

Welcome to E-XFL.COM

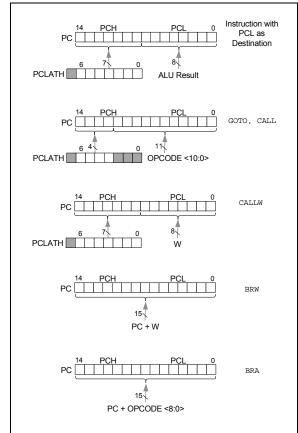
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1829t-i-ss


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-3 shows the five situations for the loading of the PC.

FIGURE 3-3: LOADING OF PC IN DIFFERENT SITUATIONS

3.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

3.3.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note AN556, *"Implementing a Table Read"* (DS00556).

3.3.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

3.3.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction.

EXAM	PLE 11-4:	ERASING ON	E ROW OF PROGRAM MEMORY
; This	row erase	routine assumes	the following:
; 1. A	valid addr	ess within the	erase block is loaded in ADDRH:ADDRL
; 2. A	DDRH and AD	DRL are located	l in shared data memory 0x70 - 0x7F
	BCF BANKSEL MOVF MOVWF MOVF BSF BCF	EECON1,CFGS	
	BSF		; Specify an erase operation
	BSF	EECON1,WREN	; Enable writes
Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP	55h EECON2 0AAh EECON2 EECON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; Any instructions here are ignored as processor</pre>
	NOP		; halts to begin erase sequence ; Processor will stop here and wait for erase complete.
	BCF BSF	EECON1, WREN INTCON, GIE	 ; after erase processor continues with 3rd instruction ; Disable writes ; Enable interrupts
			-

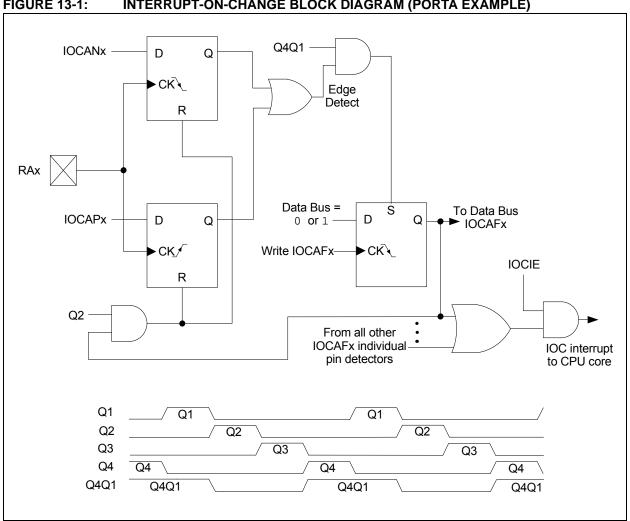
U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	SDO2SEL ⁽¹⁾	SS2SEL ⁽¹⁾	P1DSEL	P1CSEL	P2BSEL	CCP2SEL
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is ur	nchanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is s	et	'0' = Bit is clea	ared				
bit 7-6	-	ented: Read as '					
bit 5		Pin Selection bit					
		function is on R					
		function is on R/					
bit 4		in Selection bit ⁽¹⁾ unction is on RC0					
		unction is on RCC					
bit 3		in Selection bit					
	-	unction is on RC2	2				
	1 = P1D fu	unction is on RC0)				
bit 2	P1CSEL: P	in Selection bit					
		unction is on RC3					
		unction is on RC ²					
bit 1	-	in Selection bit					
		unction is on RC2 unction is on RA4	-				
bit 0		Pin Selection bit					
		P2A function is o	on RC3				
		/P2A function is a					
Noto 1.		only					
Note 1:	PIC16(L)F1829 (oniy.					

REGISTER 12-2: APFCON1: ALTERNATE PIN FUNCTION CONTROL REGISTER 1

12.3.2 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the lowest number in the following lists.


Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in the priority list.

Pin Name	Function Priority ⁽¹⁾
RB4	SDA
RB5	SDA2 RX ⁽²⁾ /DT ⁽²⁾
RB6	SCL/SCK
RB7	TX ⁽²⁾ /CK ⁽²⁾

TABLE 12-5: PORTB OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

2: Pin function is selectable via the APFCON0 or APFCON1 register.

FIGURE 13-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM (PORTA EXAMPLE)

Interrupt-on-Change Registers 13.6

REGISTER 13-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0

IOCAP<5:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

- 1 = Interrupt-on-change enabled on the pin for a positive going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.
- 0 = Interrupt-on-change disabled for the associated pin.

14.3 FVR Control Registers

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN	TSRNG	CDAF	/R<1:0>	ADFVI	R<1:0>
bit 7		·		·			bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on condit	ion	
bit 7	0 = Fixed Vo	d Voltage Refe Itage Referenc Itage Referenc	e is disabled	bit			
bit 6	0 = Fixed Vo	ed Voltage Ref Itage Referenc Itage Referenc	e output is no	t ready or not e	nabled		
bit 5	0 = Tempera	erature Indicato ture indicator is ture indicator is	s disabled				
bit 4	0 = VOUT = V	perature Indica ′DD - 2V⊤ (Low ′DD - 4V⊤ (High	Range)	election bit ⁽³⁾			
bit 3-2	00 = Compara 01 = Compara 10 = Compara	ator and DAC I ator and DAC I ator and DAC I	Fixed Voltage Fixed Voltage Fixed Voltage	Reference Per Reference Per Reference Per	ference Selectic ipheral output is ipheral output is ipheral output is ipheral output is	s off s 1x (1.024V) s 2x (2.048V) <mark>(2</mark>	
bit 1-0	00 = ADC Fix 01 = ADC Fix 10 = ADC Fix	ed Voltage Re ed Voltage Re ed Voltage Re	ference Perip ference Perip ference Perip	nce Selection theral output is the heral outpu	off 1x (1.024V) 2x (2.048V) (2)		
	RRDY is always ed Voltage Refe				/9).		

3: See Section 15.0 "Temperature Indicator Module" for additional information.

TABLE 14-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVF	R<1:0>	142

Legend: Shaded cells are unused by the Fixed Voltage Reference module.

19.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 registers (see Register 19-1) contain Control and Status bits for the following:

- Enable
- · Output selection
- Output polarity
- · Speed/Power selection
- · Hysteresis enable
- · Output synchronization

The CMxCON1 registers (see Register 19-2) contain Control bits for the following:

- · Interrupt enable
- · Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

19.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

19.2.2 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- · CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- · CxON bit of the CMxCON0 register must be set

Note 1:	The CxOE bit of the CMxCON0 register
	overrides the PORT data latch. Setting
	the CxON bit of the CMxCON0 register
	has no impact on the port override.

2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

19.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 19-1 shows the output state versus input conditions, including polarity control.

TABLE 19-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

19.2.4 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the Normal Speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

19.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See **Section 30.0 "Electrical Specifications"** for more information.

19.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 21.6 "Timer1 Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

19.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from either comparator, C1 or C2, can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 19-2) and the Timer1 Block Diagram (Figure 21-1) for more information.

19.5 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a Falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- CxON, CxPOL and CxSP bits of the CMxCON0 register
- CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

Note:	Although a comparator is disabled, an
	interrupt can be generated by changing
	the output polarity with the CxPOL bit of
	the CMxCON0 register, or by switching
	the comparator on or off with the CxON bit
	of the CMxCON0 register.

19.6 Comparator Positive Input Selection

Configuring the CxPCH<1:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- CxIN+ analog pin
- DAC_output
- FVR Buffer2
- Vss (Ground)

See **Section 14.0** "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 17.0 "Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

19.7 Comparator Negative Input Selection

The CxNCH<1:0> bits of the CMxCON0 register direct one of four analog pins to the comparator inverting input.

Note: To use CxIN+ and CxINx- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

19.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 30.0 "Electrical Specifications"** for more details.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CM1CON0	C10N	C1OUT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	171
CM1CON1	C1NTP	C1INTN	C1PCH1	C1PCH0	—	_	C1NCI	H<1:0>	172
CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2SP	C2HYS	C2SYNC	171
CM2CON1	C2NTP	C2INTN	C2PCI	H<1:0>	_		C2NCI	H<1:0>	172
CMOUT	_	_	_	_	—	_	MC2OUT	MC1OUT	172
DACCON0	DACEN	DACLPS	DACOE	_	DACPS	SS<1:0>	_	DACNSS	160
DACCON1	_	_	_		DACR<4:0>				160
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	142
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	124
INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	135
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	_	CCP2IE	89
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	—	_	CCP2IF	93
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	133
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	133
TRISA	—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	133

Legend: — Unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PIC16(L)F1829 only.

21.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

21.4 Timer1 Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the T1OSCEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to using Timer1. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

21.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 21.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	When switching from synchronous to
	asynchronous operation, it is possible to
	skip an increment. When switching from
	asynchronous to synchronous operation,
	it is possible to produce an additional
	increment.

21.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

21.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

21.6.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 21-3 for timing details.

TABLE 21-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
1	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

23.1 DSM Operation

The DSM module can be enabled by setting the MDEN bit in the MDCON register. Clearing the MDEN bit in the MDCON register, disables the DSM module by automatically switching the carrier high and carrier low signals to the Vss signal source. The modulator signal source is also switched to the MDBIT in the MDCON register. This not only assures that the DSM module is inactive, but that it is also consuming the least amount of current.

The values used to select the carrier high, carrier low, and modulator sources held by the Modulation Source, Modulation High Carrier, and Modulation Low Carrier control registers are not affected when the MDEN bit is cleared and the DSM module is disabled. The values inside these registers remain unchanged while the DSM is inactive. The sources for the carrier high, carrier low and modulator signals will once again be selected when the MDEN bit is set and the DSM module is again enabled and active.

The modulated output signal can be disabled without shutting down the DSM module. The DSM module will remain active and continue to mix signals, but the output value will not be sent to the MDOUT pin. During the time that the output is disabled, the MDOUT pin will remain low. The modulated output can be disabled by clearing the MDOE bit in the MDCON register.

23.2 Modulator Signal Sources

The modulator signal can be supplied from the following sources:

- CCP1 Signal
- CCP2 Signal
- CCP3 Signal
- CCP4 Signal
- MSSP1 SDO1 Signal (SPI Mode Only)
- MSSP2 SDO2 Signal (SPI Mode Only)
- Comparator C1 Signal
- Comparator C2 Signal
- EUSART TX Signal
- External Signal on MDMIN pin
- MDBIT bit in the MDCON register

The modulator signal is selected by configuring the MDMS <3:0> bits in the MDSRC register.

23.3 Carrier Signal Sources

The carrier high signal and carrier low signal can be supplied from the following sources:

- CCP1 Signal
- CCP2 Signal
- CCP3 Signal
- CCP4 Signal
- Reference Clock Module Signal
- External Signal on MDCIN1 pin
- External Signal on MDCIN2 pin
- Vss

The carrier high signal is selected by configuring the MDCH <3:0> bits in the MDCARH register. The carrier low signal is selected by configuring the MDCL <3:0> bits in the MDCARL register.

23.4 Carrier Synchronization

During the time when the DSM switches between carrier high and carrier low signal sources, the carrier data in the modulated output signal can become truncated. To prevent this, the carrier signal can be synchronized to the modulator signal. When synchronization is enabled, the carrier pulse that is being mixed at the time of the transition is allowed to transition low before the DSM switches over to the next carrier source.

Synchronization is enabled separately for the carrier high and carrier low signal sources. Synchronization for the carrier high signal can be enabled by setting the MDCHSYNC bit in the MDCARH register. Synchronization for the carrier low signal can be enabled by setting the MDCLSYNC bit in the MDCARL register.

Figure 23-1 through Figure 23-5 show timing diagrams of using various synchronization methods.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1
_	_	—	STRxSYNC	STRxD	STRxC	STRxB	STRxA
bit 7				•	•		bit C
Legend:							
R = Readat	ole bit	W = Writable bit		U = Unimpler	mented bit, read	d as '0'	
u = Bit is ur	nchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7-5	Unimplemer	nted: Read as	'0'				
bit 4	STRxSYNC:	STRxSYNC: Steering Sync bit					
	1 = Output steering update occurs on next PWM period						
	-	= Output steering update occurs at the beginning of the instruction cycle boundary					
bit 3		STRxD: Steering Enable bit D					
	•		vaveform with p	olarity control	from CCPxM<	1:0>	
	•	0 = PxD pin is assigned to port pin					
bit 2		STRxC: Steering Enable bit C					
	•		vaveform with p	olarity control	from CCPxM<	1:0>	
	•	is assigned to	•				
bit 1		ering Enable bi					
	1 = PxB pin has the PWM waveform with polarity control from CCPxM<1:0>						
	0 = PxB pin i	s assigned to p	port pin				
bit 0		ering Enable bi					
	1 = PxA pin ł	has the PWM v	vaveform with p	olarity control	from CCPxM<	1:0>	
	0 = PxA pin i	s assigned to p	port pin				
Note 1:	The PWM Steerin	ia mode is ava	ilable only wher	the CCPxCO	N register hits (CCPxM<3·2> =	11 and

REGISTER 24-5: PSTRxCON: PWM STEERING CONTROL REGISTER⁽¹⁾

Note 1: The PWM Steering mode is available only when the CCPxCON register bits CCPxM<3:2> = 11 and PxM<1:0> = 00.

REGISTER 25-5: SSPMSK: SSPx MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			MSK	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set '0' = Bit is cleared		ared					
bit 7-1	MSK -7.15.	Mack bite					
	 MSK<7:1>: Mask bits 1 = The received address bit n is compared to SSPxADD<n> to detect I²C address match</n> 0 = The received address bit n is not used to detect I²C address match 			atch			
bit 0	I ² C Slave me 1 = The rec 0 = The rec	ask bit for I ² C S ode, 10-bit addr eived address b eived address b	ess (SSPM<3 it 0 is compar it 0 is not use	3:0> = 0111 or ed to SSPxADI d to detect I ² C	D<0> to detect	l ² C address m	atch

I²C Slave mode, 7-bit address, the bit is ignored

'0' = Bit is cleared

REGISTER 25-6: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	pit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unchanged x = Bit is unknown			own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets

Master mode:

1' = Bit is set

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits SCLx pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode — Most Significant Address byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode — Least Significant Address byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register op 13 8 7 6	erations 0
OPCODE d	f (FILE #)
d = 0 for destination W d = 1 for destination f f = 7-bit file register addre	
Bit-oriented file register oper	rations 7 6 0
OPCODE b (BIT	
b = 3-bit bit address f = 7-bit file register addre	ess
Literal and control operation	s
General	
13 8 7	
OPCODE	k (literal)
k = 8-bit immediate value	
CALL and GOTO instructions on	ly
13 11 10	0
OPCODE	k (literal)
k = 11-bit immediate value	
13 7 OPCODE	6 0 k (literal)
	k (literal)
k = 7-bit immediate value MOVLB instruction only	
13	5 4 0
OPCODE	k (literal)
k = 5-bit immediate value	
BRA instruction only 13 9 8	0
OPCODE	k (literal)
k = 9-bit immediate value	()
FSR Offset instructions	
13 7 6	
OPCODE n	k (literal)
n = appropriate FSR k = 6-bit immediate value	2
FSR Increment instructions 13	3 2 1 0
OPCODE	n m (mode)
n = appropriate FSR m = 2-bit mode value	
OPCODE only 13	0
OPCODI	
L	

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC<10:0>, \\ (PCLATH<6:3>) \rightarrow PC<14:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow \underline{WDT} \text{ prescaler,} \\ 1 \rightarrow \underline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits $\overline{\text{TO}}$ and $\overline{\text{PD}}$ are set.

CALLW	Subroutine Call With W
Syntax:	[label] CALLW
Operands:	None
Operation:	$(PC) +1 \rightarrow TOS,$ $(W) \rightarrow PC<7:0>,$ $(PCLATH<6:0>) \rightarrow PC<14:8>$
Status Affected:	None
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a two-cycle instruction.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f				
Syntax:	[label] CLRF f				
Operands:	$0 \leq f \leq 127$				
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Description:	The contents of register 'f' are cleared and the Z bit is set.				

CLRW	Clear W			
Syntax:	[label] CLRW			
Operands:	None			
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ \text{l} \rightarrow \text{Z} \end{array}$			
Status Affected:	Z			
Description:	W register is cleared. Zero bit (Z) is set.			

DECF	Decrement f			
Syntax:	[label] DECF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) - 1 \rightarrow (destination)			
Status Affected:	Z			
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

RRF	Rotate Right f through Carry					
Syntax:	[<i>label</i>] RRF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	See description below					
Status Affected:	С					
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

SUBLW	Subtract W from literal					
Syntax:	[label] Sl	[<i>label</i>] SUBLW k				
Operands:	$0 \leq k \leq 255$	$0 \le k \le 255$				
Operation:	$k \operatorname{-}(W) \operatorname{\rightarrow}(W$	$k - (W) \to (W)$				
Status Affected:	C, DC, Z	C, DC, Z				
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.					
	C = 0	W > k				
	C = 1	$W \leq k$				
	DC = 0	W<3:0> > k<3:0>				

DC = 1

 $W<3:0> \le k<3:0>$

SLEEP	Enter Sleep mode			
Syntax:	[label] SLEEP			
Operands:	None			
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT,} \\ 0 \rightarrow \underline{\text{WDT}} \text{ prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$			
Status Affected:	TO, PD			
Description:	The power-down Status bit, \overline{PD} is cleared. Time-out Status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.			

SUBWF	Subtract W from f				
Syntax:	[label] SU	IBWF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(f) - (W) \rightarrow (d	estination)			
Status Affected:	C, DC, Z				
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.				
	C = 0	W > f			
	C = 1	$W \leq f$			
	DC = 0	W<3:0> > f<3:0>			
	DC = 1 $W<3:0> \le f<3:0>$				

SUBWFB	Subtract W from f with Borrow				
Syntax:	SUBWFB f {,d}				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$				
Status Affected:	C, DC, Z				
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.				

30.2 DC Characteristics: PIC16(L)F1825/9-I/E (Industrial, Extended) (Continued)

PIC16LF1825/9							
PIC16F1825/9		Operating temperature -40		tions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended			
Param	Device	Min.	Тур†	Max.	Units	Units	
No.	Characteristics					VDD	Note
Supply Current (IDD) ^(1, 2)							
D015		_	6.5	18	μA	1.8	Fosc = 31 kHz
		—	9.0	20	μA	3.0	LFINTOSC mode
D015			20	60	μA	1.8	Fosc = 31 kHz
			25	65	μA	3.0	LFINTOSC mode
		—	27	70	μA	5.0	
D016		_	110	170	μA	1.8	Fosc = 500 kHz
		—	130	200	μA	3.0	MFINTOSC mode
D016		—	125	180	μA	1.8	Fosc = 500 kHz
			155	250	μA	3.0	MFINTOSC mode
		—	160	280	μA	5.0	
D017*		—	0.6	0.85	mA	1.8	Fosc = 8 MHz
		—	0.9	1.25	mA	3.0	HFINTOSC mode
D017*			0.6	0.85	mA	1.8	Fosc = 8 MHz
		—	0.96	1.35	mA	3.0	HFINTOSC mode
		—	1.03	1.55	mA	5.0	
D018		—	0.9	1.2	mA	1.8	Fosc = 16 MHz
		—	1.4	1.95	mA	3.0	HFINTOSC mode
D018		—	0.92	1.2	mA	1.8	Fosc = 16 MHz
		_	1.49	1.9	mA	3.0	HFINTOSC mode
		—	1.58	2.4	mA	5.0	
D019		—	2.8	3.6	mA	3.0	Fosc = 32 MHz
		—	3.4	3.9	mA	3.6	HFINTOSC mode (Note 3)
D019		_	2.8	4.0	mA	3.0	Fosc = 32 MHz
		—	3.0	4.5	mA	5.0	HFINTOSC mode (Note 3)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: 8 MHz internal RC oscillator with 4xPLL enabled.

4: 8 MHz crystal oscillator with 4xPLL enabled.

5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ..

32.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

32.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

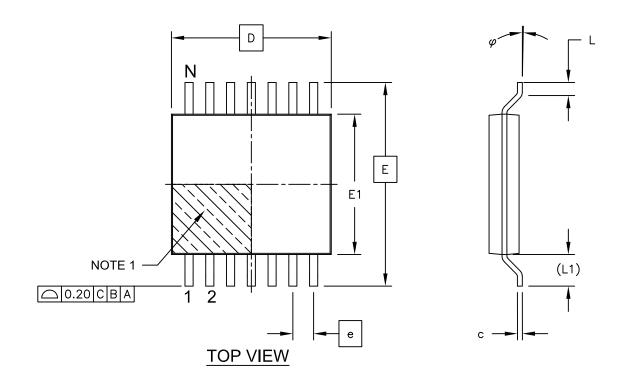
32.4 MPLINK Object Linker/ MPLIB Object Librarian

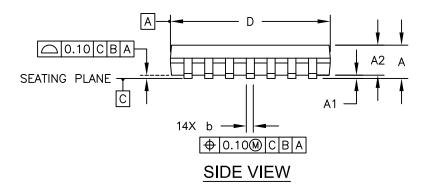
The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction


32.5 MPLAB Assembler, Linker and Librarian for Various Device Families


MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087C Sheet 1 of 2

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (08/2010)

Original release.

Revision B (05/2011)

Revised Electrical Specifications.

Revision C (06/2012)

Updated the Family Types table; Updated Figures 1, 2 and 3; Updated Table 3-3; Changed all instances of SDO into SDO1, SDOSEL into SDO1SEL and SSSEL into SS1SEL; Added PIR3, PIR4, PIE3 and PIE4 to Table 3-3; Updated Register 4-2; Updated Sections 5.2.2.5 and 5.5.3; Added Note 1 to Table 11-3; Updated Figure 13-1 and Equation 16-1; Updated Section 19.9; Added charts to the DC and AC Characteristics Graphs section; Revised the Electrical Specifications section; Updated the Packaging Information section; Updated the Product Identification System section; Other minor corrections.

Revision D (05/2014)

Added new UQFN packages: 16-Lead, UQFN, 4x4x0.5, (JQ) and 20-Lead, UQFN, 4x4x0.5, (GZ) packages. Minor corrections.

Revision E (4/2015)

Added Section 30.9: High Temperature Operation in the Electrical Specifications section.

APPENDIX B: MIGRATING FROM OTHER PIC[®] DEVICES

This shows a comparison of features in the migration from the PIC16F648 device to the PIC16(L)F1825/9 family of devices.

This section provides comparisons when migrating from other similar PIC^{\circledast} devices to the PIC16(L)F1825/9 family of devices.

B.1 PIC16F648A to PIC16F1825/9

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F648A	PIC16F1825/9	
Max. Operating Speed	20 MHz	32 MHz	
Max. Program Memory (Words)	4K	8K	
Max. SRAM (Bytes)	256	1024	
Max. EEPROM (Bytes)	256	256	
A/D Resolution	10-bit	10-bit	
Timers (8/16-bit)	2/1	4/1	
Brown-out Reset	Y	Y	
Internal Pull-ups	RB<7:0>	PIC16F1825: RA<5:0>, RC<5:0> PIC16F1829: RA<5:0>, RB<7:4>, RC<7:0>	
Interrupt-on-change	RB<7:4>	PIC16F1825: RA<5:0>, Edge Selectable PIC16F1829: RA<5:0>, RB<7:4>, Edge Selectable	
Comparator	2	2	
AUSART/EUSART	1/0	0/1	
Extended WDT	N	Y	
Software Control Option of WDT/BOR	N	Y	
INTOSC Frequencies	48 kHz or 4 MHz	31 kHz - 32 MHz	
Clock Switching	Y	Y	
Capacitive Sensing	N	Y	
CCP/ECCP	2/0	2/2	
Enhanced PIC16 CPU	N	Y	
MSSPx/SSPx	0	2/0	
Reference Clock	N	Y	
Data Signal Modulator	N	Y	
SR Latch	N	Y	
Voltage Reference	N	Y	
DAC	Y	Y	