD + 1))

Figure 25-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDOx data is valid before there is a clock edge on SCKx. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

FIGURE 25-6: SPI MODE WAVEFORM (MASTER MODE)

25.6 I²C MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDAx and SCKx pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDAx and SCLx lines.

The following events will cause the SSPx Interrupt Flag bit, SSPxIF, to be set (SSPx interrupt, if enabled):

- Start condition detected
- Stop condition detected
- Data transfer byte transmitted/received
- · Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSPx module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

25.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDAx, while SCLx outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDAx, while SCLx outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCLx. See **Section 25.7 "Baud Rate Generator"** for more detail.

25.6.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 25-26), the user sets the Start Enable bit, SEN bit of the SSPxCON2 register. If the SDAx and SCLx pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCLx and SDAx are both sampled high when the Baud Rate Generator times out (TBRG), the SDAx pin is driven low. The action of the SDAx being driven low while SCLx is high is the Start condition and causes the S bit of the SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SDAx bit of the SSPxSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared

FIGURE 25-26: FIRST START BIT TIMING

by hardware; the Baud Rate Generator is suspended, leaving the SDAx line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDAx and SCLx pins are already sampled low, or if during the Start condition, the SCLx line is sampled low before the SDAx line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.
 - 2: The Philips I²C[™] Specification states that a bus collision cannot occur on a Start.

FIGURE 26-10: SYNCHRONOUS TRANSMISSION

TABLE 26-7: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
APFCON0	RXDTSEL	SDO1SEL ⁽¹⁾	SS1SEL ⁽¹⁾	_	T1GSEL	TXCKSEL	_	_	118	
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	292	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	291	
SPBRGL				SPBRG	6<7:0>				293*	
SPBRGH				SPBRG	<15:8>				293*	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	133	
TXREG	EUSART Transmit Data Register									
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	290	

- Unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission. Legend:

Page provides register information.
PIC16(L)F1825 only.

Note 1:

SWAPF	Swap Nibbles in f			
Syntax:	[label] SWAPF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$			
Status Affected:	None			
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.			

XORLW	Exclusive OR literal with W		
Syntax:	[<i>label</i>] XORLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	(W) .XOR. $k \rightarrow (W)$		
Status Affected:	Z		
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.		

TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \leq f \leq 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORWF	Exclusive OR W with f				
Syntax:	[label] XORWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) .XOR. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

TABLE 30-13: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
US120	TCKH2DTV	SYNC XMIT (Master and Slave)	3.0-5.5V	—	80	ns	
		Clock high to data-out valid	1.8-5.5V	_	100	ns	
US121	TCKRF	Clock out rise time and fall time	3.0-5.5V	—	45	ns	
	(Master mode)	1.8-5.5V	—	50	ns		
US122	TDTRF	Data-out rise time and fall time	3.0-5.5V	_	45	ns	
			1.8-5.5V	_	50	ns	

FIGURE 30-15: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 30-14: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-hold before CK \downarrow (DT hold time)	10		ns	
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15	—	ns	

30.9 High Temperature Operation

This section outlines the specifications for the following devices operating in the high temperature range between -40° C and 150° C.⁽¹⁾

- PIC16F1825⁽⁴⁾
- PIC16F1829⁽⁴⁾

When the value of any parameter is identical for both the 125°C Extended and the 150°C High Temp. temperature ranges, then that value will be found in the standard specification tables shown earlier in this chapter, under the fields listed for the 125°C Extended temperature range. If the value of any parameter is unique to the 150°C High Temp. temperature range, then it will be listed here, in this section of the data sheet.

If a Silicon Errata exists for the product and it lists a modification to the 125°C Extended temperature range value, one that is also shared at the 150°C High Temp. temperature range, then that modified value will apply to both temperature ranges.

- Note 1: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 2: Writes are <u>not allowed</u> for Flash program memory above 125°C.
 - **3:** The temperature range indicator in the catalog part number and device marking is "H" for -40°C to 150°C.

Example: PIC16F1825T-H/SL indicates the device is shipped in a Tape and Reel configuration, in the SOIC package, and is rated for operation from -40° C to 150° C.

- 4: The low voltage versions of these devices, PIC16LF1825 and PIC16LF1829, are not released for operation above +125°C.
- **5:** Errata Sheet DS80517 lists various mask revisions. 150°C operation applies only to revisions A4 and later.
- **6:** The Capacitive Sensing module (CPS) should not be used in high temperature devices. Function and its parametrics are not warranted.
- Only SOIC (SL), TSSOP (ST), SSOP (SS) and QFN (ML) packages will be offered, not PDIP or UQFN.

Parameter	Condition	Value
Max. Current: VDD	Source	15 mA
Max. Current: Vss	Sink	15 mA
Max. Current: Pin	Source	5 mA
Max. Current: Pin	Sink	5 mA
Max. Storage Temperature	—	-65°C to 155°C
Max. Junction Temperature	—	+155°C
Ambient Temperature under Bias	_	-40°C to +150°C

TABLE 30-18: ABSOLUTE MAXIMUM RATINGS

Note: Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

FIGURE 31-40: IPD, CO

IPD, COMPARATOR, NORMAL-POWER MODE (CxSP = 1), PIC16F1825/9 ONLY

32.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

32.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

32.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

32.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

32.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.