
Microchip Technology - PIC16F1829-I/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 32MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 17

Program Memory Size 14KB (8K x 14)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Through Hole

Package / Case 20-DIP (0.300", 7.62mm)

Supplier Device Package 20-PDIP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic16f1829-i-p

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic16f1829-i-p-4387626
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


PIC16(L)F1825/9
FIGURE 1: 14-PIN DIAGRAM FOR PIC16(L)F1825 

FIGURE 2: 16-PIN DIAGRAM FOR PIC16(L)F1825 

PDIP, SOIC, TSSOP

P
IC

16
(L

)F
18

2
5

1

2

3

4

14

13

12

11

5

6

7

10

9

8

VDD

RA5

RA4

MCLR/VPP/RA3

RC5

RC4

RC3

VSS

RA0/ICSPDAT

RA1/ICSPCLK

RA2

RC0

RC1

RC2

1

2

3

4 9

10

11

12

5 6 7 8

1
6

1
5

1
4

1
3

PIC16(L)F1825

V
D

D

N
C

N
C

V
S

S
RA5

RA4

MCLR/VPP/RA3

RC5

RA0/ICSPDAT

RA1/ICSPCLK

RA2

RC0

QFN, UQFN

R
C

4

R
C

3

R
C

2

R
C

1

 2010-2015 Microchip Technology Inc. DS40001440E-page 3



PIC16(L)F1825/9
4.0 DEVICE CONFIGURATION

Device Configuration consists of Configuration Word 1
and Configuration Word 2, Code Protection and Device
ID.

4.1 Configuration Words

There are several Configuration Word bits that allow
different oscillator and memory protection options.
These are implemented as Configuration Word 1 at
8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Word 2 is
managed automatically by device
development tools including debuggers
and programmers. For normal device
operation, this bit should be maintained as
a ‘1’.
 2010-2015 Microchip Technology Inc. DS40001440E-page 47



PIC16(L)F1825/9
5.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device
to continue operating should the external oscillator fail.
The FSCM can detect oscillator failure any time after
the Oscillator Start-up Timer (OST) has expired. The
FSCM is enabled by setting the FCMEN bit in the
Configuration Word 1. The FSCM is applicable to all
external Oscillator modes (LP, XT, HS, EC, Timer1
Oscillator and RC).

FIGURE 5-9: FSCM BLOCK DIAGRAM 

5.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by
comparing the external oscillator to the FSCM sample
clock. The sample clock is generated by dividing the
LFINTOSC by 64. See Figure 5-9. Inside the fail
detector block is a latch. The external clock sets the
latch on each falling edge of the external clock. The
sample clock clears the latch on each rising edge of the
sample clock. A failure is detected when an entire
half-cycle of the sample clock elapses before the
external clock goes low.

5.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the
device clock to an internal clock source and sets the bit
flag OSFIF of the PIR2 register. Setting this flag will
generate an interrupt if the OSFIE bit of the PIE2
register is also set. The device firmware can then take
steps to mitigate the problems that may arise from a
failed clock. The system clock will continue to be
sourced from the internal clock source until the device
firmware successfully restarts the external oscillator
and switches back to external operation.

The internal clock source chosen by the FSCM is
determined by the IRCF<3:0> bits of the OSCCON
register. This allows the internal oscillator to be
configured before a failure occurs.

5.5.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset,
executing a SLEEP instruction or changing the SCS bits
of the OSCCON register. When the SCS bits are
changed, the OST is restarted. While the OST is
running, the device continues to operate from the
INTOSC selected in OSCCON. When the OST times
out, the Fail-Safe condition is cleared after successfully
switching to the external clock source. The OSFIF bit
should be cleared prior to switching to the external
clock source. If the Fail-Safe condition still exists, the
OSFIF flag will again become set by hardware.

5.5.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure
after the Oscillator Start-up Timer (OST) has expired.
The OST is used after waking up from Sleep and after
any type of Reset. The OST is not used with the EC or
RC Clock modes so that the FSCM will be active as
soon as the Reset or wake-up has completed. When
the FSCM is enabled, the Two-Speed Start-up is also
enabled. Therefore, the device will always be executing
code while the OST is operating.

External

LFINTOSC
÷ 64

S

R

Q

31 kHz
(~32 s)

488 Hz
(~2 ms)

Clock Monitor
Latch

Clock
Failure

Detected

Oscillator

Clock

Q

Sample Clock

Note: Due to the wide range of oscillator start-up
times, the Fail-Safe circuit is not active
during oscillator start-up (i.e., after exiting
Reset or Sleep). After an appropriate
amount of time, the user should check the
Status bits in the OSCSTAT register to
verify the oscillator start-up and that the
system clock switchover has successfully
completed.
DS40001440E-page 66  2010-2015 Microchip Technology Inc.



PIC16(L)F1825/9
FIGURE 8-2: INTERRUPT LATENCY

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

CLKOUT

PC 0004h 0005hPC

Inst(0004h)NOP

GIE

Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4

1 Cycle Instruction at PC

PC

Inst(0004h)NOP2 Cycle Instruction at PC

FSR ADDR PC+1 PC+2 0004h 0005hPC

Inst(0004h)NOP

GIE

PCPC-1

3 Cycle Instruction at PC

Execute

Interrupt

Inst(PC)

Interrupt Sampled 
during Q1

Inst(PC)

PC-1 PC+1

NOP

PC
New PC/

PC+1
0005hPC-1

PC+1/FSR 
ADDR

0004h

NOP

Interrupt

GIE

Interrupt

INST(PC) NOPNOP

FSR ADDR PC+1 PC+2 0004h 0005hPC

Inst(0004h)NOP

GIE

PCPC-1

3 Cycle Instruction at PC

Interrupt

INST(PC) NOPNOP NOP

Inst(0005h)

Execute

Execute

Execute
DS40001440E-page 84  2010-2015 Microchip Technology Inc.



PIC16(L)F1825/9
8.6.7 PIR2 REGISTER

The PIR2 register contains the interrupt flag bits, as
shown in Register 8-7.

             

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Enable bit, GIE, of the INTCON register.
User software should ensure the
appropriate interrupt flag bits are clear prior
to enabling an interrupt.

REGISTER 8-7: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0

OSFIF C2IF C1IF EEIF BCL1IF — — CCP2IF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 OSFIF: Oscillator Fail Interrupt Flag bit

1 = Interrupt is pending
0 = Interrupt is not pending

bit 6 C2IF: Comparator C2 Interrupt Flag bit

1 = Interrupt is pending
0 = Interrupt is not pending

bit 5 C1IF: Comparator C1 Interrupt Flag bit

1 = Interrupt is pending
0 = Interrupt is not pending

bit 4 EEIF: EEPROM Write Completion Interrupt Flag bit

1 = Interrupt is pending
0 = Interrupt is not pending

bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit

1 = Interrupt is pending
0 = Interrupt is not pending

bit 2-1 CCP2IF: CCP2 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending

bit 0 Unimplemented: Read as ‘0’
 2010-2015 Microchip Technology Inc. DS40001440E-page 93



PIC16(L)F1825/9
             

REGISTER 23-3: MDCARH: MODULATION HIGH CARRIER CONTROL REGISTER

R/W-x/u R/W-x/u R/W-x/u U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u

MDCHODIS MDCHPOL MDCHSYNC — MDCH<3:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 MDCHODIS: Modulator High Carrier Output Disable bit

1 = Output signal driving the peripheral output pin (selected by MDCH<3:0>) is disabled
0 = Output signal driving the peripheral output pin (selected by MDCH<3:0>) is enabled

bit 6 MDCHPOL: Modulator High Carrier Polarity Select bit

1 = Selected high carrier signal is inverted
0 = Selected high carrier signal is not inverted

bit 5 MDCHSYNC: Modulator High Carrier Synchronization Enable bit

1 = Modulator waits for a falling edge on the high time carrier signal before allowing a switch to the
low time carrier

0 = Modulator Output is not synchronized to the high time carrier signal(1)

bit 4 Unimplemented: Read as ‘0’

bit 3-0 MDCH<3:0> Modulator Data High Carrier Selection bits (1)

1111 = Reserved.  No channel connected.
 •
 •
 •

1000 = Reserved.  No channel connected.
0111 = CCP4 output (PWM Output mode only)
0110 = CCP3 output (PWM Output mode only)
0101 = CCP2 output (PWM Output mode only)
0100 = CCP1 output (PWM Output mode only)
0011 = Reference Clock module signal (CLKR)
0010 = MDCIN2 port pin
0001 = MDCIN1 port pin
0000 = VSS

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.
 2010-2015 Microchip Technology Inc. DS40001440E-page 199



PIC16(L)F1825/9
When one device is transmitting a logical one, or letting
the line float, and a second device is transmitting a
logical zero, or holding the line low, the first device can
detect that the line is not a logical one. This detection,
when used on the SCLx line, is called clock stretching.
Clock stretching gives slave devices a mechanism to
control the flow of data. When this detection is used on
the SDAx line, it is called arbitration. Arbitration
ensures that there is only one master device
communicating at any single time.

25.3.1 CLOCK STRETCHING

When a slave device has not completed processing
data, it can delay the transfer of more data through the
process of Clock Stretching. An addressed slave
device may hold the SCLx clock line low after receiving
or sending a bit, indicating that it is not yet ready to
continue. The master that is communicating with the
slave will attempt to raise the SCLx line in order to
transfer the next bit, but will detect that the clock line
has not yet been released. Because the SCLx
connection is open-drain, the slave has the ability to
hold that line low until it is ready to continue
communicating.

Clock stretching allows receivers that cannot keep up
with a transmitter to control the flow of incoming data. 

25.3.2 ARBITRATION

Each master device must monitor the bus for Start and
Stop bits. If the device detects that the bus is busy, it
cannot begin a new message until the bus returns to an
Idle state.

However, two master devices may try to initiate a
transmission on or about the same time. When this
occurs, the process of arbitration begins. Each
transmitter checks the level of the SDAx data line and
compares it to the level that it expects to find. The first
transmitter to observe that the two levels do not match,
loses arbitration, and must stop transmitting on the
SDAx line.

For example, if one transmitter holds the SDAx line to
a logical one (lets it float) and a second transmitter
holds it to a logical zero (pulls it low), the result is that
the SDAx line will be low. The first transmitter then
observes that the level of the line is different than
expected and concludes that another transmitter is
communicating. 

The first transmitter to notice this difference is the one
that loses arbitration and must stop driving the SDAx
line. If this transmitter is also a master device, it also
must stop driving the SCLx line. It then can monitor the
lines for a Stop condition before trying to reissue its
transmission. In the meantime, the other device that
has not noticed any difference between the expected
and actual levels on the SDAx line continues with its
original transmission. It can do so without any
complications, because so far, the transmission
appears exactly as expected with no other transmitter
disturbing the message.

Slave Transmit mode can also be arbitrated, when a
master addresses multiple slaves, but this is less
common. 

If two master devices are sending a message to two
different slave devices at the address stage, the master
sending the lower slave address always wins
arbitration. When two master devices send messages
to the same slave address, and addresses can
sometimes refer to multiple slaves, the arbitration
process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a
necessary process for proper multi-master support. 
 2010-2015 Microchip Technology Inc. DS40001440E-page 241



PIC16(L)F1825/9
25.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCLx pulse for any transferred byte in I2C is
dedicated as an Acknowledge. It allows receiving
devices to respond back to the transmitter by pulling
the SDAx line low. The transmitter must release
control of the line during this time to shift in the
response. The Acknowledge (ACK) is an active-low
signal, pulling the SDAx line low indicated to the
transmitter that the device has received the
transmitted data and is ready to receive more. 

The result of an ACK is placed in the ACKSTAT bit of
the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are
set, allow the user to set the ACK value sent back to
the transmitter. The ACKDT bit of the SSPxCON2
register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the
AHEN and DHEN bits of the SSPxCON3 register are
clear. 

There are certain conditions where an ACK will not be
sent by the slave. If the BF bit of the SSPxSTAT
register or the SSPOV bit of the SSPxCON1 register
are set when a byte is received. 

When the module is addressed, after the eighth falling
edge of SCLx on the bus, the ACKTIM bit of the
SSPxCON3 register is set. The ACKTIM bit indicates
the acknowledge time of the active bus. The ACKTIM
Status bit is only active when the AHEN bit or DHEN
bit is enabled.

25.5 I2C SLAVE MODE OPERATION

The MSSPx Slave mode operates in one of four
modes selected in the SSPM bits of SSPxCON1
register. The modes can be divided into 7-bit and
10-bit Addressing mode. 10-bit Addressing modes
operate the same as 7-bit with some additional
overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operated the
same as the other modes with SSPxIF additionally
getting set upon detection of a Start, Restart or Stop
condition.

25.5.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 25-6) contains the
Slave mode address. The first byte received after a
Start or Restart condition is compared against the
value stored in this register. If the byte matches, the
value is loaded into the SSPxBUF register and an
interrupt is generated. If the value does not match, the
module goes Idle and no indication is given to the
software that anything happened.

The SSPx Mask register (Register 25-5) affects the
address matching process. See Section 25.5.8
“SSPx Mask Register” for more information.

25.5.1.1 I2C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data
byte is ignored when determining if there is an address
match.

25.5.1.2 I2C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is
compared to the binary value of ‘1 1 1 1 0 A9 A8 0’. A9
and A8 are the two MSb of the 10-bit address and
stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set
and SCLx is held low until the user updates SSPxADD
with the low address. The low address byte is clocked
in and all eight bits are compared to the low address
value in SSPxADD. Even if there is not an address
match; SSPxIF and UA are set, and SCLx is held low
until SSPxADD is updated to receive a high byte
again. When SSPxADD is updated the UA bit is
cleared. This ensures the module is ready to receive
the high address byte on the next communication.

A high and low address match as a write request is
required at the start of all 10-bit addressing communi-
cation. A transmission can be initiated by issuing a
Restart once the slave is addressed, and clocking in
the high address with the R/W bit set. The slave
hardware will then acknowledge the read request and
prepare to clock out data. This is only valid for a slave
after it has received a complete high and low address
byte match.
DS40001440E-page 244  2010-2015 Microchip Technology Inc.



PIC16(L)F1825/9
25.5.7 GENERAL CALL ADDRESS 
SUPPORT

The addressing procedure for the I2C bus is such that
the first byte after the Start condition usually
determines which device will be the slave addressed
by the master device. The exception is the general call
address which can address all devices. When this
address is used, all devices should, in theory, respond
with an acknowledge.

The general call address is a reserved address in the
I2C protocol, defined as address 0x00. When the
GCEN bit of the SSPxCON2 register is set, the slave
module will automatically ACK the reception of this
address regardless of the value stored in SSPxADD.
After the slave clocks in an address of all zeros with
the R/W bit clear, an interrupt is generated and slave

software can read SSPxBUF and respond.
Figure 25-24 shows a general call reception
sequence.

In 10-bit Address mode, the UA bit will not be set on
the reception of the general call address. The slave
will prepare to receive the second byte as data, just as
it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just
as with any other address reception, the slave
hardware will stretch the clock after the eighth falling
edge of SCLx. The slave must then set its ACKDT
value and release the clock with communication
progressing as it would normally.

FIGURE 25-24: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE

25.5.8 SSPX MASK REGISTER

An SSPx Mask (SSPMSK) register (Register 25-5) is
available in I2C Slave mode as a mask for the value
held in the SSPxSR register during an address
comparison operation. A zero (‘0’) bit in the SSPMSK
register has the effect of making the corresponding bit
of the received address a “don’t care”.

This register is reset to all ‘1’s upon any Reset
condition and, therefore, has no effect on standard
SSPx operation until written with a mask value.

The SSPx Mask register is active during:

• 7-bit Address mode: address compare of A<7:1>.

• 10-bit Address mode: address compare of A<7:0> 
only. The SSPx mask has no effect during the 
reception of the first (high) byte of the address.

SDAx

SCLx

S

SSPxIF

BF (SSPxSTAT<0>)

Cleared by software

SSPxBUF is read

R/W = 0

ACKGeneral Call Address

Address is compared to General Call Address

Receiving Data ACK

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

D7 D6 D5 D4 D3 D2 D1 D0

after ACK, set interrupt

GCEN (SSPxCON2<7>)

’1’
 2010-2015 Microchip Technology Inc. DS40001440E-page 259



PIC16(L)F1825/9
25.6.13.2 Bus Collision During a Repeated 
Start Condition

During a Repeated Start condition, a bus collision
occurs if: 

a) A low level is sampled on SDAx when SCLx
goes from low level to high level. (CASE 1)

b) SCLx goes low before SDAx is asserted low,
indicating that another master is attempting to
transmit a data ‘1’. (CASE 2)

When the user releases SDAx and the pin is allowed to
float high, the BRG is loaded with SSPxADD and
counts down to zero. The SCLx pin is then deasserted
and when sampled high, the SDAx pin is sampled. 

If SDAx is low, a bus collision has occurred (i.e., another
master is attempting to transmit a data ‘0’
(Figure 25-36). If SDAx is sampled high, the BRG is
reloaded and begins counting. If SDAx goes from
high-to-low before the BRG times out, no bus collision
occurs because no two masters can assert SDAx at
exactly the same time. 

If SCLx goes from high-to-low before the BRG times
out and SDAx has not already been asserted, a bus
collision occurs. In this case, another master is
attempting to transmit a data ‘1’ during the Repeated
Start condition (Figure 25-37).

If, at the end of the BRG time-out, both SCLx and SDAx
are still high, the SDAx pin is driven low and the BRG
is reloaded and begins counting. At the end of the
count, regardless of the status of the SCLx pin, the
SCLx pin is driven low and the Repeated Start
condition is complete. 

FIGURE 25-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)        

FIGURE 25-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)      

SDAx

SCLx

RSEN

BCLxIF

S

SSPxIF

Sample SDAx when SCLx goes high.
If SDAx = 0, set BCLxIF and release SDAx and SCLx.

Cleared by software

‘0’

‘0’

SDAx

SCLx

BCLxIF

RSEN

S

SSPxIF

Interrupt cleared
by software

SCLx goes low before SDAx,
set BCLxIF. Release SDAx and SCLx.

TBRG TBRG

‘0’
DS40001440E-page 272  2010-2015 Microchip Technology Inc.



PIC16(L)F1825/9
26.0 ENHANCED UNIVERSAL 
SYNCHRONOUS 
ASYNCHRONOUS RECEIVER 
TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous
Receiver Transmitter (EUSART) module is a serial I/O
communications peripheral. It contains all the clock
generators, shift registers and data buffers necessary
to perform an input or output serial data transfer
independent of device program execution. The
EUSART, also known as a Serial Communications
Interface (SCI), can be configured as a full-duplex
asynchronous system or half-duplex synchronous
system. Full-Duplex mode is useful for
communications with peripheral systems, such as CRT
terminals and personal computers. Half-Duplex
Synchronous mode is intended for communications
with peripheral devices, such as A/D or D/A integrated
circuits, serial EEPROMs or other microcontrollers.
These devices typically do not have internal clocks for
baud rate generation and require the external clock
signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

• Full-duplex asynchronous transmit and receive

• Two-character input buffer

• One-character output buffer

• Programmable 8-bit or 9-bit character length

• Address detection in 9-bit mode

• Input buffer overrun error detection

• Received character framing error detection

• Half-duplex synchronous master

• Half-duplex synchronous slave

• Programmable clock polarity in synchronous 
modes

• Sleep operation

The EUSART module implements the following
additional features, making it ideally suited for use in
Local Interconnect Network (LIN) bus systems:

• Automatic detection and calibration of the baud rate

• Wake-up on Break reception

• 13-bit Break character transmit

Block diagrams of the EUSART transmitter and
receiver are shown in Figure 26-1 and Figure 26-2.

FIGURE 26-1: EUSART TRANSMIT BLOCK DIAGRAM      

TXIF

TXIE

Interrupt

TXEN

TX9D

MSb LSb

Data Bus

TXREG Register

Transmit Shift Register (TSR)

(8) 0

TX9

TRMT SPEN

TX/CK pin
Pin Buffer
and Control

8

SPBRGLSPBRGH

BRG16

FOSC
÷ n

n

+ 1 Multiplier x4 x16 x64

SYNC 1 X 0 0 0

BRGH X 1 1 0 0

BRG16 X 1 0 1 0

Baud Rate Generator

 • • •
 2010-2015 Microchip Technology Inc. DS40001440E-page 281



PIC16(L)F1825/9
FIGURE 27-2: CAPACITIVE SENSING OSCILLATOR BLOCK DIAGRAM 

Note 1: Module Enable and Current mode selections are not shown.
2: Comparators remain active in Noise Detection mode.

0

1

VDD

CPSCLK

Oscillator Module

CPSx
S Q

R

+

-

+

-

(2)(1)

(1) (2)

0

1

Internal
References

FVR Buffer2

CPSRM

Analog Pin

Ref- Ref+

DAC_output
DS40001440E-page 310  2010-2015 Microchip Technology Inc.



PIC16(L)F1825/9
      

MOVWI Move W to INDFn

Syntax: [ label ] MOVWI ++FSRn
[ label ] MOVWI --FSRn
[ label ] MOVWI FSRn++
[ label ] MOVWI FSRn--
[ label ] MOVWI k[FSRn]

Operands: n  [0,1]
mm  [00,01, 10, 11]
-32  k  31

Operation: W  INDFn
Effective address is determined by
• FSR + 1 (preincrement)
• FSR - 1 (predecrement)
• FSR + k (relative offset)
After the Move, the FSR value will be 
either:
• FSR + 1 (all increments)
• FSR - 1 (all decrements)
Unchanged

Status Affected:  None

 Mode  Syntax  mm

 Preincrement   ++FSRn  00

 Predecrement   --FSRn  01

 Postincrement  FSRn++  10

 Postdecrement  FSRn--  11

Description: This instruction is used to move data 
between W and one of the indirect 
registers (INDFn). Before/after this 
move, the pointer (FSRn) is updated by 
pre/post incrementing/decrementing it.

Note: The INDFn registers are not 
physical registers. Any instruction that 
accesses an INDFn register actually 
accesses the register at the address 
specified by the FSRn.

FSRn is limited to the range 0000h - 
FFFFh. Incrementing/decrementing it 
beyond these bounds will cause it to 
wrap-around.

The increment/decrement operation on 
FSRn WILL NOT affect any Status bits.

NOP No Operation

Syntax: [ label ]    NOP

Operands: None

Operation: No operation

Status Affected: None

Description: No operation.

Words: 1

Cycles: 1

Example: NOP

OPTION
Load OPTION_REG Register  
with W

Syntax: [ label ]   OPTION 

Operands: None

Operation: (W)  OPTION_REG

Status Affected: None

Description: Move data from W register to 
OPTION_REG register.

Words: 1

Cycles: 1

Example: OPTION

Before Instruction
OPTION_REG = 0xFF

              W = 0x4F
After Instruction

OPTION_REG = 0x4F
              W = 0x4F

RESET Software Reset

Syntax: [ label ]   RESET

Operands: None

Operation: Execute a device Reset. Resets the 
nRI flag of the PCON register. 

Status Affected: None

Description: This instruction provides a way to 
execute a hardware Reset by 
software.
DS40001440E-page 330  2010-2015 Microchip Technology Inc.



PIC16(L)F1825/9
FIGURE 31-13: IDD, MFINTOSC MODE (FOSC = 500 kHz), PIC16LF1825/9 ONLY

FIGURE 31-14: IDD, MFINTOSC MODE (FOSC = 500 kHz), PIC16F1825/9 ONLY

Typical

Max.

100

110

120

130

140

150

160

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

ID
D

(μ
A

)

VDD (V)

Max: 85°C + 3
Typical: 25°C

Typical

Max.

100

120

140

160

180

200

220

240

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

ID
D

(μ
A

)

VDD (V)

Max: 85°C + 3
Typical: 25°C
 2010-2015 Microchip Technology Inc. DS40001440E-page 377



PIC16(L)F1825/9
FIGURE 31-29: IPD, TIMER1 OSCILLATOR (FOSC = 32 kHz), PIC16LF1825/9 ONLY

FIGURE 31-30: IPD, TIMER1 OSCILLATOR (FOSC = 32 kHz), PIC16F1825/9 ONLY

6.0

Typical

Max.

3.0

4.0

5.0

6.0
IP

D
(μ

A
)

Max: 85°C + 3
Typical: 25°C

Typical

0.0

1.0

2.0

3.0

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

IP
D

(μ
A

0.0
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

VDD (V)

35

Typical

Max.

15

20

25

30

35

IP
D

(μ
A

)

0

5

10

15

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

IP
D

(μ

Max: 85°C + 3
Typical: 25°C

0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VDD (V)
 2010-2015 Microchip Technology Inc. DS40001440E-page 385



PIC16(L)F1825/9
FIGURE 31-33: IPD, CAPACITIVE SENSING (CPS) MODULE, MEDIUM-CURRENT RANGE,        
CPSRM = 0, PIC16LF1825/9 ONLY

FIGURE 31-34: IPD, CAPACITIVE SENSING (CPS) MODULE, MEDIUM-CURRENT RANGE,        
CPSRM = 0, PIC16F1825/9 ONLY

Max9

10

Max: 85°C + 3

Typical

Max.

5

6

7

8

9

10
D

(μ
A

)

Max: 85°C + 3
Typical: 25°C

Typical

0

1

2

3

4

5

6

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

IP
D

(μ
A

)

0
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

VDD (V)

40

Typical

Max.

15

20

25

30

35

40

IP
D

(μ
A

)

0

5

10

15

20

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

IP
D

(μ
A

Max: 85°C + 3
Typical: 25°C

0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VDD (V)

yp
 2010-2015 Microchip Technology Inc. DS40001440E-page 387



PIC16(L)F1825/9
FIGURE 31-51: BROWN-OUT RESET VOLTAGE, BORV = 0

Max.

Min.

2.40

2.45

2.50

2.55

2.60

2.65

2.70

2.75

2.80

2.85

2.90

-60 -40 -20 0 20 40 60 80 100 120 140

Vo
lta

ge
 (V

)

Temperature (°C)

Max: Typical + 3
Min: Typical - 3
DS40001440E-page 396  2010-2015 Microchip Technology Inc.



PIC16(L)F1825/9
32.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C
compilers for all of Microchip’s 8, 16, and 32-bit MCU
and DSC devices. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use. MPLAB XC Compilers run on Windows,
Linux or MAC OS X.

For easy source level debugging, the compilers provide
debug information that is optimized to the MPLAB X
IDE.

The free MPLAB XC Compiler editions support all
devices and commands, with no time or memory
restrictions, and offer sufficient code optimization for
most applications.

MPLAB XC Compilers include an assembler, linker and
utilities. The assembler generates relocatable object
files that can then be archived or linked with other relo-
catable object files and archives to create an execut-
able file. MPLAB XC Compiler uses the assembler to
produce its object file. Notable features of the assem-
bler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command-line interface

• Rich directive set

• Flexible macro language

• MPLAB X IDE compatibility

32.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs. 

The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code, and COFF files for
debugging.

The MPASM Assembler features include:

• Integration into MPLAB X IDE projects

• User-defined macros to streamline 
assembly code

• Conditional assembly for multipurpose 
source files

• Directives that allow complete control over the 
assembly process

32.4 MPLINK Object Linker/
MPLIB Object Librarian

The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler. It can link
relocatable objects from precompiled libraries, using
directives from a linker script. 

The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications. 

The object linker/library features include:

• Efficient linking of single libraries instead of many 
smaller files

• Enhanced code maintainability by grouping 
related modules together

• Flexible creation of libraries with easy module 
listing, replacement, deletion and extraction

32.5 MPLAB Assembler, Linker and 
Librarian for Various Device 
Families

MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC DSC devices. MPLAB XC Compiler
uses the assembler to produce its object file. The
assembler generates relocatable object files that can
then be archived or linked with other relocatable object
files and archives to create an executable file. Notable
features of the assembler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command-line interface

• Rich directive set

• Flexible macro language

• MPLAB X IDE compatibility
DS40001440E-page 402  2010-2015 Microchip Technology Inc.



PIC16(L)F1825/9
32.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code
development in a PC-hosted environment by simulat-
ing the PIC MCUs and dsPIC DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers. 

The MPLAB X SIM Software Simulator fully supports
symbolic debugging using the MPLAB XC Compilers,
and the MPASM and MPLAB Assemblers. The soft-
ware simulator offers the flexibility to develop and
debug code outside of the hardware laboratory envi-
ronment, making it an excellent, economical software
development tool. 

32.7 MPLAB REAL ICE In-Circuit 
Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs all 8, 16 and 32-bit MCU, and DSC devices
with the easy-to-use, powerful graphical user interface of
the MPLAB X IDE.

The emulator is connected to the design engineer’s
PC using a high-speed USB 2.0 interface and is
connected to the target with either a connector
compatible with in-circuit debugger systems (RJ-11)
or with the new high-speed, noise tolerant, Low-
Voltage Differential Signal (LVDS) interconnection
(CAT5). 

The emulator is field upgradable through future firmware
downloads in MPLAB X IDE. MPLAB REAL ICE offers
significant advantages over competitive emulators
including full-speed emulation, run-time variable
watches, trace analysis, complex breakpoints, logic
probes, a ruggedized probe interface and long (up to
three meters) interconnection cables.

32.8 MPLAB ICD 3 In-Circuit Debugger 
System

The MPLAB ICD 3 In-Circuit Debugger System is
Microchip’s most cost-effective, high-speed hardware
debugger/programmer for Microchip Flash DSC and
MCU devices. It debugs and programs PIC Flash
microcontrollers and dsPIC DSCs with the powerful,
yet easy-to-use graphical user interface of the MPLAB
IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is
connected to the design engineer’s PC using a high-
speed USB 2.0 interface and is connected to the target
with a connector compatible with the MPLAB ICD 2 or
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3
supports all MPLAB ICD 2 headers.

32.9 PICkit 3 In-Circuit Debugger/
Programmer

The MPLAB PICkit 3 allows debugging and program-
ming of PIC and dsPIC Flash microcontrollers at a most
affordable price point using the powerful graphical user
interface of the MPLAB IDE. The MPLAB PICkit 3 is
connected to the design engineer’s PC using a full-
speed USB interface and can be connected to the tar-
get via a Microchip debug (RJ-11) connector (compati-
ble with MPLAB ICD 3 and MPLAB REAL ICE). The
connector uses two device I/O pins and the Reset line
to implement in-circuit debugging and In-Circuit Serial
Programming™ (ICSP™).

32.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages, and a mod-
ular, detachable socket assembly to support various
package types. The ICSP cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices, and incorporates an MMC card for file
storage and data applications.
 2010-2015 Microchip Technology Inc. DS40001440E-page 403



PIC16(L)F1825/9
��
� 3
	�%���&
 %��!		��%����4����"	�)��� '����� �� ���%������	
��������4�����������$���%�
���
��%�"��%�
�%%�255)))�&��	
������
&5���4�����
DS40001440E-page 428  2010-2015 Microchip Technology Inc.


