

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1829t-i-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Enhanced Mid-range CPU	
3.0	Memory Organization	
4.0	Device Configuration	
5.0	Oscillator Module (With Fail-Safe Clock Monitor)	
6.0	Reference Clock Module	
7.0	Resets	
8.0	Interrupts	
9.0	Power-Down Mode (Sleep)	
10.0		
11.0		
12.0		
13.0		
14.0		
15.0		
16.0		
17.0	- 3	
	SR Latch	
	Comparator Module	
	Timer0 Module	
	Timer1 Module with Gate Control	
	Timer2/4/6 Modules	
23.0		
24.0		
25.0		
	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	
	Capacitive Sensing (CPS) Module	
	In-Circuit Serial Programming™ (ICSP™)	
	Instruction Set Summary	
30.0		
31.0		
32.0		
	Packaging Information	
	endix A: Data Sheet Revision History	
	endix B: Migrating From Other PIC® Devices	
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
Prod	uct Identification System	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3											
180h ⁽¹⁾	INDF0	Addressing tl (not a physic		es contents of	FSR0H/FSR0	L to address	data memory	/		XXXX XXXX	XXXX XXXX
181h ⁽¹⁾	INDF1	Addressing tl (not a physic		es contents of	FSR1H/FSR1	L to address	data memory	/		XXXX XXXX	XXXX XXXX
182h ⁽¹⁾	PCL	Program Cou	inter (PC) Lea	st Significant E	Byte					0000 0000	0000 0000
183h ⁽¹⁾	STATUS	_	<u>TO</u> <u>PD</u> <u>Z</u> <u>DC</u> <u>C</u>					С	1 1000	q quuu	
184h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poir	nter					0000 0000	uuuu uuuu
185h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Poi	nter					0000 0000	0000 0000
186h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu
187h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	nter					0000 0000	0000 0000
188h ⁽¹⁾	BSR	_	_	—			BSR<4:0>			0 0000	0 0000
189h ⁽¹⁾	WREG	Working Reg	/orking Register						0000 0000	uuuu uuuu	
18Ah ⁽¹⁾	PCLATH	—	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	r			-000 0000	-000 0000
18Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
18Ch	ANSELA	—	—	_	ANSA4	—	ANSA2	ANSA1	ANSA0	1 -111	1 -111
18Dh	ANSELB ⁽²⁾	_	_	ANSB5	ANSB4	_	_	_		11	11
18Eh	ANSELC	ANSC7 ⁽²⁾	ANSC6 ⁽²⁾	-	—	ANSC3	ANSC2	ANSC1	ANSC0	11 1111	11 1111
18Fh	—	Unimplement	ted			•		•		_	_
190h	—	Unimplement	ted							_	_
191h	EEADRL	EEPROM / P	rogram Memo	ry Address Re	gister Low By	te				0000 0000	0000 0000
192h	EEADRH	(4)	EEPROM / P	rogram Memo	ry Address Re	gister High B	yte			1000 0000	1000 0000
193h	EEDATL	EEPROM / P	rogram Memo	ry Read Data I	Register Low	Byte				xxxx xxxx	uuuu uuuu
194h	EEDATH	_	_	EEPROM / Pr	rogram Memo	ry Read Data	Register Hig	gh Byte		xx xxxx	uu uuuu
195h	EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	0000 x000	0000 q000
196h	EECON2	EEPROM co	ntrol register 2							0000 0000	0000 0000
197h	—	Unimplement	ted							—	_
198h	—	Unimplement	ted							_	_
199h	RCREG	USART Rece	eive Data Regi	ster						0000 0000	0000 0000
19Ah	TXREG	USART Tran	smit Data Reg	ister						0000 0000	0000 0000
19Bh	SPBRGL	Baud Rate G	enerator Data	Register Low						0000 0000	0000 0000
19Ch	SPBRGH	Baud Rate G	enerator Data	Register High						0000 0000	0000 0000
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
	1	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN	01-0 0-00	01-0 0-00

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-8

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: These registers can be addressed from any bank.

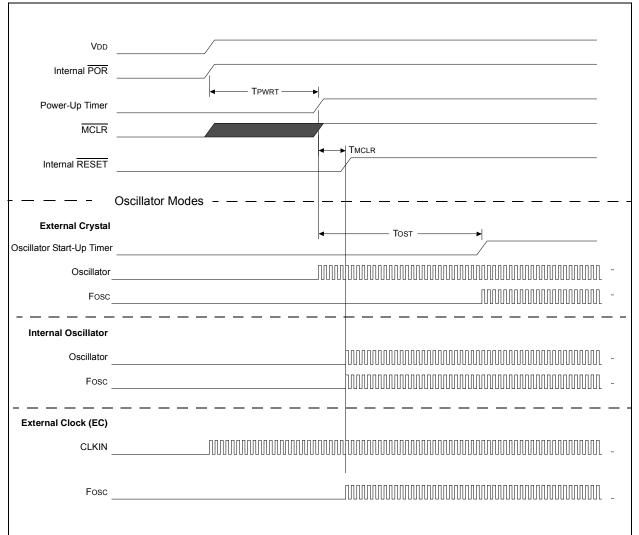
PIC16(L)F1829 only.
 PIC16(L)F1825 only.

4: Unimplemented, read as '1'.

IABLE	. 3-0.	SPECIAL F	UNCTION	REGIST	ER SUMI			-D)	1	1	1
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3	1										
F80h ⁽¹⁾	INDF0	Addressing th (not a physic		es contents of	FSR0H/FSR0)L to address	data memory	ý		XXXX XXXX	XXXX XXXX
F81h ⁽¹⁾	INDF1	Addressing the (not a physic)		es contents of	FSR1H/FSR1	1L to address	data memory	ý		XXXX XXXX	XXXX XXXX
F82h ⁽¹⁾	PCL	Program Cou	inter (PC) Lea	st Significant E	Byte					0000 0000	0000 0000
F83h ⁽¹⁾	STATUS	_	_	—	TO	PD	Z	DC	С	1 1000	q quuu
F84h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poi	nter			•	•	0000 0000	uuuu uuuu
F85h ⁽¹⁾	FSR0H	Indirect Data	ct Data Memory Address 0 High Pointer								0000 0000
F86h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poi	nter					0000 0000	uuuu uuuu
F87h ⁽¹⁾	FSR1H	Indirect Data	Memory Address 1 High Pointer — — BSR<4:0>							0000 0000	0000 0000
F88h ⁽¹⁾	BSR		—	—				0 0000	0 0000		
F89h ⁽¹⁾	WREG	Working Reg	ister					0000 0000	uuuu uuuu		
F8Ah ⁽¹⁾	PCLATH	_	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	er			-000 0000	-000 0000
F8Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
F8Ch	—	Unimplement	ted							-	_
FE3h				-							
FE4h	STATUS_ SHAD	-	_	—	_	_	Z_SHAD	DC_SHAD	C_SHAD	xxx	uuu
FE5h	WREG_ SHAD	Working Reg	ister Shadow							0000 0000	uuuu uuuu
FE6h	BSR_ SHAD	—	_	_	Bank Select	Register Sha	dow			x xxxx	u uuuu
FE7h	PCLATH_ SHAD	-	Program Cou	Inter Latch Hig	h Register Sh	nadow				-xxx xxxx	uuuu uuuu
FE8h	FSR0L_ SHAD	Indirect Data	Memory Addr	ess 0 Low Poi	nter Shadow					XXXX XXXX	uuuu uuuu
FE9h	FSR0H_ SHAD	Indirect Data	Memory Addr	ess 0 High Po	inter Shadow					XXXX XXXX	uuuu uuuu
FEAh	FSR1L_ SHAD	Indirect Data	Memory Addr	ess 1 Low Poi	nter Shadow					XXXX XXXX	uuuu uuuu
FEBh	FSR1H_ SHAD	Indirect Data	Memory Addr	ess 1 High Po	inter Shadow					XXXX XXXX	uuuu uuuu
FECh	—	Unimplement	ted							_	_
FEDh	STKPTR	—	_	_	Current Stac	k pointer				1 1111	1 1111
FEEh	TOSL	Top-of-Stack	Low byte		1					xxxx xxxx	uuuu uuuu
FEFh	TOSE	_	Top-of-Stack	Hiah byte						-xxx xxxx	
	1030			• •							auu uuu

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-8:**

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. Legend:


Note 1: These registers can be addressed from any bank.

2: PIC16(L)F1829 only.

3: PIC16(L)F1825 only.

4: Unimplemented, read as '1'.

REGISTER 12-18:	ANSELC: PORTC ANALOG SELECT REGISTER	

R/W-1/1	R/W-1/1	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
ANSC7 ⁽²⁾	ANSC6 ⁽²⁾	_		ANSC3	ANSC2	ANSC1	ANSC0			
bit 7	-		•	·		•	bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimpler	nented bit, read	d as '0'				
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is cle	ared							
bit 7-6	0 = Digital I/	Analog Select O. Pin is assigr nput. Pin is ass	ned to port or d	ligital special fu	inction.		ectively ⁽²⁾			
bit 5-4	Unimplemen	nted: Read as '	0'							
bit 3-0	0 = Digital I/	Analog Select O. Pin is assigr nput. Pin is ass	ned to port or d	ligital special fu	inction.		ectively			

- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: ANSELC<7:6> available on PIC16(L)F1829 only. Otherwise, they are unimplemented and read as '0'.

REGISTER 12-19: WPUC: WEAK PULL-UP PORTC REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUC7 ⁽³⁾	WPUC6 ⁽³⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7	•			•			bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits^(1, 2) 1 = Pull-up enabled 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

- 2: The weak pull-up device is automatically disabled if the pin is in configured as an output.
- 3: WPUC<7:6> available on PIC16(L)F1829 only. Otherwise, they are unimplemented and read as '0'.

24.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 24-4.

EQUATION 24-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 24-5:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 32 MHz)

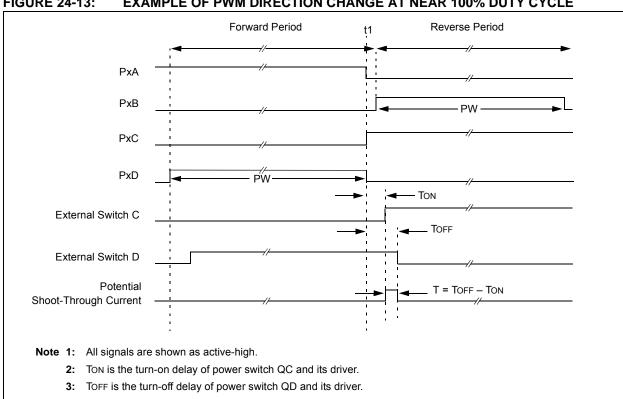

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 24-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 24-7: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
CCPxASE		CCPxAS<2:0>		PSSxA	\C<1:0>	C<1:0> PSSxBD<1:0>				
bit 7							bit			
Legend:										
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'										
u = Bit is unc	hanged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets			
'1' = Bit is se	t	'0' = Bit is clea	ared							
bit 7	CCPxASE: CCPx Auto-Shutdown Event Status bit									
	 1 = A shutdown event has occurred; CCPx outputs are in shutdown state 0 = CCPx outputs are operating 									
	CCPxAS<2:0>: CCPx Auto-Shutdown Source Select bits									
		000 = Auto-shutdown is disabled								
	001 = Comparator C1 output high ⁽¹⁾									
	010 = Comparator C2 output high ⁽¹⁾									
	011 = Either Comparator C1 or C2 high ⁽¹⁾ 100 = Vi∟ on FLT0 pin									
	101 = VIL on FLT0 pin or Comparator C1 high ⁽¹⁾									
	110 = VIL on FLT0 pin or Comparator C2 high(1)									
	111 = VIL OI	n FLT0 pin or Coi	mparator C1 o	or Comparator (C2 high ⁽¹⁾					
bit 3-2	PSSxAC<1	:0>: Pins PxA an	d PxC Shutdo	own State Conti	rol bits					
	•	00 = Drive pins PxA and PxC to '0'								
		01 = Drive pins PxA and PxC to '1'								
		xA and PxC tri-st								
bit 1-0		:0>: Pins PxB an		own State Contr	ol bits					
		oins PxB and PxE oins PxB and PxE								
	01 = Drive r									

REGISTER 24-3: CCPxAS: CCPx AUTO-SHUTDOWN CONTROL REGISTER

Note 1: If CxSYNC is enabled, the shutdown will be delayed by Timer1.

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCLx line, is called clock stretching. Clock stretching gives slave devices a mechanism to control the flow of data. When this detection is used on the SDAx line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

25.3.1 CLOCK STRETCHING

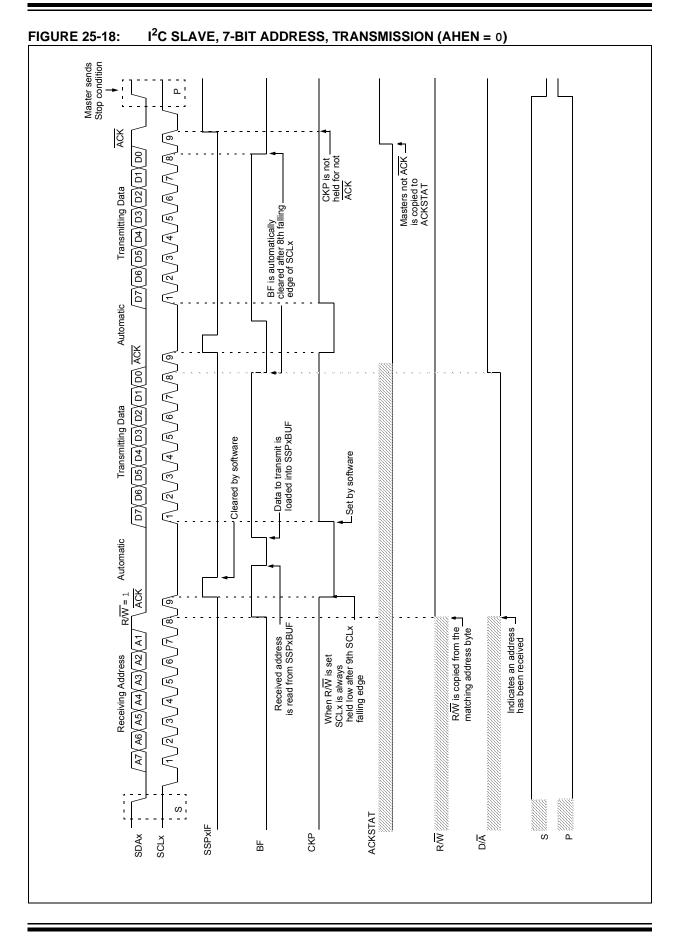
When a slave device has not completed processing data, it can delay the transfer of more data through the process of Clock Stretching. An addressed slave device may hold the SCLx clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCLx line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCLx connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

25.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDAx data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDAx line.


For example, if one transmitter holds the SDAx line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDAx line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDAx line. If this transmitter is also a master device, it also must stop driving the SCLx line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDAx line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

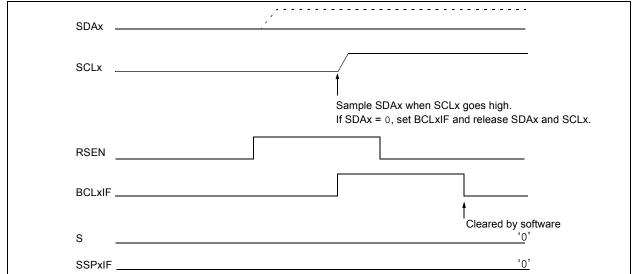
Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

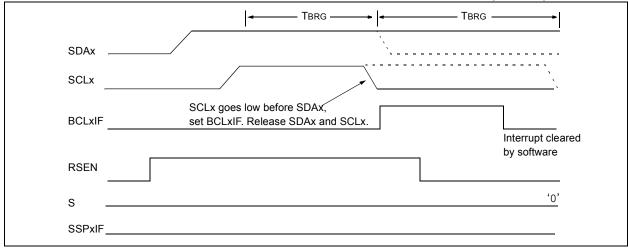
Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

25.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:


- a) A low level is sampled on SDAx when SCLx goes from low level to high level. (CASE 1)
- SCLx goes low before SDAx is asserted low, indicating that another master is attempting to transmit a data '1'. (CASE 2)

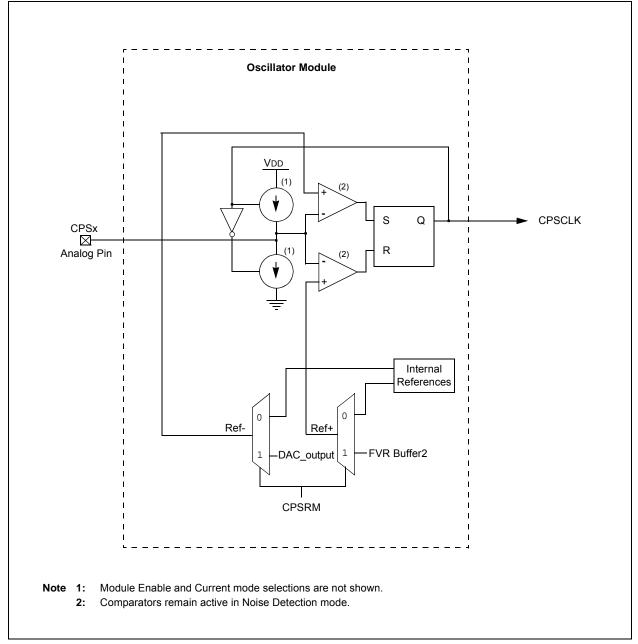
When the user releases SDAx and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCLx pin is then deasserted and when sampled high, the SDAx pin is sampled. If SDAx is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0' (Figure 25-36). If SDAx is sampled high, the BRG is reloaded and begins counting. If SDAx goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDAx at exactly the same time.


If SCLx goes from high-to-low before the BRG times out and SDAx has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (Figure 25-37).

If, at the end of the BRG time-out, both SCLx and SDAx are still high, the SDAx pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCLx pin, the SCLx pin is driven low and the Repeated Start condition is complete.

FIGURE 25-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 25-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)



	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Foso	: = 32.00	0 MHz	Fosc = 20.000 MHz			Fosc	: = 18.43	2 MHz	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

TABLE 26-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc	: = 3.686	4 MHz	Fosc = 1.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832	
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207	
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103	
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25	
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23	
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12	
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_	
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	—	—	

FIGURE 27-2: CAPACITIVE SENSING OSCILLATOR BLOCK DIAGRAM

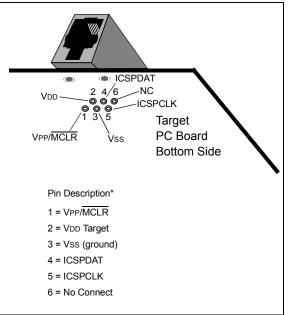
28.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC16(L)F1825/9 devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Word 2 is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

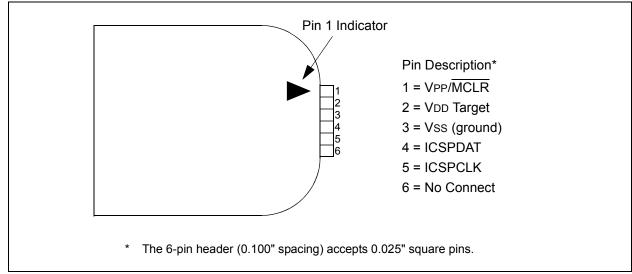
- 1. $\overline{\text{MCLR}}$ is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

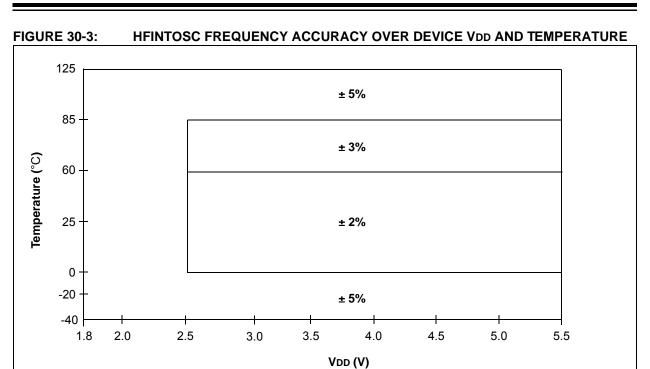
Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.


If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 7.3 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

28.3 Common Programming Interfaces


Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6 connector) configuration. See Figure 28-2.


FIGURE 28-2: ICD RJ-11 STYLE CONNECTOR INTERFACE

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 28-3.

FIGURE 28-3: PICkit[™] STYLE CONNECTOR INTERFACE

30.2 DC Characteristics: PIC16(L)F1825/9-I/E (Industrial, Extended)

PIC16LF	1825/9	Operating temperature -40°				tions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
PIC16F1825/9				l Operati g tempera	ature ·	litions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param	aram Device		Тур†		11	Conditions				
No.	Characteristics	Min.	турт	Max.	Units	Vdd	Note			
	Supply Current (IDD) ^{(1,}	2)								
D010		_	5.5	15	μΑ	1.8	Fosc = 32 kHz			
		_	7.8	18	μΑ	3.0	LP Oscillator mode			
D010		_	20	55	μΑ	1.8	Fosc = 32 kHz			
		—	25	60	μΑ	3.0	LP Oscillator mode			
		—	27	65	μA	5.0				
D011		—	83	140	μA	1.8	Fosc = 1 MHz			
		_	130	230	μA	3.0	XT Oscillator mode			
D011		—	105	160	μA	1.8	Fosc = 1 MHz			
		—	160	250	μΑ	3.0	XT Oscillator mode			
		—	230	320	μΑ	5.0				
D012		—	220	310	μA	1.8	Fosc = 4 MHz			
		—	378	540	μA	3.0	XT Oscillator mode			
D012		—	240	300	μΑ	1.8	Fosc = 4 MHz			
		—	400	500	μA	3.0	XT Oscillator mode			
		—	500	760	μA	5.0				
D013			46	160	μΑ	1.8	Fosc = 1 MHz			
		—	90	230	μΑ	3.0	EC Oscillator mode, Medium-Power mode			
D013		_	70	180	μΑ	1.8	Fosc = 1 MHz			
		_	120	240	μΑ	3.0	EC Oscillator mode Medium-Power mode			
		—	190	320	μΑ	5.0				
D014		—	192	250	μΑ	1.8	Fosc = 4 MHz			
		—	336	430	μA	3.0	EC Oscillator mode, Medium-Power mode			
D014			210	275	μA	1.8	Fosc = 4 MHz			
			356	450	μΑ	3.0	EC Oscillator mode Medium-Power mode			
		_	430	650	μA	5.0				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

- **3:** 8 MHz internal RC oscillator with 4xPLL enabled.
- **4:** 8 MHz crystal oscillator with 4xPLL enabled.

5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

TABLE 30-25: A/D CONVERTER (ADC) CHARACTERISTICS FOR PIC16F1825/9-H (High Temp.)

			Standard Operating Conditions: (unless otherwise stated) Operating Temperature: $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
AD04	Eoff	Offset Error	—	—	3.5		No missing codes VREF = 3.0V		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

- 2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
- 3: ADC VREF is from external VREF, VDD pin or FVR, whichever is selected as reference input.

TABLE 30-26: COMPARATOR SPECIFICATIONS FOR PIC16F1825/9-H (High Temp.)

PIC16F					Standard Operating Conditions: (unless otherwise stated) Operating Temperature: $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions				
CM01	VIOFF	Input Offset Voltage	—	—	±70	mV	High-Power mode, VICM = VDD/2				

TABLE 30-27: CAP SENSE OSCILLATOR SPECIFICATIONS FOR PIC16F1825/9-H (High Temp.)

			Standard Operating Conditions: (unless otherwise stated) Operating Temperature: $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions	
All	All	All			—		This module is not intended for use in high temperature devices.	

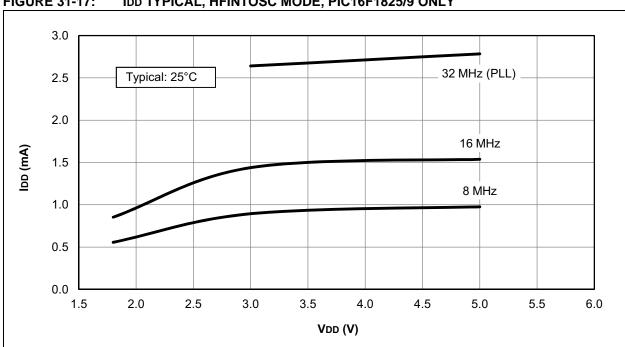
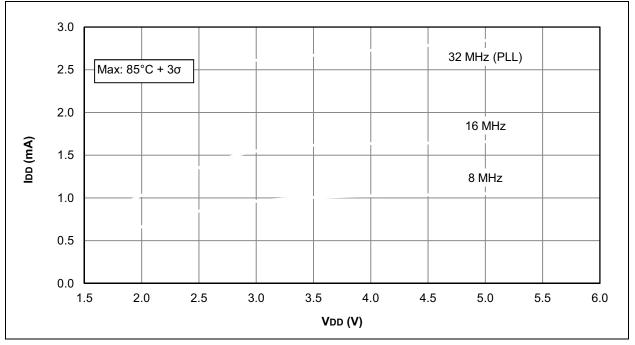



FIGURE 31-17: IDD TYPICAL, HFINTOSC MODE, PIC16F1825/9 ONLY

32.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

32.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

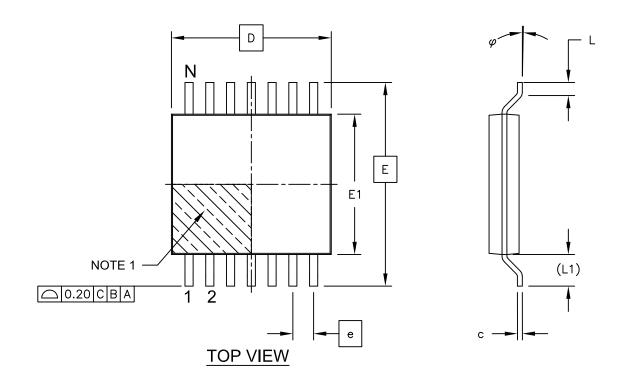
The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

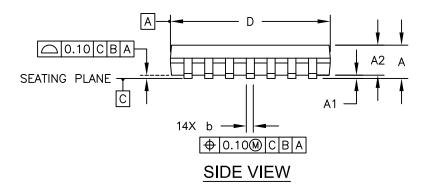
32.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

32.9 PICkit 3 In-Circuit Debugger/ Programmer


The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).


32.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087C Sheet 1 of 2