

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1829-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

								· ·	-	-					
0/1	20-Pin PDIP/SOIC/SSOP	20-Pin QFN/UQFN	A/D	Reference	Cap Sense	Comparator	SR Latch	Timers	CCP	EUSART	SSP	Interrupt	Modulator	Pull-up	Basic
RA0	19	16	AN0	VREF- DACOUT	CPS0	C1IN+	_		—	—	-	IOC	—	Y	ICSPDAT/ ICDDAT
RA1	18	15	AN1	VREF+	CPS1	C12IN0-	SRI		—	—	-	IOC	—	Y	ICSPCLK/ ICDCLK
RA2	17	14	AN2	—	CPS2	C1OUT	SRQ	TOCKI	CCP3 FLT0	—	-	INT/ IOC	—	Y	-
RA3	4	1		—	—	_	_	T1G ⁽¹⁾	—	—	_	IOC	—	Y ⁽⁴⁾	MCLR VPP
RA4	3	20	AN3	_	CPS3	_	-	T1G ⁽¹⁾ T1OSO	P2B ⁽¹⁾	—	SS2 ⁽¹⁾	IOC	_	Y	OSC2 CLKOUT CLKR
RA5	2	19	-	—	—	_	-	T1CKI T1OSI	CCP2 ⁽¹⁾ P2A ⁽¹⁾	—	SDO2 ⁽¹⁾	IOC	—	Y	OSC1 CLKIN
RB4	13	10	AN10	—	CPS10	-		-	_	—	SDA1 SDI1	IOC	—	Y	_
RB5	12	9	AN11	—	CPS11	-		-	—	RX ⁽¹⁾ DT ⁽¹⁾	SDA2 SDI2	IOC	—	Y	_
RB6	11	8	_	—	—	_	_	_	—	—	SCL1 SCK1	IOC	—	Y	-
RB7	10	7	_	—	—				—	TX ⁽¹⁾ CK ⁽¹⁾	SCL2 SCK2	IOC	—	Y	_
RC0	16	13	AN4	—	CPS4	C2IN+	—	_	P1D ⁽¹⁾	—	SS2 ⁽¹⁾	_	—	Y	_
RC1	15	12	AN5	—	CPS5	C12IN1-	-	-	P1C ⁽¹⁾	—	SDO2 ⁽¹⁾	—	—	Y	_
RC2	14	11	AN6	—	CPS6	C12IN2-			P1D ⁽¹⁾ P2B ⁽¹⁾	—	-	—	MDCIN1	Y	-
RC3	7	4	AN7	_	CPS7	C12IN3-	_	_	P1C ⁽¹⁾ CCP2 ⁽¹⁾ P2A ⁽¹⁾	_	_	—	MDMIN	Y	_
RC4	6	3	_	—	—	C2OUT	SRNQ	-	P1B	TX ⁽¹⁾ CK ⁽¹⁾	-	_	MDOUT	Y	
RC5	5	2	—	_	_	_	_	_	CCP1 P1A	RX ⁽¹⁾ DT ⁽¹⁾	—	—	MDCIN2	Y	—
RC6	8	5	AN8	—	CPS8	_	—	—	CCP4	—	SS1	—	—	Y	—
RC7	9	6	AN9		CPS9	_	—	_	_		SDO1	_	—	Y	_
VDD	1	18	—		—	_	_	_	_	—	_	—	—	_	Vdd
Vss	20	17	—	—	—	—	—	—	—	—	—	—	—	—	Vss

TABLE 2: 20-PIN ALLOCATION TABLE (PIC16(L)F1829)

Note 1: Pin function is selectable via the APFCON0 or APFCON1 register.

FIGURE 5-3:

QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
- **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 5-4: CERAMIC RESONATOR OPERATION

3: An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation.

5.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended unless either FSCM or Two-Speed Start-up are enabled. In this case, the code will continue to execute at the selected INTOSC frequency while the OST is counting. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see **Section 5.4 "Two-Speed Clock Start-up Mode"**).

5.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

5.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Word 1) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Word 1 configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- · Wake-up from Sleep.

Note: When FSCM is enabled, Two-Speed Start-up will automatically be enabled.

	TABLE 5-1:	OSCILLATOR SWITCHING DELAYS
--	------------	-----------------------------

Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay (Twarm)
Sleep/POR	EC, RC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Sleep/POR	Timer1 Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
Any clock source	Timer1 Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)

Note 1: PLL inactive.

12.3 PORTB Registers (PIC16(L)F1829 only)

PORTB is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 12-10). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-2 shows how to initialize a port.

Reading the PORTB register (Register 12-9) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

The TRISB register (Register 12-10) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

The INLVLB register (Register 12-14) controls the input voltage threshold for each of the available PORTB input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTB register and also the level at which an Interrupt-on-Change occurs, if that feature is enabled. See Section 30.4 "DC Characteristics: PIC16(L)F1825/9-I/E" for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

12.3.1 ANSELB REGISTER

The ANSELB register (Register 12-12) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELB bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

FIGURE 21-4: TIMER1 GATE TOGGLE MODE

23.5 Carrier Source Polarity Select

The signal provided from any selected input source for the carrier high and carrier low signals can be inverted. Inverting the signal for the carrier high source is enabled by setting the MDCHPOL bit of the MDCARH register. Inverting the signal for the carrier low source is enabled by setting the MDCLPOL bit of the MDCARL register.

23.6 Carrier Source Pin Disable

Some peripherals assert control over their corresponding output pin when they are enabled. For example, when the CCP1 module is enabled, the output of CCP1 is connected to the CCP1 pin.

This default connection to a pin can be disabled by setting the MDCHODIS bit in the MDCARH register for the carrier high source and the MDCLODIS bit in the MDCARL register for the carrier low source.

23.7 Programmable Modulator Data

The MDBIT of the MDCON register can be selected as the source for the modulator signal. This gives the user the ability to program the value used for modulation.

23.8 Modulator Source Pin Disable

The modulator source default connection to a pin can be disabled by setting the MDMSODIS bit in the MDSRC register.

23.9 Modulated Output Polarity

The modulated output signal provided on the MDOUT pin can also be inverted. Inverting the modulated output signal is enabled by setting the MDOPOL bit of the MDCON register.

23.10 Slew Rate Control

The slew rate limitation on the output port pin can be disabled. The slew rate limitation can be removed by clearing the MDSLR bit in the MDCON register.

23.11 Operation in Sleep Mode

The DSM module is not affected by Sleep mode. The DSM can still operate during Sleep, if the Carrier and Modulator input sources are also still operable during Sleep.

23.12 Effects of a Reset

Upon any device Reset, the DSM module is disabled. The user's firmware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

24.4.2 FULL-BRIDGE MODE

In Full-Bridge mode, all four pins are used as outputs. An example of full-bridge application is shown in Figure 24-10.

In the Forward mode, pin CCPx/PxA is driven to its active state, pin PxD is modulated, while PxB and PxC will be driven to their inactive state as shown in Figure 24-11.

In the Reverse mode, PxC is driven to its active state, pin PxB is modulated, while PxA and PxD will be driven to their inactive state as shown Figure 24-11.

PxA, PxB, PxC and PxD outputs are multiplexed with the PORT data latches. The associated TRIS bits must be cleared to configure the PxA, PxB, PxC and PxD pins as outputs.

FIGURE 24-10: EXAMPLE OF FULL-BRIDGE APPLICATION

24.4.5 PROGRAMMABLE DEAD-BAND DELAY MODE

In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable deadband delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 24-16 for illustration. The lower seven bits of the associated PWMxCON register (Register 24-4) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 24-16: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 24-17: EXAMPLE OF HALF-BRIDGE APPLICATIONS

25.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP1 AND MSSP2) MODULE

25.1 Master SSPx (MSSPx) Module Overview

The Master Synchronous Serial Port (MSSPx) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSPx module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- · Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 25-1 is a block diagram of the SPI interface module.

FIGURE 25-1: MSSPx BLOCK DIAGRAM (SPI MODE)

R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all of	ther Resets
'1' = Bit is s	et	'0' = Bit is cle	ared			_	
bit 7		nowledge Tim	e Status hit (l ²		(3)		
bit i	1 = Indicates	the I ² C bus is i	in an Acknowl	edae sequenc	ce. set on 8 [™] fall	ina edge of SC	l x clock
	0 = Not an Ac	knowledge see	quence, cleare	ed on 9 TH risin	g edge of SCLx	clock	
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit	(I ² C mode onl	y)		
	1 = Enable in	terrupt on dete	ction of Stop	condition			
	0 = Stop dete	ction interrupts	are disabled	(1 ² 0)			
DIT 5	SCIE: Start C	ondition interru	ipt Enable bit	(IFC mode onl	y) ditiona		
	0 = Start dete	ction interrupts	are disabled	(2)	ultions		
bit 4	BOEN: Buffer	r Overwrite Ena	able bit				
	In SPI Slave	<u>mode:</u> (1)					
	1 = SSP	BUF updates	every time that	at a new data l	oyte is shifted in	ignoring the BF	bit
	SSP	CON1 register	is set, and th	le buffer is not	updated	lieduy sei, SSF	
	<u>In I²C Master</u>	mode and SPI	Master mode	<u>):</u>	·		
	This bit is	s ignored.					
	1 = SSP	xBUF is update	ed and ACK is	s generated for	or a received ad	dress/data byte	, ignoring the
	state 0 = SSP:	of the SSPOV	bit only if the odated when S	BF bit = 0. SSPOV is clea	ar		
bit 3	SDAHT: SDA	x Hold Time Se	election bit (I ²	C mode only)			
	1 = Minimum 0 = Minimum	of 300 ns hold of 100 ns hold	time on SDAx time on SDAx	x after the falling after the	ng edge of SCLx ng edge of SCLx	((
bit 2	SBCDE: Slav	e Mode Bus C	ollision Detect	t Enable bit (I ²	C Slave mode o	nly)	
	If on the risin BCLxIF bit of	g edge of SCL the PIR2 regis	x, SDAx is sa ter is set, and	impled low wh bus goes Idle	en the module is	s outputting a h	nigh state, the
	1 = Enable sl	ave bus collisio	on interrupts				
	0 = Slave bus	s collision interr	upts are disal	bled			
bit 1	AHEN: Addre	ess Hold Enable	e bit (I ² C Slav	e mode only)	hing readined a	ddraea hyday C	
	⊥ = Following SSPxCO	N1 register wil	l be cleared a	nd the SCLx v	vill be held low.	duress byte, C	
	0 = Address h	nolding is disab	led				
bit 0	DHEN: Data	Hold Enable bi	t (I ² C Slave m	ode only)			
	1 = Following of the SS	the 8th falling PxCON1 regis	edge of SCLx ter and SCLx	for a received is held low.	data byte; slave	hardware clea	rs the CKP bit
		ing is disabled					
Note 1: F	For daisy-chained when a new byte is	SPI operation; a received and I	allows the use 3F = 1, but ha	er to ignore all l Irdware continu	but the last receiv ues to write the m	ved byte. SSPO	V is still set to SSPxBUF.
2: 1	This bit has no effe	ect in Slave mo	des that Start	and Stop con	dition detection i	s explicitly liste	d as enabled.

REGISTER 25-4: SSPxCON3: SSPx CONTROL REGISTER 3

- 2. This bit has no effect in Slave modes that shall and stop condition detection is explicitly list
- 3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

26.1.2.8 Asynchronous Reception Setup:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 26.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

26.1.2.9 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 26.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 26-5: ASYNCHRONOUS RECEPTION

FIGURE 26-10: SYNCHRONOUS TRANSMISSION

TABLE 26-7: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL ⁽¹⁾	SS1SEL ⁽¹⁾	_	T1GSEL	TXCKSEL	_	_	118
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	292
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	291
SPBRGL	SPBRG<7:0>							293*	
SPBRGH	SPBRG<15:8>						293*		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	133
TXREG	EUSART Transmit Data Register						283*		
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	290

- Unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission. Legend:

Page provides register information.
 PIC16(L)F1825 only.

Note 1:

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch			
Syntax:	[<i>label</i>] GOTO k			
Operands:	$0 \leq k \leq 2047$			
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>			
Status Affected:	None			
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.			

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.

IORLW	Inclusive OR literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

IORWF	Inclusive OR W with f				
Syntax:	[<i>label</i>] IORWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) .OR. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				

RRF	Rotate Right f through Carry						
Syntax:	[<i>label</i>] RRF f,d						
Operands:	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	See description below						
Status Affected:	С						
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.						

SUBLW	Subtract W from literal						
Syntax:	[label] St	JBLW k					
Operands:	$0 \leq k \leq 255$						
Operation:	$k - (W) \to (W$	/)					
Status Affected:	C, DC, Z						
Description:	The W regist complement literal 'k'. The register.	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.					
	C = 0	W > k					
	C = 1	$W \le k$					
	DC = 0	W<3:0> > k<3:0>					

DC = 1

 $W<3:0> \le k<3:0>$

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT}, \\ 0 \rightarrow \text{WDT prescaler}, \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBWF	Subtract W from f							
Syntax:	[label] SL	IBWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$							
Operation:	(f) - (W) \rightarrow (d	estination)						
Status Affected:	C, DC, Z							
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.							
	C = 0	W > f						
	$C = 1$ $W \le f$							
	DC = 0	W<3:0> > f<3:0>						
	DC = 1	W<3:0> ≤ f<3:0>						

SUBWFB	Subtract W from f with Borrow				
Syntax:	SUBWFB f {,d}				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$				
Status Affected:	C, DC, Z				
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.				

TABLE 30-5: **RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER** AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C \leq TA \leq +125°C								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
30	TMCL	MCLR Pulse Width (low)	2	_	—	μs		
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	12	16	20	ms	V _{DD} = 3.3V-5V, 1:16 Prescaler used	
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾	_	1024	_	Tosc		
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	65	140	ms		
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset	_	—	2.0	μS		
35	VBOR	Brown-out Reset Voltage ⁽²⁾	2.55 1.80	2.70 1.9	2.85 2.05	V V	BORV = 0 BORV = 1	
36*	VHYST	Brown-out Reset Hysteresis	20	35	75	mV	-40°C to +85°C	
37*	TBORDC	Brown-out Reset DC Response Time	1	3	35	μS	$VDD \leq VBOR$	

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: By design, the Oscillator Start-up (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

FIGURE 30-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 30-8: PIC16(L)F1825/9 A/D CONVERTER (ADC) CHARACTERISTICS^(1,2,3)

Operating	Conditions	lunless	otherwise	stated	<u>۱</u>
operating	Conditions	unicaa	otherwise	Slateu	,

VDD = 3	$VDD = 3.0V, TA = 25^{\circ}C$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
AD01	NR	Resolution	—	_	10	bit			
AD02	EIL	Integral Error			±1.7	LSb	VREF = 3.0V		
AD03	Edl	Differential Error			±1	LSb	No missing codes VREF = 3.0V		
AD04	EOFF	Offset Error	I		±2.5	LSb	VREF = 3.0V		
AD05	Egn	Gain Error		_	±2.0	LSb	VREF = 3.0V		
AD06	VREF	Reference Voltage ⁽⁴⁾	1.8	_	Vdd	V	VREF = (VREF+ minus VREF-)		
AD07	VAIN	Full-Scale Range	Vss		VREF	V			
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.		
+	Data	in "Typ" column is at 3.0V, 25°C unle	ss othe	rwise sta	ted. The	se para	meters are for design guidance only and are not		

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: ADC VREF is from external VREF, VDD pin or FVR, whichever is selected as reference input.

4: ADC Reference Voltage (REF+) is the selected input, VREF+ pin, VDD pin or the FVR Buffer1. When the FVR is selected as the reference input, the FVR Buffer1 output selection must be 2.048 or 4.096V (ADFVR<1:0> = 1x).

TABLE 30-9: PIC16(L)F1825/9 A/D CONVERSION REQUIREMENTS

Operatin VDD = 3.0	Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
AD130*	Tad	A/D Clock Period	1.0	_	9.0	μS	Tosc-based			
		A/D Internal RC Oscillator Period	1.0	2.5	6.0	μS	ADCS<1:0> = 11 (ADRC mode)			
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾		11		TAD	Set GO/DONE bit to conversion complete			
AD132*	TACQ	Acquisition Time		5.0	-	μS				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

32.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

32.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	ILLIMETER	S	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		5.40	
Contact Pad Width				0.60
Contact Pad Length	Y			1.50
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	3.90		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		14	
Pitch	е		0.65 BSC	
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.80	1.00	1.05
Standoff	A1	0.05	-	0.15
Overall Width	th E 6.40 BSC			
Molded Package Width	E1	4.30	4.40	4.50
Molded Package Length	D	4.90	5.00	5.10
Foot Length	L	0.45	0.60	0.75
Footprint	(L1)		1.00 REF	
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.19	-	0.30

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or

protrusions shall not exceed 0.15mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2