



#### Welcome to <u>E-XFL.COM</u>

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 32MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                      |
| Number of I/O              | 11                                                                         |
| Program Memory Size        | 14KB (8K x 14)                                                             |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 256 x 8                                                                    |
| RAM Size                   | 1K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                |
| Data Converters            | A/D 8x10b                                                                  |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 16-UQFN Exposed Pad                                                        |
| Supplier Device Package    | 16-UQFN (4x4)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1825-e-jq |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### **TABLE 1-2:** PIC16(L)F1825 PINOUT DESCRIPTION (CONTINUED)

| Name                                                                | Function | Input<br>Type    | Output<br>Type | Description                           |
|---------------------------------------------------------------------|----------|------------------|----------------|---------------------------------------|
| RA4/AN3/CPS3/OSC2/                                                  | RA4      | TTL              | CMOS           | General purpose I/O.                  |
|                                                                     | AN3      | AN               |                | A/D Channel 3 input.                  |
| SDO107P2B07T1G07                                                    | CPS3     | AN               |                | Capacitive sensing input 3.           |
|                                                                     | OSC2     | _                | CMOS           | Comparator C2 output.                 |
|                                                                     | CLKOUT   | _                | CMOS           | Fosc/4 output.                        |
|                                                                     | T10S0    | XTAL             | XTAL           | Timer1 oscillator connection.         |
|                                                                     | CLKR     | _                | CMOS           | Clock Reference output.               |
|                                                                     | SDO1     | _                | CMOS           | SPI data output.                      |
|                                                                     | P2B      |                  | CMOS           | PWM output.                           |
|                                                                     | T1G      | ST               |                | Timer1 Gate input.                    |
| RA5/CLKIN/OSC1/T1OSI/                                               | RA5      | TTL              | CMOS           | General purpose I/O.                  |
| T1CKI/P2A <sup>(1)</sup> /CCP2 <sup>(1)</sup>                       | CLKIN    | CMOS             |                | External clock input (EC mode).       |
|                                                                     | OSC1     | XTAL             |                | Crystal/Resonator (LP, XT, HS modes). |
|                                                                     | T10SI    | XTAL             | XTAL           | Timer1 oscillator connection.         |
|                                                                     | T1CKI    | ST               |                | Timer1 clock input.                   |
|                                                                     | P2A      | _                | CMOS           | PWM output.                           |
|                                                                     | CCP2     | ST               | CMOS           | Capture/Compare/PWM2.                 |
| RC0/AN4/CPS4/C2IN+/SCL/                                             | RC0      | TTL              | CMOS           | General purpose I/O.                  |
| SCK/P1D <sup>(1)</sup>                                              | AN4      | AN               |                | A/D Channel 4 input.                  |
|                                                                     | CPS4     | AN               |                | Capacitive sensing input 4.           |
|                                                                     | C2IN+    | AN               |                | Comparator C2 positive input.         |
|                                                                     | SCL      | l <sup>2</sup> C | OD             | I <sup>2</sup> C™ clock.              |
|                                                                     | SCK      | ST               | CMOS           | SPI clock.                            |
|                                                                     | P1D      |                  | CMOS           | PWM output.                           |
| RC1/AN5/CPS5/C12IN1-/SDA/                                           | RC1      | TTL              | CMOS           | General purpose I/O.                  |
| SDI/P1C <sup>(1)</sup> /CCP4                                        | AN5      | AN               |                | A/D Channel 5 input.                  |
|                                                                     | CPS5     | AN               |                | Capacitive sensing input 5.           |
|                                                                     | C12IN1-  | AN               |                | Comparator C1 or C2 negative input.   |
|                                                                     | SDA      | l <sup>2</sup> C | OD             | I <sup>2</sup> C data input/output.   |
|                                                                     | SDI      | CMOS             |                | SPI data input.                       |
|                                                                     | P1C      | _                | CMOS           | PWM output.                           |
|                                                                     | CCP4     | AN               |                | Capture/Compare/PWM4.                 |
| RC2/AN6/CPS6/C12IN2-/                                               | RC2      | TTL              | CMOS           | General purpose I/O.                  |
| P1D <sup>(1,2)</sup> /P2B <sup>(1,2)</sup> /SDO1 <sup>(1,2)</sup> / | AN6      | AN               |                | A/D Channel 6 input.                  |
| MDCIN1                                                              | CPS6     | AN               | _              | Capacitive sensing input 6.           |
|                                                                     | C12IN2-  | AN               | _              | Comparator C1 or C2 negative input.   |
|                                                                     | P1D      | —                | CMOS           | PWM output.                           |
|                                                                     | P2B      | _                | CMOS           | PWM output.                           |
|                                                                     | SDO1     |                  | CMOS           | SPI data output.                      |
|                                                                     | MDCIN1   | ST               | _              | Modulator Carrier Input 1.            |

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels  $I^2C^{TM}$  = Schmitt Trigger input with  $I^2C$ 

levels

XTAL = Crystal

Note 1: Pin functions can be moved using the APFCON0 or APFCON1 register.

**2:** Default function location.

HV = High Voltage

| HPINTOSC/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GURE 5-7:               | INTERNAL OSCILLATOR SWITCH TIMING                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HEINTOSC/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HFINTOSC         John Soc         Remark           IRCF <3:0>         ≠0         =0           System Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 363830302               | LPINTOSC (PSCM and WOT distabled)                                                                                                                                                                                                                                                                                                                                                                                            |
| Minintosci       Creditory Dolg/31 (Storale Basic       Remitty         LFINTOSC       #0       =0         IRCF <3:0>       #0       =0         System Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LFINTOSC       #0       =0         System Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MENTOSC                 | Cardinator Onlay <sup>63</sup> Science Synce Running                                                                                                                                                                                                                                                                                                                                                                         |
| IRCF <3:0>       ≠0       =0         System Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LFINTOSC                |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| System Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IRCF <3:0>              | $\neq 0$ $= 0$                                                                                                                                                                                                                                                                                                                                                                                                               |
| PHYNYIOSCI LFINTOSC (EIBHAR PISCAI or WDY enabled)<br>HFINTOSC<br>LFINTOSC<br>LFINTOSC<br>IRCF <3:0> = 0 = 0<br>System Clock<br>UFINTOSC NETINTOSC/MEENTOSC<br>LFINTOSC NETINTOSC/MEENTOSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | System Clock            |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HFINTOSC/<br>NETIMICAL       24-yes       Presides         LFINTOSC       24-yes       Presides         IRCF <3:0>       # 0       = 0         System Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NENETOSO/               | LFINTOSC (ERDer POCM or WOT snabied)                                                                                                                                                                                                                                                                                                                                                                                         |
| NETRITION     2xyest kyst     Provint       LFINTOSC     ≠ 0     = 0       IRCF <3:0>     ≠ 0     = 0       System Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HFINTOSC/               |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LFINTOSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | terran rana.            | l <u>iji 2-ovota konta</u> liji <u>Posasino</u>                                                                                                                                                                                                                                                                                                                                                                              |
| IRCF <3:0> = 0 = 0<br>System Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LFINTOSC                |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| System Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IRCF <3:0>              | $\neq 0$ $\chi = 0$                                                                                                                                                                                                                                                                                                                                                                                                          |
| System Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LEBYTOSC NEINTOSC/REFINITOSC<br>LEVELOSC Lange off ontone WOY or PSCNA is enabled<br>LEVELOSC Lange off ontone WOY or PSCNA is enabled<br>Originator Geogr <sup>(11</sup> ) Crystic Sync (<br>Accessing)<br>MENOTOSC<br>(PCP < 3:62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | System Clock            |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LEINTOSC NEENTOSC/BEEENTOSC<br>LEINTOSC LEINTOSC/BEEENTOSC<br>LEINTOSC LEINTOSC/<br>MEENTOSC/<br>MEENTOSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CERVICUSC EXERCISSCONCENENCISC<br>LEVICUSC tures of unious WSY or FSOM is enabled<br>CRIMINOSC<br>HEVETOSC<br>System Clook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n ann na h-ann an an an |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LERRITOSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1922 I 1997           | PERMITERAL METAL AND COMPANY |
| Childran Gaoy <sup>(1)</sup> (2-syste Sanc.)<br>HIPENTOSC<br>HIPENTOSC<br>HIPENTOSC<br>System Cloope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LEBITOSC                |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| bifin(TOBC/<br>MFIN(TOBC)     Image: Control of the contro |                         | California California Computer Sona 🕴 🦷 🥵 🥵 🥵                                                                                                                                                                                                                                                                                                                                                                                |
| 9:CF <3:G> <u>2:C</u> <u>7:0</u><br>System Ci>>> []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MENTOSC/<br>MENTOSC     |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$2CE <3:0>             |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| aamaamaamaamaamaamaamaamaamaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System Crock            |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### 10.6 Watchdog Control Register

#### REGISTER 10-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

| U-0              | U-0                        | R/W-0/0                                                                                               | R/W-1/1                             | R/W-0/0          | R/W-1/1         | R/W-1/1         | R/W-0/0      |
|------------------|----------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------|------------------|-----------------|-----------------|--------------|
| _                |                            |                                                                                                       |                                     | WDTPS<4:0>       |                 |                 | SWDTEN       |
| bit 7            |                            |                                                                                                       |                                     |                  |                 |                 | bit 0        |
| L                |                            |                                                                                                       |                                     |                  |                 |                 | ,            |
| Legend:          |                            |                                                                                                       |                                     |                  |                 |                 |              |
| R = Readable     | bit                        | W = Writable                                                                                          | bit                                 | U = Unimpleme    | ented bit, read | 1 as '0'        |              |
| u = Bit is uncha | anged                      | x = Bit is unkr                                                                                       | iown                                | -m/n = Value at  | POR and BC      | )R/Value at all | other Resets |
| '1' = Bit is set |                            | '0' = Bit is clea                                                                                     | ared                                |                  |                 |                 |              |
|                  |                            |                                                                                                       |                                     |                  |                 |                 | ]            |
| bit 7-6          | Unimplemen                 | ted: Read as '                                                                                        | ר'                                  |                  |                 |                 |              |
| bit 5-1          | WDTPS-4.05                 | Watchdog Ti                                                                                           | mer Period Se                       | elect hits(1)    |                 |                 |              |
|                  | Rit Value = P              | Prescale Rate                                                                                         |                                     |                  |                 |                 |              |
|                  | 00000 = 1.3                | 2 (Interval 1 m                                                                                       | s nominal)                          |                  |                 |                 |              |
|                  | 00001 = 1:6                | 4 (Interval 2 m                                                                                       | s nominal)                          |                  |                 |                 |              |
|                  | 00010 = 1:1                | 28 (Interval 4 n                                                                                      | ns nominal)                         |                  |                 |                 |              |
|                  | 00011 = 1:2                | 56 (Interval 8 n                                                                                      | ns nominal)                         |                  |                 |                 |              |
|                  | 00100 = 1:5                | 12 (Interval 16                                                                                       | ms nominal)                         | ,                |                 |                 |              |
|                  | 00101 = 1:1                | 024 (Interval 3)                                                                                      | 2 ms nominal<br>4 ms nominal        | )                |                 |                 |              |
|                  | 00110 = 1.2<br>00111 = 1.4 | .046 (Interval 64                                                                                     | 4 1115 110111111111<br>28 ms nomina | )<br>al)         |                 |                 |              |
|                  | 01000 = 1:8                | 192 (Interval 2                                                                                       | 56 ms nomina                        | al)              |                 |                 |              |
|                  | 01001 = 1:1                | 6384 (Interval                                                                                        | 512 ms nomir                        | nal)             |                 |                 |              |
|                  | 01010 = 1:3                | 2768 (Interval                                                                                        | 1s nominal)                         |                  |                 |                 |              |
|                  | 01011 = 1:6                | 5536 (Interval                                                                                        | 2s nominal) (                       | Reset value)     |                 |                 |              |
|                  | 01100 = 1:1                | 31072 (2 <sup>17</sup> ) (In                                                                          | terval 4s nom                       | ninal)           |                 |                 |              |
|                  | 01101 = 1:2                | (62144 (2 <sup>18</sup> ) (Interval 8s nominal)                                                       |                                     |                  |                 |                 |              |
|                  | 01110 = 1:5                | v24288 (2 <sup>-</sup> °) (Interval 16s nominal)<br>1048576 (2 <sup>20</sup> ) (Interval 32s nominal) |                                     |                  |                 |                 |              |
|                  | 01111 = 111                | $(146576 (2^{-1}))$ (interval 525 fiorninal)<br>(197152 (2 <sup>21</sup> ) (interval 64s nominal)     |                                     |                  |                 |                 |              |
|                  | 10000 - 1.2<br>10001 = 1.4 | .194304 (2 <sup>22</sup> ) (1                                                                         | nterval 128s                        | nominal)         |                 |                 |              |
|                  | 10010 = 1.4                | 388608 (2 <sup>23</sup> ) (I                                                                          | nterval 256s                        | nominal)         |                 |                 |              |
|                  |                            | ( )(                                                                                                  |                                     | ,                |                 |                 |              |
|                  | 10011 = Re:                | served. Results                                                                                       | s in minimum                        | interval (1:32)  |                 |                 |              |
|                  | •                          |                                                                                                       |                                     |                  |                 |                 |              |
|                  | •                          |                                                                                                       |                                     |                  |                 |                 |              |
|                  | 11111 = Re:                | served. Results                                                                                       | s in minimum                        | interval (1:32)  |                 |                 |              |
| bit 0            | SWDTEN: So                 | oftware Enable/                                                                                       | Disable for W                       | atchdog Timer bi | t               |                 |              |
|                  | If WDTF<1:0>               | > = 0.0:                                                                                              |                                     | atomoog innoi o  | -               |                 |              |
|                  | This bit is igno           | ored.                                                                                                 |                                     |                  |                 |                 |              |
|                  | If WDTE<1:0>               | > = 01:                                                                                               |                                     |                  |                 |                 |              |
|                  | 1 = WDT is to              | urned on                                                                                              |                                     |                  |                 |                 |              |
|                  | 0 = WDT is to              | urned off                                                                                             |                                     |                  |                 |                 |              |
|                  | If WDTE<1:0>               | > <u>= 1x</u> :                                                                                       |                                     |                  |                 |                 |              |
|                  | I his bit is igno          | ored.                                                                                                 |                                     |                  |                 |                 |              |



#### 11.3.2 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the EEADRH:EEADRL register pair with the address of new row to be erased.
- 2. Clear the CFGS bit of the EECON1 register.
- 3. Set the EEPGD, FREE, and WREN bits of the EECON1 register.
- 4. Write 55h, then AAh, to EECON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the EECON1 register to begin the erase operation.
- 6. Poll the FREE bit in the EECON1 register to determine when the row erase has completed.

#### See Example 11-4.

After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.

### 11.3.3 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the starting address of the word(s) to be programmed.
- 2. Load the write latches with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 11-2 for more details. The write latches are aligned to the address boundary defined by EEADRL as shown in Table 11-1. Write operations do not cross these boundaries. At the completion of a program memory write operation, the write latches are reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a block of program memory. These steps are divided into two parts. First, all write latches are loaded with data except for the last program memory location. Then, the last write latch is loaded and the programming sequence is initiated. A special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. This unlock sequence should not be interrupted.

- 1. Set the EEPGD and WREN bits of the EECON1 register.
- 2. Clear the CFGS bit of the EECON1 register.
- Set the LWLO bit of the EECON1 register. When the LWLO bit of the EECON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the EEADRH:EEADRL register pair with the address of the location to be written.
- 5. Load the EEDATH:EEDATL register pair with the program memory data to be written.
- Write 55h, then AAh, to EECON2, then set the WR bit of the EECON1 register (Flash programming unlock sequence). The write latch is now loaded.
- 7. Increment the EEADRH:EEADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the EECON1 register. When the LWLO bit of the EECON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the EEDATH:EEDATL register pair with the program memory data to be written.
- 11. Write 55h, then AAh, to EECON2, then set the WR bit of the EECON1 register (Flash programming unlock sequence). The entire latch block is now written to Flash program memory.

It is not necessary to load the entire write latch block with user program data. However, the entire write latch block will be written to program memory.

An example of the complete write sequence for eight words is shown in Example 11-5. The initial address is loaded into the EEADRH:EEADRL register pair; the eight words of data are loaded using indirect addressing.

### 12.0 I/O PORTS

Depending on the device selected and peripherals enabled, there are up to two ports available. In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output. However, the pin can still be read.

Each port has three standard registers for its operation. These registers are:

- TRISx registers (data direction)
- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)

Some ports may have one or more of the following additional registers. These registers are:

- ANSELx (analog select)
- WPUx (weak pull-up)
- INLVLx (input level control)

TABLE 12-1:PORT AVAILABILITY PER<br/>DEVICE

| Device        | PORTA | РОКТВ | PORTC |
|---------------|-------|-------|-------|
| PIC16(L)F1825 | •     |       | ٠     |
| PIC16(L)F1829 | •     | ٠     | ٠     |

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled. Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 12-1.

#### FIGURE 12-1: GENERIC I/O PORT OPERATION



#### EXAMPLE 12-1: INITIALIZING PORTA

; This code example illustrates ; initializing the PORTA register. The ; other ports are initialized in the same ; manner. BANKSEL PORTA CLRF PORTA ;Init PORTA BANKSEL LATA ;Data Latch CLRF τ.απα ; BANKSEL ANSELA ; ;digital I/O CLRF ANSELA BANKSEL TRISA ; MOVLW B'00111000' ;Set RA<5:3> as inputs MOVWF ;and set RA<2:0> as TRISA ;outputs

#### 16.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
  - Disable pin output driver (Refer to the TRIS register)
  - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
  - Select ADC conversion clock
  - Configure voltage reference
  - Select ADC input channel
  - Turn on ADC module
- 3. Configure ADC interrupt (optional):
  - Clear ADC interrupt flag
  - Enable ADC interrupt
  - Enable peripheral interrupt
  - Enable global interrupt<sup>(1)</sup>
- 4. Wait the required acquisition time<sup>(2)</sup>.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
  - Polling the GO/DONE bit
  - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

**Note 1:** The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 16.3 "A/D Acquisition Requirements".

#### EXAMPLE 16-1: A/D CONVERSION

;This code block configures the ADC
;for polling, Vdd and Vss references, Frc
;clock and ANO input.
;

;Conversion start & polling for completion ; are included.

| ;       |              |                      |
|---------|--------------|----------------------|
| BANKSEL | ADCON1       | ;                    |
| MOVLW   | B'11110000'  | ;Right justify, Frc  |
|         |              | ;clock               |
| MOVWF   | ADCON1       | ;Vdd and Vss Vref    |
| BANKSEL | TRISA        | ;                    |
| BSF     | TRISA,0      | ;Set RA0 to input    |
| BANKSEL | ANSEL        | ;                    |
| BSF     | ANSEL,0      | ;Set RAO to analog   |
| BANKSEL | ADCON0       | i                    |
| MOVLW   | B'0000001'   | ;Select channel ANO  |
| MOVWF   | ADCON0       | ;Turn ADC On         |
| CALL    | SampleTime   | ;Acquisiton delay    |
| BSF     | ADCON0, ADGO | ;Start conversion    |
| BTFSC   | ADCON0, ADGO | ;Is conversion done? |
| GOTO    | \$-1         | ;No, test again      |
| BANKSEL | ADRESH       | ;                    |
| MOVF    | ADRESH,W     | ;Read upper 2 bits   |
| MOVWF   | RESULTHI     | ;store in GPR space  |
| BANKSEL | ADRESL       | ;                    |
| MOVF    | ADRESL,W     | ;Read lower 8 bits   |
| MOVWF   | RESULTLO     | ;Store in GPR space  |
|         |              |                      |



| R/W-0/0          | R/W-0/0                                             | R/W-0/0                                                 | R/W-0/0                                                       | R/W-0/0                                   | R/W-0/0                  | R/W-0/0               | R/W-0/0      |
|------------------|-----------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|--------------------------|-----------------------|--------------|
| SRSPE            | SRSCKE                                              | SRSC2E <sup>(1)</sup>                                   | SRSC1E                                                        | SRRPE                                     | SRRCKE                   | SRRC2E <sup>(1)</sup> | SRRC1E       |
| bit 7            | ·                                                   |                                                         |                                                               | -                                         | •                        |                       | bit 0        |
|                  |                                                     |                                                         |                                                               |                                           |                          |                       |              |
| Legend:          |                                                     |                                                         |                                                               |                                           |                          |                       |              |
| R = Readable     | bit                                                 | W = Writable                                            | bit                                                           | U = Unimpler                              | nented bit, read         | d as '0'              |              |
| u = Bit is unch  | anged                                               | x = Bit is unkr                                         | iown                                                          | -n/n = Value a                            | at POR and BC            | R/Value at all o      | other Resets |
| '1' = Bit is set |                                                     | '0' = Bit is clea                                       | ared                                                          |                                           |                          |                       |              |
| bit 7            | <b>SRSPE:</b> SR  <br>1 = SR latch<br>0 = SRI pin h | Latch Periphera<br>is set when the<br>nas no effect or  | al Set Enable I<br>SRI pin is hig<br>the set input            | bit<br>gh<br>of the SR latch              |                          |                       |              |
| bit 6            | <b>SRSCKE:</b> SF<br>1 = Set input<br>0 = SRCLK I   | R Latch Set Clo<br>t of SR latch is<br>has no effect or | ck Enable bit<br>pulsed with SF<br>the set input              | RCLK<br>of the SR latch                   | I                        |                       |              |
| bit 5            | SRSC2E: SR<br>1 = SR latch<br>0 = C2 Com            | R Latch C2 Set I<br>is set when the<br>parator output h | Enable bit <sup>(1)</sup><br>e C2 Compara<br>las no effect o  | tor output is hig<br>on the set input     | gh<br>of the SR latch    | I                     |              |
| bit 4            | <b>SRSC1E:</b> SR<br>1 = SR latch<br>0 = C1 Com     | R Latch C1 Set I<br>is set when the<br>parator output h | Enable bit<br>e C1 Compara<br>las no effect o                 | tor output is high<br>on the set input    | gh<br>of the SR latch    | I                     |              |
| bit 3            | <b>SRRPE:</b> SR<br>1 = SR latch<br>0 = SRI pin h   | Latch Periphera<br>is reset when t<br>nas no effect or  | al Reset Enabl<br>he SRI pin is l<br>i the Reset inp          | le bit<br>high<br>out of the SR la        | tch                      |                       |              |
| bit 2            | <b>SRRCKE:</b> SF<br>1 = Reset inj<br>0 = SRCLK i   | R Latch Reset (<br>put of SR latch<br>has no effect or  | Clock Enable t<br>is pulsed with<br>i the Reset inp           | oit<br>SRCLK<br>out of the SR la          | tch                      |                       |              |
| bit 1            | SRRC2E: SF<br>1 = SR latch<br>0 = C2 Com            | R Latch C2 Res<br>is reset when t<br>parator output h   | et Enable bit <sup>(1</sup><br>he C2 Compa<br>has no effect o | )<br>Irator output is<br>on the Reset inp | high<br>out of the SR la | tch                   |              |
| bit 0            | <b>SRRC1E:</b> SF<br>1 = SR latch<br>0 = C1 Com     | R Latch C1 Res<br>is reset when t<br>parator output h   | et Enable bit<br>he C1 Compa<br>has no effect o               | rator output is<br>on the Reset inp       | high<br>out of the SR la | tch                   |              |
|                  | 16(L)E1820 or                                       | alv                                                     |                                                               |                                           |                          |                       |              |

#### REGISTER 18-2: SRCON1: SR LATCH CONTROL 1 REGISTER

**Note 1:** PIC16(L)F1829 only.

#### 20.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A software programmable prescaler is available for exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION\_REG register.

| Note: | The Watchdog Timer (WDT) uses its own |
|-------|---------------------------------------|
|       | independent prescaler.                |

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION\_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION\_REG register.

The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler.

#### 20.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

| Note: | The Timer0 interrupt cannot wake the    |
|-------|-----------------------------------------|
|       | processor from Sleep since the timer is |
|       | frozen during Sleep.                    |

#### 20.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in **Section 30.0 "Electrical Specifications"**.

#### 20.1.6 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.

#### 21.6.2 TIMER1 GATE SOURCE SELECTION

The Timer1 gate source can be selected from one of four different sources. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

TABLE 21-4: TIMER1 GATE SOURCES

| T1GSS | Timer1 Gate Source                                                        |
|-------|---------------------------------------------------------------------------|
| 00    | Timer1 Gate Pin                                                           |
| 01    | Overflow of Timer0<br>(TMR0 increments from FFh to 00h)                   |
| 10    | Comparator 1 Output sync_C1OUT<br>(optionally Timer1 synchronized output) |
| 11    | Comparator 2 Output sync_C2OUT<br>(optionally Timer1 synchronized output) |

#### 21.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

#### 21.6.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 gate circuitry.

#### 21.6.2.3 Comparator C1 Gate Operation

The output resulting from a Comparator 1 operation can be selected as a source for Timer1 gate control. The Comparator 1 output (sync\_C1OUT) can be synchronized to the Timer1 clock or left asynchronous. For more information see **Section 19.4.1 "Comparator Output Synchronization**".

#### 21.6.2.4 Comparator C2 Gate Operation

The output resulting from a Comparator 2 operation can be selected as a source for Timer1 Gate Control. The Comparator 2 output (sync\_C2OUT) can be synchronized to the Timer1 clock or left asynchronous. For more information see **Section 19.4.1 "Comparator Output Synchronization"**.

#### 21.6.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 21-4 for timing details.

Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

| Note: | Enabling Toggle mode at the same time       |
|-------|---------------------------------------------|
|       | as changing the gate polarity may result in |
|       | indeterminate operation.                    |

#### 21.6.4 TIMER1 GATE SINGLE-PULSE MODE

When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single-Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/DONE bit is once again set in software. See Figure 21-5 for timing details.

If the Single Pulse Gate mode is disabled by clearing the T1GSPM bit in the T1GCON register, the T1GGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1 Gate source to be measured. See Figure 21-6 for timing details.

#### 21.6.5 TIMER1 GATE VALUE STATUS

When Timer1 gate value status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

#### 21.6.6 TIMER1 GATE EVENT INTERRUPT

When Timer1 gate event interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared).



#### 25.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCKx line. The master determines when the slave (Processor 2, Figure 25-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDOx output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDIx pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 25-6, Figure 25-8, Figure 25-9 and Figure 25-10, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 \* Tcy)
- Fosc/64 (or 16 \* Tcy)
- · Timer2 output/2
- Fosc/(4 \* (SSPxADD + 1))

Figure 25-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDOx data is valid before there is a clock edge on SCKx. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

FIGURE 25-6: SPI MODE WAVEFORM (MASTER MODE)



|              | SDI MODE WAVEEODM   |                           |   |
|--------------|---------------------|---------------------------|---|
| FIGURE 23-9. | SFI WODE WAVEFORING | (SLAVE WODE WITH CRE = 0) | 1 |

|                               | 1<br>1<br>1<br>1<br>1                 |                                         |                                                 |                                       |                   |                                         |                                       |                       |                                       |             |                       |
|-------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------|---------------------------------------|-------------------|-----------------------------------------|---------------------------------------|-----------------------|---------------------------------------|-------------|-----------------------|
|                               |                                       |                                         |                                                 |                                       |                   |                                         |                                       |                       |                                       |             |                       |
| - Č≪E, ≈ 03                   | :                                     | ; •••••••<br>• :<br>•                   | ;                                               | (                                     | ; <i>********</i> | ; ·····;<br>; ·                         | ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | , /<br>,<br>,         |                                       | :<br>:<br>: | (<br>(<br>(           |
| 80%)<br>(CXP1# 5<br>(CXE1# 5) |                                       |                                         | 4                                               |                                       |                   |                                         |                                       | ,                     |                                       |             | 5<br>5<br>5<br>5<br>5 |
| 90000 00<br>SBRX814F<br>VisBM | ,<br>,<br>,<br>,                      | ·<br>·                                  | :<br>; · · · ·<br>; · · · · · · · · · · · · · · | (                                     | •                 | <pre>&lt;</pre>                         | c                                     | •<br>•<br>•<br>•<br>• | , , , , , , , , , , , , , , , , , , , |             | 5<br>5<br>5<br>5      |
| - 8920x                       |                                       | X 68.7                                  |                                                 | X 68 8 [                              | N 58 4            |                                         | Xazz                                  | X 68 -                | X                                     |             | 485<br>197            |
| - SERS                        | · · · · · · · · · · · · · · · · · · · |                                         |                                                 |                                       |                   |                                         |                                       | ;<br>                 |                                       |             | 7<br>3<br>7<br>7      |
| input<br>Sampia               |                                       | 4                                       | , 4<br>, 4                                      |                                       |                   | : · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | :<br>                 |                                       |             |                       |
| SASSENSEE<br>Enternasia       | ۰<br>۰<br>۰<br>۶                      | ( ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | · · · · · · · · · · · · · · · · · · ·           | · · · · · · · · · · · · · · · · · · · | ·<br>·<br>·       | ζ                                       | ,<br>2 ;<br>2 ;<br>2 ;<br>2 ;<br>2 ;  | ,<br>,<br>,           | · · · · · · · · · · · · · · · · · · · |             |                       |
| ***9<br>SSR2SR &:<br>SSR2SR : | : ;<br>; ;<br>; ;                     | · · · · · · · · · · · · · · · · · · ·   | ; · · · · · · · · · · · · · · · · · · ·         | :                                     |                   | s · · · · · · · · · · · · · · · · · · · | s -<br>s -<br>s -                     | :<br>;<br>;<br>;      | · :<br>· :<br>· :                     | ġ.          |                       |
| Write Collinear               |                                       |                                         |                                                 |                                       |                   |                                         |                                       |                       |                                       |             |                       |
| deteción activo               |                                       |                                         |                                                 |                                       |                   |                                         |                                       |                       |                                       |             |                       |

#### FIGURE 25-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

| SSx<br>SCKx<br>(CKP = 0<br>CKE = 1)<br>SCKx<br>(CKP = 1<br>CKE = 1)<br>Write to |             |                                     |             |                          |             |
|---------------------------------------------------------------------------------|-------------|-------------------------------------|-------------|--------------------------|-------------|
| SSPxBUF                                                                         |             | 1 1 1<br>1 1 1<br>1 1 1<br>111      |             |                          |             |
| SDOX                                                                            | bit 7 bit 6 | bit 5 bit 4                         | bit 3 bit 2 | bit 1 bit 0              |             |
| SDIx                                                                            | bit 7       |                                     | $\sim$      | bit 0                    |             |
| Input<br>Sample                                                                 | <u> </u>    | <u>↑</u> ↑                          | <u>†</u> †  | <u>†</u> †               | ·<br>·<br>· |
| SSPxIF<br>Interrupt<br>Flag                                                     |             |                                     |             |                          |             |
| SSPxSR to<br>SSPxBUF                                                            |             | 1 1 1<br>1 1 1<br>1 1<br>1 1<br>1 1 |             | 1 I<br>1 I<br>1 I<br>1 I | -           |
| Write Collisies                                                                 |             |                                     | •           |                          | •           |

| Name                  | Bit 7                  | Bit 6                  | Bit 5                  | Bit 4         | Bit 3                  | Bit 2                  | Bit 1   | Bit 0   | Reset<br>Values on<br>Page |
|-----------------------|------------------------|------------------------|------------------------|---------------|------------------------|------------------------|---------|---------|----------------------------|
| INLVLA                | —                      | —                      | INLVLA5 <sup>(1)</sup> | INLVLA4       | INLVLA3 <sup>(2)</sup> | INLVLA2                | INLVLA1 | INLVLA0 | 124                        |
| INLVLB <sup>(1)</sup> | INLVLB7                | INLVLB6                | INLVLB5                | INLVLB4       | _                      | _                      | —       | _       | 129                        |
| INLVLC                | INLVLC7 <sup>(1)</sup> | INLVLC6 <sup>(1)</sup> | INLVLC5                | INLVLC4       | INLVLC3 <sup>(2)</sup> | INLVLC2 <sup>(2)</sup> | INLVLC1 | INLVLC0 | 135                        |
| INTCON                | GIE                    | PEIE                   | TMR0IE                 | INTE          | IOCIE                  | TMR0IF                 | INTF    | IOCIF   | 87                         |
| PIE1                  | TMR1GIE                | ADIE                   | RCIE                   | TXIE          | SSP1IE                 | CCP1IE                 | TMR2IE  | TMR1IE  | 88                         |
| PIE2                  | OSFIE                  | C2IE                   | C1IE                   | EEIE          | BCL1IE                 | —                      | —       | CCP2IE  | 89                         |
| PIR1                  | TMR1GIF                | ADIF                   | RCIF                   | TXIF          | SSP1IF                 | CCP1IF                 | TMR2IF  | TMR1IF  | 92                         |
| PIR2                  | OSFIF                  | C2IF                   | C1IF                   | EEIF          | BCL1IF                 | _                      | _       | CCP2IF  | 93                         |
| SSP1ADD               | ADD7                   | ADD6                   | ADD5                   | ADD4          | ADD3                   | ADD2                   | ADD1    | ADD0    | 280                        |
| SSP1BUF               | Synchronous            | Serial Port Rece       | eive Buffer/Trans      | smit Register |                        |                        |         |         | 233*                       |
| SSP1CON1              | WCOL                   | SSPOV                  | SSPEN                  | CKP           |                        | SSPM                   | <3:0>   |         | 277                        |
| SSP1CON2              | GCEN                   | ACKSTAT                | ACKDT                  | ACKEN         | RCEN                   | PEN                    | RSEN    | SEN     | 278                        |
| SSP1CON3              | ACKTIM                 | PCIE                   | SCIE                   | BOEN          | SDAHT                  | SBCDE                  | AHEN    | DHEN    | 279                        |
| SSP1MSK               | MSK7                   | MSK6                   | MSK5                   | MSK4          | MSK3                   | MSK2                   | MSK1    | MSK0    | 280                        |
| SSP1STAT              | SMP                    | CKE                    | D/A                    | Р             | S                      | R/W                    | UA      | BF      | 276                        |
| TRISA                 | _                      | _                      | TRISA5 <sup>(1)</sup>  | TRISA4        | TRISA3 <sup>(2)</sup>  | TRISA2                 | TRISA1  | TRISA0  | 122                        |
| TRISB <sup>(1)</sup>  | TRISB7                 | TRISB6                 | TRISB5                 | TRISB4        | —                      | —                      | —       | _       | 128                        |
| TRISC                 | TRISC7 <sup>(1)</sup>  | TRISC6 <sup>(1)</sup>  | TRISC5                 | TRISC4        | TRISC3 <sup>(2)</sup>  | TRISC2 <sup>(2)</sup>  | TRISC1  | TRISC0  | 133                        |

#### SUMMARY OF REGISTERS ASSOCIATED WITH I<sup>2</sup>C<sup>™</sup> OPERATION **TABLE 25-3:**

 — Unimplemented location, read as '0'. Shaded cells are not used by the MSSP module in I<sup>2</sup>C<sup>™</sup> mode.
 \* Page provides register information.
 PIC16(L)F1829 only. Legend:

Note 1:

PIC16(L)F1825 only. 2:

| R-0/0          | R/W-0/0                                     | R/W-0/0                                            | R/W-0/0                           | R/W-0/0                                               | R/W-0/0                                                                              | R/W-0/0            | R/W-0/0         |  |  |  |
|----------------|---------------------------------------------|----------------------------------------------------|-----------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------|-----------------|--|--|--|
| ACKTIM         | PCIE                                        | SCIE                                               | BOEN                              | SDAHT                                                 | SBCDE                                                                                | AHEN               | DHEN            |  |  |  |
| bit 7          |                                             |                                                    |                                   |                                                       |                                                                                      |                    | bit 0           |  |  |  |
|                |                                             |                                                    |                                   |                                                       |                                                                                      |                    |                 |  |  |  |
| Legend:        |                                             |                                                    |                                   |                                                       |                                                                                      |                    |                 |  |  |  |
| R = Readab     | ole bit                                     | W = Writable                                       | bit                               | U = Unimple                                           | mented bit, read                                                                     | as '0'             |                 |  |  |  |
| u = Bit is un  | changed                                     | x = Bit is unkr                                    | nown                              | -n/n = Value at POR and BOR/Value at all other Resets |                                                                                      |                    |                 |  |  |  |
| '1' = Bit is s | et                                          | '0' = Bit is cle                                   | ared                              |                                                       |                                                                                      |                    |                 |  |  |  |
| <b>h</b> :4 7  |                                             |                                                    |                                   |                                                       | (3)                                                                                  |                    |                 |  |  |  |
|                | 1 = Indicates                               | the I <sup>2</sup> C bus is i                      | in an Acknowl                     | ledge seguen                                          | ne, set on 8 <sup>TH</sup> fall                                                      | ling edge of SC    | l v clock       |  |  |  |
|                | 0 = Not an Ac                               | knowledge se                                       | quence, clear                     | ed on 9 <sup>TH</sup> risin                           | g edge of SCLx                                                                       | clock              |                 |  |  |  |
| bit 6          | PCIE: Stop C                                | ondition Interru                                   | pt Enable bit                     | (I <sup>2</sup> C mode onl                            | y)                                                                                   |                    |                 |  |  |  |
|                | 1 = Enable in                               | terrupt on dete                                    | ction of Stop                     | condition                                             |                                                                                      |                    |                 |  |  |  |
|                | 0 = Stop dete                               | ction interrupts                                   | are disabled                      | (2)                                                   |                                                                                      |                    |                 |  |  |  |
| bit 5          | SCIE: Start C                               | ondition Interru                                   | ipt Enable bit                    | (I <sup>2</sup> C mode on                             | ly)                                                                                  |                    |                 |  |  |  |
|                | 1 = Enable in<br>0 = Start dete             | terrupt on dete                                    | ction of Start                    | or Restart con<br>(2)                                 | ditions                                                                              |                    |                 |  |  |  |
| bit 4          | BOEN: Buffer                                | r Overwrite Ena                                    | able bit                          |                                                       |                                                                                      |                    |                 |  |  |  |
|                | In SPI Slave r                              | mode: <sup>(1)</sup>                               |                                   |                                                       |                                                                                      |                    |                 |  |  |  |
|                | 1 = SSP>                                    | BUF updates                                        | every time that                   | at a new data                                         | byte is shifted in                                                                   | ignoring the BF    | bit             |  |  |  |
|                | 0 = If nev<br>SSP                           | w byte is recei<br>CON1 register                   | ved with BF b<br>r is set, and th | of the SSP                                            | <siai a<="" register="" td=""><td>Iready set, SSF</td><td>POV bit of the</td></siai> | Iready set, SSF    | POV bit of the  |  |  |  |
|                | In I <sup>2</sup> C Master                  | mode and SPI                                       | Master mode                       | <u>):</u>                                             | apaaloa                                                                              |                    |                 |  |  |  |
|                | This bit is                                 | ignored.                                           |                                   |                                                       |                                                                                      |                    |                 |  |  |  |
|                | <u>In I<sup></sup> CSlave n</u><br>1 = SSP  | <u>node:</u><br>xBLIE is undati                    | ed and $\overline{ACK}$ i         | s generated fo                                        | or a received ad                                                                     | dress/data byte    | ianorina the    |  |  |  |
|                | state<br>0 = SSP                            | of the SSPOV<br>BUF is only up                     | bit only if the odated when S     | BF bit = 0.<br>SSPOV is clea                          | ar                                                                                   |                    | , ignoring the  |  |  |  |
| bit 3          | SDAHT: SDA                                  | x Hold Time Se                                     | election bit (I <sup>2</sup>      | C mode only)                                          |                                                                                      |                    |                 |  |  |  |
|                | 1 = Minimum<br>0 = Minimum                  | of 300 ns hold<br>of 100 ns hold                   | time on SDA:<br>time on SDA:      | x after the falli<br>x after the falli                | ng edge of SCLx<br>ng edge of SCLx                                                   | (<br>(             |                 |  |  |  |
| bit 2          | SBCDE: Slav                                 | e Mode Bus C                                       | ollision Detec                    | t Enable bit (l <sup>2</sup>                          | <sup>2</sup> C Slave mode o                                                          | nly)               |                 |  |  |  |
|                | If on the rising BCLxIF bit of              | g edge of SCL<br>the PIR2 regis                    | x, SDAx is sa<br>ter is set, and  | impled low wh<br>bus goes Idle                        | ien the module is                                                                    | s outputting a h   | nigh state, the |  |  |  |
|                | 1 = Enable sla                              | ave bus collisio                                   | on interrupts                     |                                                       |                                                                                      |                    |                 |  |  |  |
|                | 0 = Slave bus                               | s collision interr                                 | upts are disal                    | bled                                                  |                                                                                      |                    |                 |  |  |  |
| bit 1          | AHEN: Addre                                 | ess Hold Enable                                    | e bit (I <sup>2</sup> C Slav      | e mode only)                                          |                                                                                      |                    |                 |  |  |  |
|                |                                             | N1 register wil                                    | be cleared a                      | nd the SCLx v                                         | ching received a<br>vill be held low.                                                | iaaress byte; C    | KP bit of the   |  |  |  |
|                | 0 = Address h                               | nolding is disab                                   | oled                              |                                                       |                                                                                      |                    |                 |  |  |  |
| bit 0          | DHEN: Data I                                | Hold Enable bi                                     | t (I <sup>2</sup> C Slave m       | node only)                                            |                                                                                      |                    |                 |  |  |  |
|                | 1 = Following<br>of the SS<br>0 = Data hold | the 8th falling<br>PxCON1 regis<br>ing is disabled | edge of SCLx<br>ster and SCLx     | for a received<br>is held low.                        | l data byte; slave                                                                   | hardware clea      | rs the CKP bit  |  |  |  |
| Note 1.        | For daisy chained                           | SPI operation:                                     | allows the use                    | ar to ignoro all                                      | but the last rocai                                                                   | ind hute SSDO      | N/ is still sot |  |  |  |
|                | when a new byte is                          | s received and l                                   | BF = 1, but ha                    | irdware contin                                        | ues to write the m                                                                   | nost recent byte   | to SSPxBUF.     |  |  |  |
| <b>2:</b> 1    | This bit has no effe                        | ect in Slave mo                                    | des that Start                    | and Stop con                                          | dition detection i                                                                   | s explicitly liste | d as enabled.   |  |  |  |

#### REGISTER 25-4: SSPxCON3: SSPx CONTROL REGISTER 3

**3:** The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

|        |                  | <b>SYNC</b> = 0, <b>BRGH</b> = 1, <b>BRG16</b> = 0 |                             |                |            |                               |                |            |                             |                  |            |                             |
|--------|------------------|----------------------------------------------------|-----------------------------|----------------|------------|-------------------------------|----------------|------------|-----------------------------|------------------|------------|-----------------------------|
| BAUD   | Fosc = 8.000 MHz |                                                    |                             | Fos            | c = 4.000  | = 4.000 MHz Fosc = 3.6864 MHz |                |            | 4 MHz                       | Fosc = 1.000 MHz |            |                             |
| RATE   | Actual<br>Rate   | %<br>Error                                         | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal)   | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) |
| 300    | —                | _                                                  |                             | _              | _          | _                             | _              | _          | _                           | 300              | 0.16       | 207                         |
| 1200   | _                | _                                                  | _                           | 1202           | 0.16       | 207                           | 1200           | 0.00       | 191                         | 1202             | 0.16       | 51                          |
| 2400   | 2404             | 0.16                                               | 207                         | 2404           | 0.16       | 103                           | 2400           | 0.00       | 95                          | 2404             | 0.16       | 25                          |
| 9600   | 9615             | 0.16                                               | 51                          | 9615           | 0.16       | 25                            | 9600           | 0.00       | 23                          | —                | —          | _                           |
| 10417  | 10417            | 0.00                                               | 47                          | 10417          | 0.00       | 23                            | 10473          | 0.53       | 21                          | 10417            | 0.00       | 5                           |
| 19.2k  | 19231            | 0.16                                               | 25                          | 19.23k         | 0.16       | 12                            | 19.2k          | 0.00       | 11                          | —                | —          | _                           |
| 57.6k  | 55556            | -3.55                                              | 8                           | —              | —          | —                             | 57.60k         | 0.00       | 3                           | —                | —          | _                           |
| 115.2k | —                | _                                                  |                             | —              | —          |                               | 115.2k         | 0.00       | 1                           | —                | —          |                             |

#### TABLE 26-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

|        |                   |            |                             |                | SYNC       | <b>=</b> 0, <b>BRG</b>       | l = 0, BRC     | <b>316 =</b> 1 |                             |                    |            |                             |
|--------|-------------------|------------|-----------------------------|----------------|------------|------------------------------|----------------|----------------|-----------------------------|--------------------|------------|-----------------------------|
| BAUD   | Fosc = 32.000 MHz |            |                             | Fosc           | = 20.00    | 20.000 MHz Fosc = 18.432 MHz |                |                | 2 MHz                       | Fosc = 11.0592 MHz |            |                             |
| RATE   | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal)  | Actual<br>Rate | %<br>Error     | SPBRG<br>value<br>(decimal) | Actual<br>Rate     | %<br>Error | SPBRG<br>value<br>(decimal) |
| 300    | 300.0             | 0.00       | 6666                        | 300.0          | -0.01      | 4166                         | 300.0          | 0.00           | 3839                        | 300.0              | 0.00       | 2303                        |
| 1200   | 1200              | -0.02      | 3332                        | 1200           | -0.03      | 1041                         | 1200           | 0.00           | 959                         | 1200               | 0.00       | 575                         |
| 2400   | 2401              | -0.04      | 832                         | 2399           | -0.03      | 520                          | 2400           | 0.00           | 479                         | 2400               | 0.00       | 287                         |
| 9600   | 9615              | 0.16       | 207                         | 9615           | 0.16       | 129                          | 9600           | 0.00           | 119                         | 9600               | 0.00       | 71                          |
| 10417  | 10417             | 0.00       | 191                         | 10417          | 0.00       | 119                          | 10378          | -0.37          | 110                         | 10473              | 0.53       | 65                          |
| 19.2k  | 19.23k            | 0.16       | 103                         | 19.23k         | 0.16       | 64                           | 19.20k         | 0.00           | 59                          | 19.20k             | 0.00       | 35                          |
| 57.6k  | 57.14k            | -0.79      | 34                          | 56.818         | -1.36      | 21                           | 57.60k         | 0.00           | 19                          | 57.60k             | 0.00       | 11                          |
| 115.2k | 117.6k            | 2.12       | 16                          | 113.636        | -1.36      | 10                           | 115.2k         | 0.00           | 9                           | 115.2k             | 0.00       | 5                           |

|        | SYNC = 0, BRGH = 0, BRG16 = 1 |            |                             |                |                                    |                             |                |            |                             |                |            |                             |  |
|--------|-------------------------------|------------|-----------------------------|----------------|------------------------------------|-----------------------------|----------------|------------|-----------------------------|----------------|------------|-----------------------------|--|
| BAUD   | Fosc = 8.000 MHz              |            |                             | Fos            | Fosc = 4.000 MHz Fosc = 3.6864 MHz |                             |                | 4 MHz      | Fosc = 1.000 MHz            |                |            |                             |  |
| RATE   | Actual<br>Rate                | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error                         | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal) |  |
| 300    | 299.9                         | -0.02      | 1666                        | 300.1          | 0.04                               | 832                         | 300.0          | 0.00       | 767                         | 300.5          | 0.16       | 207                         |  |
| 1200   | 1199                          | -0.08      | 416                         | 1202           | 0.16                               | 207                         | 1200           | 0.00       | 191                         | 1202           | 0.16       | 51                          |  |
| 2400   | 2404                          | 0.16       | 207                         | 2404           | 0.16                               | 103                         | 2400           | 0.00       | 95                          | 2404           | 0.16       | 25                          |  |
| 9600   | 9615                          | 0.16       | 51                          | 9615           | 0.16                               | 25                          | 9600           | 0.00       | 23                          | _              | _          | _                           |  |
| 10417  | 10417                         | 0.00       | 47                          | 10417          | 0.00                               | 23                          | 10473          | 0.53       | 21                          | 10417          | 0.00       | 5                           |  |
| 19.2k  | 19.23k                        | 0.16       | 25                          | 19.23k         | 0.16                               | 12                          | 19.20k         | 0.00       | 11                          | _              | _          | _                           |  |
| 57.6k  | 55556                         | -3.55      | 8                           | —              | _                                  | _                           | 57.60k         | 0.00       | 3                           | —              | _          | _                           |  |
| 115.2k |                               | _          | _                           | —              | _                                  | _                           | 115.2k         | 0.00       | 1                           | _              | _          | _                           |  |

| ΜΟνιω            | Move INDFn to W                                                                                                                                                                                                                                                                                                                                                             |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] MOVIW ++FSRn<br>[ <i>label</i> ] MOVIWFSRn<br>[ <i>label</i> ] MOVIW FSRn++<br>[ <i>label</i> ] MOVIW FSRn<br>[ <i>label</i> ] MOVIW k[FSRn]                                                                                                                                                                                                               |
| Operands:        | n ∈ [0,1]<br>mm ∈ [00,01, 10, 11]<br>-32 ≤ k ≤ 31                                                                                                                                                                                                                                                                                                                           |
| Operation:       | $\begin{split} &\text{INDFn} \rightarrow \text{W} \\ &\text{Effective address is determined by} \\ &\text{FSR + 1 (preincrement)} \\ &\text{FSR - 1 (predecrement)} \\ &\text{FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be either:} \\ &\text{FSR + 1 (all increments)} \\ &\text{FSR - 1 (all decrements)} \\ &\text{Unchanged} \end{split}$ |
| Status Affected: | Z                                                                                                                                                                                                                                                                                                                                                                           |

| Mode          | Syntax | mm |
|---------------|--------|----|
| Preincrement  | ++FSRn | 00 |
| Predecrement  | FSRn   | 01 |
| Postincrement | FSRn++ | 10 |
| Postdecrement | FSRn   | 11 |

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

| Syntax:          | [ <i>label</i> ] MOVLB k                                             |
|------------------|----------------------------------------------------------------------|
| Operands:        | $0 \leq k \leq 15$                                                   |
| Operation:       | $k \rightarrow BSR$                                                  |
| Status Affected: | None                                                                 |
| Description:     | The 5-bit literal 'k' is loaded into the Bank Select Register (BSR). |

| MOVLP            | Move literal to PCLATH                                                                    |
|------------------|-------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ]MOVLP k                                                                   |
| Operands:        | $0 \le k \le 127$                                                                         |
| Operation:       | $k \rightarrow PCLATH$                                                                    |
| Status Affected: | None                                                                                      |
| Description:     | The 7-bit literal 'k' is loaded into the PCLATH register.                                 |
| MOVLW            | Move literal to W                                                                         |
| Syntax:          | [ <i>label</i> ] MOVLW k                                                                  |
| Operands:        | $0 \leq k \leq 255$                                                                       |
| Operation:       | $k \rightarrow (W)$                                                                       |
| Status Affected: | None                                                                                      |
| Description:     | The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's. |
| Words:           | 1                                                                                         |
| Cycles:          | 1                                                                                         |
| Example:         | MOVLW 0x5A                                                                                |
|                  | After Instruction<br>W = 0x5A                                                             |
| MOVWF            | Move W to f                                                                               |
| Syntax:          | [ <i>label</i> ] MOVWF f                                                                  |
| Operands:        | $0 \leq f \leq 127$                                                                       |
| Operation:       | $(W) \rightarrow (f)$                                                                     |
| Status Affected: | None                                                                                      |
| Description:     | Move data from W register to register 'f'.                                                |
| Words:           | 1                                                                                         |
| Cycles:          | 1                                                                                         |
| Example:         | MOVWF OPTION_REG                                                                          |
|                  | Before Instruction<br>OPTION_REG = 0xFF                                                   |

W = 0x4F After Instruction OPTION\_REG = 0x4F W = 0x4F

#### TABLE 30-2: OSCILLATOR PARAMETERS

unditione (unlose otherwise stated)

-

n dand On snatin n Or

| Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |          |                                                          |                    |      |      |      |       |                                                                      |  |
|---------------------------------------------------------------|----------|----------------------------------------------------------|--------------------|------|------|------|-------|----------------------------------------------------------------------|--|
| Param<br>No.                                                  | Sym.     | Characteristic                                           | Freq.<br>Tolerance | Min. | Тур† | Max. | Units | Conditions                                                           |  |
| OS08                                                          | HFosc    | Internal Calibrated HFINTOSC<br>Frequency <sup>(1)</sup> | ±2%                | _    | 16.0 |      | MHz   | $0^{\circ}C \leq TA \leq \text{+}60^{\circ}C,  V\text{DD} \geq 2.5V$ |  |
|                                                               |          |                                                          | ±3%                | _    | 16.0 | _    | MHz   | $60^\circ C \leq T_A \leq +85^\circ C,  VDD \geq 2.5 V$              |  |
|                                                               |          |                                                          | ±5%                | —    | 16.0 |      | MHz   | $-40^\circ C \leq T A \leq +125^\circ C$                             |  |
| OS08A                                                         | MFosc    | Internal Calibrated MFINTOSC<br>Frequency <sup>(1)</sup> | ±2%                | —    | 500  |      | kHz   | $0^{\circ}C \leq TA \leq \text{+}60^{\circ}C,  V\text{DD} \geq 2.5V$ |  |
|                                                               |          |                                                          | ±3%                | _    | 500  |      | kHz   | $60^{\circ}C \le TA \le +85^{\circ}C, VDD \ge 2.5V$                  |  |
|                                                               |          |                                                          | ±5%                | _    | 500  | _    | kHz   | $-40^\circ C \le T_A \le +125^\circ C$                               |  |
| OS09                                                          | LFosc    | Internal LFINTOSC Frequency                              | ±25%               | _    | 31   |      | kHz   | $-40^\circ C \leq T A \leq +125^\circ C$                             |  |
| OS10*                                                         | TIOSC ST | HFINTOSC<br>Wake-up from Sleep Start-up Time             | Ι                  | _    | 5    | 8    | μS    |                                                                      |  |
|                                                               |          | Wake-up from Sleep Start-up Time                         | _                  | _    | 20   | 30   | μS    |                                                                      |  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note** 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

#### TABLE 30-3: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.7V TO 5.5V)

| Param<br>No. | Sym.                | Characteristic                | Min.   | Тур† | Max.   | Units | Conditions |
|--------------|---------------------|-------------------------------|--------|------|--------|-------|------------|
| F10          | Fosc                | Oscillator Frequency Range    | 4      | —    | 8      | MHz   |            |
| F11          | Fsys                | On-Chip VCO System Frequency  | 16     | —    | 32     | MHz   |            |
| F12          | TRC                 | PLL Start-up Time (Lock Time) | —      | —    | 2      | ms    |            |
| F13*         | $\Delta \text{CLK}$ | CLKOUT Stability (Jitter)     | -0.25% | _    | +0.25% | %     |            |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

#### FIGURE 30-7: CLKOUT AND I/O TIMING



© 2010-2015 Microchip Technology Inc.





#### TABLE 30-13: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

| Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |          |                                                 |          |      |       |            |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------|----------|------|-------|------------|--|--|--|
| Param.<br>No.                                                                                                        | Symbol   | Characteristic                                  | Min.     | Max. | Units | Conditions |  |  |  |
| US120                                                                                                                | TCKH2DTV | SYNC XMIT (Master and Slave)                    | 3.0-5.5V | —    | 80    | ns         |  |  |  |
|                                                                                                                      |          | Clock high to data-out valid                    | 1.8-5.5V | _    | 100   | ns         |  |  |  |
| US121 TCKRF                                                                                                          | TCKRF    | Clock out rise time and fall time (Master mode) | 3.0-5.5V | —    | 45    | ns         |  |  |  |
|                                                                                                                      |          |                                                 | 1.8-5.5V | —    | 50    | ns         |  |  |  |
| US122                                                                                                                | TDTRF    | Data-out rise time and fall time                | 3.0-5.5V | _    | 45    | ns         |  |  |  |
|                                                                                                                      |          |                                                 | 1.8-5.5V | _    | 50    | ns         |  |  |  |

#### FIGURE 30-15: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING



#### TABLE 30-14: USART SYNCHRONOUS RECEIVE REQUIREMENTS

| Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |          |                                                                                |      |      |       |            |  |  |
|----------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------|------|------|-------|------------|--|--|
| Param.<br>No.                                                                                                        | Symbol   | Characteristic                                                                 | Min. | Max. | Units | Conditions |  |  |
| US125                                                                                                                | TDTV2CKL | SYNC RCV (Master and Slave)<br>Data-hold before CK $\downarrow$ (DT hold time) | 10   |      | ns    |            |  |  |
| US126                                                                                                                | TCKL2DTL | Data-hold after CK $\downarrow$ (DT hold time)                                 | 15   | —    | ns    |            |  |  |

### 31.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

**Note:** The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "MAXIMUM", "Max.", "MINIMUM" or "Min." represents (mean +  $3\sigma$ ) or (mean -  $3\sigma$ ) respectively, where  $\sigma$  is a standard deviation, over each temperature range.