

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1829-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-3: PIC16(L)F1825/9 MEMORY MAP, BANKS 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	INDF0	080h	INDF0	100h	INDF0	180h	INDF0	200h	INDF0	280h	INDF0	300h	INDF0	380h	INDF0
001h	INDF1	081h	INDF1] 101h	INDF1] 181h	INDF1	201h	INDF1	281h	INDF1] 301h	INDF1] 381h [INDF1
002h	PCL	082h	PCL	102h	PCL	182h	PCL	202h	PCL	282h	PCL	302h	PCL	382h	PCL
003h	STATUS	083h	STATUS	103h	STATUS	183h	STATUS	203h	STATUS	283h	STATUS	303h	STATUS	383h	STATUS
004h	FSR0L	084h	FSR0L	104h	FSR0L	184h	FSR0L	204h	FSR0L	284h	FSR0L	304h	FSR0L	384h	FSR0L
005h	FSR0H	085h	FSR0H	105h	FSR0H	185h	FSR0H	205h	FSR0H	285h	FSR0H	305h	FSR0H	385h	FSR0H
006h	FSR1L	086h	FSR1L	106h	FSR1L	186h	FSR1L	206h	FSR1L	286h	FSR1L	306h	FSR1L	386h	FSR1L
007h	FSR1H	087h	FSR1H	107h	FSR1H	187h	FSR1H	207h	FSR1H	287h	FSR1H	307h	FSR1H	387h	FSR1H
008h	BSR	0880	BSR	108n	BSR	188n	BSR	208h	BSR	288n	BSR	308n	BSR	388n	BSR
0090		0090		1091		10911		2090		2090		2046		30911	
00An				10A11				20An		20A11		20Ph		200AII	
00BI		08Ch	TRISA	10Ch		18Ch		2001 20Ch		20DII 28Ch		30Ch		38Ch	
0000				1000		1806		2001	W/DI IB(1)	2001		3000		3804	
00Eh	PORTC	08Eh	TRISC	10Eh		18Eh		20Dh	WPUC	20D11		30Eh		38Eh	
00Eh		08Fh		10Eh		18Fh		20Eh		28Fh		30Fh		38Fh	
010h	_	090h	_	110h	_	1 190h	_	210h	_	290h	_	310h	_	390h	_
011h	PIR1	091h	PIE1	1111h	CM1CON0	191h	EEADRL	211h	SSP1BUF	291h	CCPR1L	311h	CCPR3L	391h	IOCAP
012h	PIR2	092h	PIE2	1 112h	CM1CON1	192h	EEADRH	212h	SSP1ADD	292h	CCPR1H	312h	CCPR3H	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	EEDATL	213h	SSP1MSK	293h	CCP1CON	313h	CCP3CON	393h	IOCAF
014h	PIR4 ⁽¹⁾	094h	PIE4 ⁽¹⁾	114h	CM2CON1	194h	EEDATH	214h	SSP1STAT	294h	PWM1CON	314h	_	394h	IOCBP ⁽¹⁾
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	EECON1	215h	SSP1CON1	295h	CCP1AS	315h	—	395h	IOCBN ⁽¹⁾
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSP1CON2	296h	PSTR1CON	316h	_	396h	IOCBF ⁽¹⁾
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	—	217h	SSP1CON3	297h	—	317h	_	397h	—
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h		218h	_	298h	CCPR2L	318h	CCPR4L	398h	
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	SSP2BUF ⁽¹⁾	299h	CCPR2H	319h	CCPR4H	399h	_
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TXREG	21Ah	SSP2ADD ⁽¹⁾	29Ah	CCP2CON	31Ah	CCP4CON	39Ah	CLKRCON
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh	SSP2MSK ⁽¹⁾	29Bh	PWM2CON	31Bh	_	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	SSP2STAT ⁽¹⁾	29Ch	CCP2AS	31Ch	_	39Ch	MDCON
01Dh	_	09Dh	ADCON0	11Dh	APFCON0	19Dh	RCSTA	21Dh	SSP2CON1 ⁽¹⁾	29Dh	PSTR2CON	31Dh	—	39Dh	MDSRC
01Eh	CPSCON0	09Eh	ADCON1	11Eh	APFCON1	19Eh	TXSTA	21Eh	SSP2CON2 ⁽¹⁾	29Eh	CCPTMRS	31Eh		39Eh	MDCARL
01Fh	CPSCON1	09Fh	—	11Fh	_	19Fh	BAUDCON	21Fh	SSP2CON3 ⁽¹⁾	29Fh	_	31Fh	_	39Fh	MDCARH
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General		General		General		General		General		General		General		General
	Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose
	Register		Register		Register		Register		Register		Register		Register		Register
	96 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes
06Eb		OFFh		16Fh		1EEb		26Eb		2EEb		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
			Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	Common RAM		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'

Note 1: Available only on PIC16(L)F1829.

5.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- 2. Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

FIGURE 5-8: TWO-SPEED START-UP

5.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word 1, or the internal oscillator.

	J. 301W		REDISTE	10 4000			10		
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN							BORRDY	76
PCON	STKOVF	STKUNF		_	RMCLR	RI	POR	BOR	80
STATUS	_	_		TO	PD	Z	DC	С	22
WDTCON				WDTPS<4:0>					100

TABLE 7-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — Unimplemented bit, reads as '0'. Shaded cells are not used by Resets.

10.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See *Section 25.0 "Electrical Specifications"* for the LFINTOSC tolerances.

10.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Word 1. See Table 10-1.

10.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Word 1 are set to '11', the WDT is always on.

WDT protection is active during Sleep.

10.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Word 1 are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

10.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Word 1 are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 10-1 for more details.

TABLE 10-1: WD	JT OPER	ATING	MODES
----------------	----------------	-------	-------

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	х	Х	Active
1.0	10 X 4		Active
10			Disabled
01	1	×	Active
UI	0 X	Disabled	
00	х	х	Disabled

TABLE 10-2: WDT CLEARING CONDITIONS

10.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

10.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep
- Oscillator fail event
- · WDT is disabled
- Oscillator Start-up TImer (OST) is running

See Table 10-2 for more information.

10.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section 5.0** "Oscillator **Module (With Fail-Safe Clock Monitor)**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See **Section 3.0 "Memory Organization"** for more information.

Conditions	WDT		
WDTE<1:0> = 00			
WDTE<1:0> = 01 and SWDTEN = 0			
WDTE<1:0> = 10 and enter Sleep	Cleared		
CLRWDT Command			
Oscillator Fail Detected			
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK			
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST		
Change INTOSC divider (IRCF bits)	Unaffected		

EXAMPLE 11-3: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG_ADDR_HI : PROG_ADDR_LO
   data will be returned in the variables;
*
   PROG_DATA_HI, PROG_DATA_LO
   MOVLW PROG_ADDR_LO ; Select Bank for EEPROM registers
MOVWF EEADRL ; Store LSB of address
MOVLW PROG_ADDR_HI ;
MOVWL EEADRH ;
             EECON1,CFGS ; Do not select Configuration Space
EECON1,EEPGD ; Select Program Memory
   BCF
           EECON1,CFGS
   BSF
              INTCON,GIE ; Disable interrupts
   BCF
                                ; Initiate read
; Executed (Figure 11-1)
   BSF
              EECON1,RD
   NOP
                                 ; Ignored (Figure 11-1)
   NOP
            INTCON,GIE
                                ; Restore interrupts
   BSF
   MOVF
            EEDATL,W
                                ; Get LSB of word
   MOVWF PROG_DATA_LO ; Store in user location
              EEDATH,W ; Get MSB of word
PROG_DATA_HI ; Store in user location
   MOVE
   MOVWF
```

R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0		
EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
S = Bit can onl	y be set	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is c	eared by hardw	/are			
bit 7	FEPGD: Flas	h Program/Dat	a FEPROM M	emory Select	bit				
	1 = Accesses 0 = Accesses	s program spaces data EEPRO	ce Flash memo M memory	ory					
bit 6	CFGS: Flash	Program/Data	EEPROM or C	Configuration	Select bit				
	1 = Accesses	s Configuration	, User ID and	Device ID Reg	gisters				
	0 = Accesses	s Flash Progra	m or data EEP	ROM Memory	/				
bit 5	LWLO: Load	Write Latches	Only bit			— , , ,			
	$\frac{\text{If CFGS} = 1}{1 - 1}$	Configuration s	<u>space)</u> OR <u>CF(</u>	<u>GS = 0 and E</u>	<u>EPGD = 1 (proc</u>	<u>gram Flash)</u> :	ny latahan ara		
	⊥ = The upda	ated.	imanu uoes no	ol miliale a w	nite, only the p	logram memor	ly latenes are		
	0 = The	next WR comn	nand writes a v	alue from EE	DATH:EEDATL	into program m	emory latches		
	and	initiates a write	e of all the data	stored in the	program memo	ory latches.			
	If CFGS = 0 a	and EEPGD =	o: (Accessing o	data EEPRON	1)				
	LWLO is ignor	red. The next \	NR command	initiates a writ	e to the data E	EPROM.			
bit 4	FREE: Progra	am Flash Erase	e Enable bit						
	<u>If CFGS = 1 (</u>	Configuration s	space) OR CF	<u>GS = 0</u> and E	EPGD = 1 (proc	<u>gram Flash)</u> :			
	1 = Perfe	orms an eras	e operation o	on the next	NR command	(cleared by h	ardware after		
	0 = Perfe	orms a write or	peration on the	next WR con	nmand.				
	$\frac{\text{If EEPGD} = 0}{\text{EREE is ignore}}$	and CFGS = (<u>0:</u> (Accessing (MR command)	data EEPRON will initiate bot	/I) th a erase cycle	and a write cv			
bit 3	WRFRR: FFF	PROM Error Fl	ag bit			and a write cyc	510.		
Sit O	1 = Condition	indicates an	improper prog	ram or erase	sequence atte	mpt or termina	tion (bit is set		
	automatio	cally on any se	t attempt (write	e '1') of the W	R bit).	·	,		
	0 = The prog	ram or erase o	peration comp	leted normally	y.				
bit 2	WREN: Progr	am/Erase Ena	ble bit						
	1 = Allows pr 0 = Inhibits p	ogram/erase c rogramming/er	ycles asing of progra	am Flash and	data EEPROM				
bit 1	WR: Write Co	ntrol bit	doing of progra						
	1 = Initiates a	a program Flas	h or data EEP	ROM program	n/erase operatio	on.			
	The oper	ation is self-tin	ned and the bit	is cleared by	hardware once	operation is co	mplete.		
	The WR	bit can only be	set (not cleare	ed) in software	e. OM is complete	o and inactivo			
bit 0	BD. Read Co	ntrol bit		UI UALA EEPP					
Dit U	1 = Initiates	an program F	lash or data F	FPROM rea	d. Read takes	one cycle RD	is cleared in		
	hardware	e. The RD bit c	an only be set	(not cleared)	in software.	5.10 0yolo. 10D			
	0 = Does not	initiate a prog	ram Flash or d	ata EEPROM	data read.				

REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	—			CHS<4:0>			GO/DONE	ADON	150
ADCON1	ADFM		ADCS<2:0>		—	ADNREF	ADPR	EF<1:0	151
ADRESH	A/D Result Re	egister High							152, 153
ADRESL	A/D Result Re	egister Low							152, 153
ANSELA	—	_	_	ANSA4	—	ANSA2	ANSA1	ANSA0	123
ANSELB ⁽¹⁾	—	_	ANSB5	ANSB4	_	—	—	—	129
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	_	—	ANSC3	ANSC2	ANSC1	ANSC0	134
CCP4CON	P4M•	<1:0>	DC4B<1:0>		CCP4M<3:0>			224	
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	124
INLVLB ⁽¹⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	_	_	_	—	129
INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	135
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92
TRISA	—	-	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	—	—	—	128
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	133
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVI	R<1:0>	142
DACCON0	DACEN	DACLPS	DACOE	—	DACPS	SS<1:0>	_	DACNSS	160
DACCON1	—	_	_			DACR<4:0>			160

TABLE 16-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC Legend: module. PIC16(L)F1829 only.

Note 1:

FIGURE 21-5:	TIMER1 GATE SINGLE-PULSE MODE
TMR1GE	
T1GPOL	
T1GSPM	
T1GG <u>O/</u> DONE	Cleared by hardware on falling edge of T1GVAL Counting enabled on
T1G_IN	rising edge of T1G
т1скі	
T1GV <u>AL</u>	
Timer1	N N + 1 N + 2
TMR1GIF	Cleared by software Cleared by hardware on falling edge of T1GVAL

R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
MDCHODIS	MDCHPOL	MDCHSYNC	—		MDCH	1<3:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable b	t	U = Unimpler	nented bit, read	l as '0'	as 'O'			
u = Bit is uncha	anged	x = Bit is unkno	wn	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clear	ed							
bit 7	MDCHODIS : 1 = Output s	: Modulator High signal driving the	Carrier Out peripheral o	put Disable bit putput pin (selec	ted by MDCH<	3:0>) is disable	ed			
bit 6	 0 = Output signal driving the peripheral output pin (selected by MDCH<3:0>) is enabled MDCHPOL: Modulator High Carrier Polarity Select bit 1 = Selected high carrier signal is inverted 0 = Selected high carrier signal is not inverted 									
bit 5	 MDCHSYNC: Modulator High Carrier Synchronization Enable bit 1 = Modulator waits for a falling edge on the high time carrier signal before allowing a switch to the low time carrier 0 = Modulator Output is not synchronized to the high time carrier signal⁽¹⁾ 									
bit 4	Unimplemer	nted: Read as '0'								
bit 3-0	MDCH<3:0>	Modulator Data	High Carrie	r Selection bits (1)					
	1111 = Res	erved. No chann	nel connect	ed.						
	• •									
	1000 = Res 0111 = CCI 0110 = CCI 0101 = CCI 0100 = CCI 0011 = Ref 0010 = MD 0001 = MD 0000 = Vss	served. No chanr P4 output (PWM P3 output (PWM P2 output (PWM P1 output (PWM erence Clock mo CIN2 port pin CIN1 port pin	nel connect Output moc Output moc Output moc Output moc dule signal	ed. de only) de only) de only) de only) (CLKR)						

REGISTER 23-3: MDCARH: MODULATION HIGH CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
PxRSEN				PxDC<6:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value			R/Value at all	other Resets						
'1' = Bit is set '0' = Bit is cleared										
bit 7	PxRSEN: PV	NM Restart Ena	ible bit							
	1 = Upon au the PWN	ito-shutdown, th M restarts auton	e CCPxASE b natically	oit clears automa	tically once the	e shutdown eve	ent goes away;			
	0 = Upon au	uto-shutdown, C	CPxASE mus	t be cleared in s	software to rest	tart the PWM				
bit 6-0	PxDC<6:0>:	PWM Delay Co	ount bits							
	PxDCx = Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal should transition active and the actual time it transitions active									

REGISTER 24-4: PWMxCON: ENHANCED PWM CONTROL REGISTER

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0			
ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN			
bit 7	I		I				bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
u = Bit is uncha	anged	x = Bit is unkr	κ = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared							
h:+ 7		to Doud Datas								
DIT 7	ABDOVF: Au	to-Baud Detec	t Overnow bit							
	1 = Auto-bau	<u>s mode</u> . d timer overflov	ved							
	0 = Auto-bauc	d timer did not	overflow							
	Synchronous Don't care	<u>mode</u> :								
bit 6	RCIDL: Recei	ve Idle Flag bit	t							
	Asynchronous	s mode:								
	1 = Receiver i	is Idle	ad and the ve		in a					
	0 = Start bit ha	as been receiv	ed and the re	ceiver is receiv	ling					
	Don't care									
bit 5	Unimplement	Unimplemented: Read as '0'								
bit 4	SCKP: Synch	ronous Clock F	Polarity Select	t bit						
	Asynchronous	<u>s mode</u> :								
	1 = Transmit i 0 = Transmit r	nverted data to non-inverted da	o the TX/CK p ata to the TX/0	in CK pin						
	Synchronous	mode:								
	1 = Data is clo 0 = Data is clo	ocked on rising ocked on falling	edge of the o edge of the o	clock clock						
bit 3	BRG16: 16-bi	t Baud Rate G	enerator bit							
	1 = 16-bit Bau 0 = 8-bit Bau	ud Rate Gener d Rate Genera	ator is used tor is used							
bit 2	Unimplement	ted: Read as '	כ'							
bit 1	WUE: Wake-u	up Enable bit								
	Asynchronous	<u>s mode</u> :								
	1 = Receiver will autom	is waiting for a atically clear at	falling edge. fter RCIF is se	No character v	will be received,	byte RCIF will	be set. WUE			
	0 = Receiver i	is operating no	rmally							
	Synchronous	<u>mode</u> :								
	Don't care									
bit 0	ABDEN: Auto	-Baud Detect E	Enable bit							
	Asynchronous	<u>s mode</u> : Id Dotoct mode	ic onchied (a		to boud is come	loto)				
	⊥ = Ашо-ваи 0 = Ашо-ваи	id Detect mode	is enabled (C is disabled	liears when au	to-baud is comp	iele)				
	Synchronous	mode:								
	Don't care									

REGISTER 26-3: BAUDCON: BAUD RATE CONTROL REGISTER

26.3.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPBRGH:SPBRGL register pair. After the ABDOVF has been set, the counter continues to count until the fifth rising edge is detected on the RX pin. Upon detecting the fifth RX edge, the hardware will set the RCIF interrupt flag and clear the ABDEN bit of the BAUDCON register. The RCIF flag can be subsequently cleared by reading the RCREG register. The ABDOVF flag of the BAUDCON register can be cleared by software directly.

To terminate the auto-baud process before the RCIF flag is set, clear the ABDEN bit then clear the ABDOVF bit of the BAUDCON register. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

26.3.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 26-7), and asynchronously if the device is in Sleep mode (Figure 26-8). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

26.3.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be 10 or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

WUE Bit

The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

27.5 Timer Resources

To measure the change in frequency of the capacitive sensing oscillator, a fixed time base is required. For the period of the fixed time base, the capacitive sensing oscillator is used to clock either Timer0 or Timer1. The frequency of the capacitive sensing oscillator is equal to the number of counts in the timer divided by the period of the fixed time base.

27.6 Fixed Time Base

To measure the frequency of the capacitive sensing oscillator, a fixed time base is required. Any timer resource or software loop can be used to establish the fixed time base. It is up to the end user to determine the method in which the fixed time base is generated.

Note:	The fixed time base can not be generated
	by the timer resource that the capacitive
	sensing oscillator is clocking.

27.6.1 TIMER0

To select Timer0 as the timer resource for the CPS module:

- Set the T0XCS bit of the CPSCON0 register.
- Clear the TMR0CS bit of the OPTION_REG register.

When Timer0 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer0. Refer to **Section 20.0** "**Timer0 Module**" for additional information.

27.6.2 TIMER1

To select Timer1 as the timer resource for the CPS module, set the TMR1CS<1:0> of the T1CON register to '11'. When Timer1 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer1. Because the Timer1 module has a gate control, developing a time base for the frequency measurement can be simplified by using the Timer0 overflow flag.

It is recommend that the Timer0 overflow flag, in conjunction with the Toggle mode of the Timer1 Gate, be used to develop the fixed time base required by the software portion of the CPS module. Refer to **Section 21.12 "Timer1 Gate Control Register"** for additional information.

TABLE 27-2: TIMER1 ENABLE FUNCTION

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	On
1	1	Count Enabled by input

27.7 Software Control

The software portion of the CPS module is required to determine the change in frequency of the capacitive sensing oscillator. This is accomplished by the following:

- Setting a fixed time base to acquire counts on Timer0 or Timer1.
- Establishing the nominal frequency for the capacitive sensing oscillator.
- Establishing the reduced frequency for the capacitive sensing oscillator due to an additional capacitive load.
- Set the frequency threshold.

27.7.1 NOMINAL FREQUENCY (NO CAPACITIVE LOAD)

To determine the nominal frequency of the capacitive sensing oscillator:

- Remove any extra capacitive load on the selected CPSx pin.
- At the start of the fixed time base, clear the timer resource.
- At the end of the fixed time base save the value in the timer resource.

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator for the given time base. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base.

27.7.2 REDUCED FREQUENCY (ADDITIONAL CAPACITIVE LOAD)

The extra capacitive load will cause the frequency of the capacitive sensing oscillator to decrease. To determine the reduced frequency of the capacitive sensing oscillator:

- Add a typical capacitive load on the selected CPSx pin.
- Use the same fixed time base as the nominal frequency measurement.
- At the start of the fixed time base, clear the timer resource.
- At the end of the fixed time base save the value in the timer resource.

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator with an additional capacitive load. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base. This frequency should be less than the value obtained during the nominal frequency measurement.

RETFIE	Return from Interrupt				
Syntax:	[label] RETFIE				
Operands:	None				
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$				
Status Affected:	None				
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.				
Words:	1				
Cycles:	2				
Example:	RETFIE				
	After Interrupt PC = TOS GIE = 1				

RETURN	Return from Subroutine			
Syntax:	[label] RETURN			
Operands:	None			
Operation:	$TOS \rightarrow PC$			
Status Affected:	None			
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.			

RETLW	Return with literal in W	DIE	Pototo Loft f through Corry			
Syntax:	[<i>label</i>] RETLW k		Rotate Left I through Carry			
Operands:	$0 \le k \le 255$	Syntax:	[<i>label</i>] RLF f,d			
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Status Affected:	None	Operation:	See description below			
Description:	The W register is leaded with the 8 bit	Status Affected:	С			
Description.	literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is			
Words:	1		stored back in register T.			
Cycles:	2					
Example:	CALL TABLE;W contains table	Words:	1			
	<pre>;offset value ,W now has table value</pre>	Cycles:	1			
TABLE	•	Example:	RLF REG1,0			
	• ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • RETLW kn ; End of table		Before Instruction REG1 = 1110 0110 C = 0 -<			
	Before Instruction W = 0x07 After Instruction W = value of k8					

SWAPF	Swap Nibbles in f				
Syntax:	[label] SWAPF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$				
Status Affected:	None				
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.				

XORLW	Exclusive OR literal with W				
Syntax:	[<i>label</i>] XORLW k				
$Operands: \qquad 0 \leq k \leq 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

TRIS	Load TRIS Register with W			
Syntax:	[label] TRIS f			
Operands:	$5 \leq f \leq 7$			
Operation:	(W) \rightarrow TRIS register 'f'			
Status Affected:	None			
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.			

XORWF	Exclusive OR W with f				
Syntax:	[label] XORWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \ \in \ [0,1] \end{array}$				
Operation:	(W) .XOR. (f) \rightarrow (destination)				
Status Affected: Z					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

TABLE 30-15:	SPI MODE	REQUIREMENTS
--------------	----------	--------------

Param No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	SSx↓ to SCKx↓ or SCKx↑ input		2.25 TCY		—	ns	
SP71*	TscH	SCKx input high time (Slave mod	de)	Tcy + 20	_	—	ns	
SP72*	TscL	SCKx input low time (Slave mod	e)	Tcy + 20	_	—	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDIx data input to	SCKx edge	100	_	_	ns	
SP74*	TscH2diL, TscL2diL	Hold time of SDIx data input to SCKx edge		100	_	—	ns	
SP75*	TDOR	SDOx data output rise time	3.0-5.5V	_	10	25	ns	
			1.8-5.5V	_	25	50	ns	
SP76*	TDOF	SDOx data output fall time		_	10	25	ns	
SP77*	TssH2doZ	SSx↑ to SDOx output high-impedance		10	_	50	ns	
SP78*	TscR	SCKx output rise time	3.0-5.5V	_	10	25	ns	
		(Master mode)	1.8-5.5V	_	25	50	ns	
SP79*	TscF	SCKx output fall time (Master mo	ode)	_	10	25	ns	
SP80*	TscH2doV,	SDOx data output valid after	3.0-5.5V	_	_	50	ns	
	TscL2doV	SCKx edge	1.8-5.5V	_	_	145	ns	
SP81*	TDOV2SCH, TDOV2SCL	SDOx data output setup to SCKx edge		Тсу	_	_	ns	
SP82*	TssL2doV	SDOx data output valid after SS	↓ edge	_		50	ns	
SP83*	TscH2ssH, TscL2ssH	SSx ↑ after SCKx edge		1.5Tcy + 40		_	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

*

FIGURE 31-38: IPD, COMPARATOR, LOW-POWER MODE (CxSP = 0), PIC16F1825/9 ONLY

32.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

32.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

33.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
Dimensior	Dimension Limits			MAX			
Number of Pins	Ν		14				
Pitch	е		.100 BSC				
Top to Seating Plane	Α	210					
Molded Package Thickness	A2	.115	.130	.195			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.325			
Molded Package Width	E1	.240	.250	.280			
Overall Length	D	.735	.750	.775			
Tip to Seating Plane	L	.115	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.045	.060	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	_	_	.430			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located with the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	X2			2.70
Optional Center Pad Length	Y2			2.70
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X16)	X1			0.35
Contact Pad Length (X16)	Y1			0.80

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2257A