

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1825-e-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1825/9

IABLE	:s-o: c	SPECIAL F	UNCTION	REGIST	ER SUM			:D)			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 6											
300h ⁽¹⁾	INDF0	Addressing th (not a physical		es contents of	FSR0H/FSR0	OL to address	data memory	1		XXXX XXXX	XXXX XXXX
301h ⁽¹⁾	INDF1	Addressing th (not a physical		es contents of	FSR1H/FSR	1L to address	data memory	/		XXXX XXXX	XXXX XXXX
302h ⁽¹⁾	PCL	Program Cou	inter (PC) Lea	st Significant E	Byte					0000 0000	0000 0000
303h ⁽¹⁾	STATUS		_	_	TO	PD	Z	DC	С	1 1000	q quuu
304h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poir	nter					0000 0000	uuuu uuuu
305h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Poi	inter					0000 0000	0000 0000
306h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu
307h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	inter					0000 0000	0000 0000
308h ⁽¹⁾	BSR	_	_	_			BSR<4:0>			0 0000	0 0000
309h ⁽¹⁾	WREG	Working Reg	ister							0000 0000	uuuu uuuu
30Ah ⁽¹⁾	PCLATH	_	Write Buffer f	or the upper 7	bits of the Pr	ogram Counte	er			-000 0000	-000 0000
30Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
30Ch	—	Unimplement	ed							_	_
30Dh	_	Unimplement	ed							_	_
30Eh	_	Unimplement	Unimplemented							_	_
30Fh	_	Unimplement	ed							_	_
310h	_	Unimplement	ed							_	_
311h	CCPR3L	Capture/Com	pare/PWM Re	egister 3 (LSB)						xxxx xxxx	uuuu uuuu
312h	CCPR3H	Capture/Com	pare/PWM Re	egister 3 (MSB)					xxxx xxxx	uuuu uuuu
313h	CCP3CON	_	_	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	00 0000	00 0000
314h	_	Unimplement	ed							_	_
315h	_	Unimplement	ed							_	_
316h	_	Unimplement	ed							_	_
317h	_	Unimplement	ed							_	_
318h	CCPR4L	Capture/Com	pare/PWM Re	egister 4 (LSB)						xxxx xxxx	uuuu uuuu
319h	CCPR4H	Capture/Com	pare/PWM Re	egister 4 (MSB)					xxxx xxxx	uuuu uuuu
31Ah	CCP4CON	_	—	DC4B1	DC4B0	CCP4M3	CCP4M2	CCP4M1	CCP4M0	00 0000	00 0000
31Bh	—	Unimplement	ed							—	_
31Ch	—	Unimplement	ed							_	_
31Dh	—	Unimplement	ed							_	_
31Eh	—	Unimplement	ed							_	_
31Fh	—	Unimplement	ed							_	_
l ogond:					. PP						

TABLE 3-8: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: PIC16(L)F1829 only.

3: PIC16(L)F1825 only.

4: Unimplemented, read as '1'.

© 2010-2015 Microchip Technology Inc.

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0					
EEPROM Control Register 2												
bit 7							bit 0					
Legend:												
R = Readable bit	t	W = Writable	bit	U = Unimplen	nented bit, read	as '0'						
S = Bit can only I	be set	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets					
'1' = Bit is set		'0' = Bit is clea	ared									

REGISTER 11-6: EECON2: EEPROM CONTROL 2 REGISTER

bit 7-0 Data EEPROM Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the EECON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes. Refer to **Section 11.2.2** "Writing to the Data EEPROM Memory" for more information.

TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	114	
EECON2	EEPROM Control Register 2 (not a physical register)									
EEADRL		EEADRL<7:0>								
EEADRH	(1)	(1) EEADRH<6:0								
EEDATL				EEDAT	[L<7:0>				113	
EEDATH	—	_			EEDAT	H<5:0>			113	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87	
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	—	CCP2IE	89	
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	—		CCP2IF	93	

Legend: — Unimplemented location, read as '0'. Shaded cells are not used by data EEPROM module. * Page provides register information.

Note 1: Unimplemented, read as '1'.

12.3.2 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the lowest number in the following lists.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in the priority list.

Pin Name	Function Priority ⁽¹⁾
RB4	SDA
RB5	SDA2 RX ⁽²⁾ /DT ⁽²⁾
RB6	SCL/SCK
RB7	TX ⁽²⁾ /CK ⁽²⁾

TABLE 12-5: PORTB OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

2: Pin function is selectable via the APFCON0 or APFCON1 register.

PIC16(L)F1825/9

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	_	_	ANSA4	—	ANSA2	ANSA1	ANSA0	123
ANSELB ⁽¹⁾	—	_	ANSB5	ANSB4	—	—	_	—	129
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	124
INLVLB ⁽¹⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4			-		129
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
IOCAF	_	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	138
IOCAN	—	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	138
IOCAP	_		IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	137
IOCBF ⁽¹⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	_	_	_	139
IOCBN ⁽¹⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	_		_	_	139
IOCBP ⁽¹⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	—	—	_	—	138
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	128

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — Unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

Note 1: PIC16(L)F1829 only.

14.3 FVR Control Registers

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN	TSRNG	CDAF	/R<1:0>	ADFVI	R<1:0>
bit 7		·		·			bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on condit	ion	
bit 7	0 = Fixed Vo	d Voltage Refe Itage Referenc Itage Referenc	e is disabled	bit			
bit 6	0 = Fixed Vo	ed Voltage Ref Itage Referenc Itage Referenc	e output is no	t ready or not e	nabled		
bit 5	0 = Tempera	erature Indicato ture indicator is ture indicator is	s disabled				
bit 4	0 = VOUT = V	perature Indica ′DD - 2V⊤ (Low ′DD - 4V⊤ (High	Range)	election bit ⁽³⁾			
bit 3-2	00 = Compara 01 = Compara 10 = Compara	ator and DAC I ator and DAC I ator and DAC I	Fixed Voltage Fixed Voltage Fixed Voltage	Reference Per Reference Per Reference Per	ference Selectic ipheral output is ipheral output is ipheral output is ipheral output is	s off s 1x (1.024V) s 2x (2.048V) <mark>(2</mark>	
bit 1-0	00 = ADC Fix 01 = ADC Fix 10 = ADC Fix	ed Voltage Re ed Voltage Re ed Voltage Re	ference Perip ference Perip ference Perip	nce Selection theral output is the heral outpu	off 1x (1.024V) 2x (2.048V) (2)		
	RRDY is always ed Voltage Refe				/9).		

3: See Section 15.0 "Temperature Indicator Module" for additional information.

TABLE 14-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFVF	R<1:0>	142

Legend: Shaded cells are unused by the Fixed Voltage Reference module.

21.11 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 21-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 21-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u			
TMR1	CS<1:0>	T1CKF	'S<1:0>	T1OSCEN	T1SYNC	_	TMR10N			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit. read	l as '0'				
u = Bit is und	hanged	x = Bit is unkr	N = Writable bit U = Unimplemented bit, read as '0' x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Reference							
'1' = Bit is se	-	'0' = Bit is cle	ared							
bit 7-6	11 = Timer1 c 10 = Timer1 c <u>If T10SC</u> External <u>If T10SC</u> Crystal c 01 = Timer1 c	clock source is <u>CEN = 0</u> : clock from T10	Capacitive Ser pin or oscillato CKI pin (on the OSI/T1OSO pi system clock (nsing Oscillator r: e rising edge) ins Fosc)	- (CAPOSC)					
bit 5-4	T1CKPS<1:0 11 = 1:8 Pres 10 = 1:4 Pres 01 = 1:2 Pres 00 = 1:1 Pres	scale value scale value	t Clock Presca	ale Select bits						
bit 3	T1OSCEN: L 1 = Dedicate	P Oscillator En d Timer1 oscill d Timer1 oscill	ator circuit ena	abled						
bit 2	<u>TMR1CS<1:0</u> 1 = Do not sy 0 = Synchror	<u>)> = 1x:</u> ynchronize exten nize external cl	ernal clock inp	nchronization C ut system clock (F						
	<u>TMR1CS<1:0</u> This bit is ign									
bit 1	Unimplemen	ted: Read as '	0'							
bit 0	TMR1ON: Tir 1 = Enables 0 = Stops Tir Clears Ti	Timer1	flop							

23.5 Carrier Source Polarity Select

The signal provided from any selected input source for the carrier high and carrier low signals can be inverted. Inverting the signal for the carrier high source is enabled by setting the MDCHPOL bit of the MDCARH register. Inverting the signal for the carrier low source is enabled by setting the MDCLPOL bit of the MDCARL register.

23.6 Carrier Source Pin Disable

Some peripherals assert control over their corresponding output pin when they are enabled. For example, when the CCP1 module is enabled, the output of CCP1 is connected to the CCP1 pin.

This default connection to a pin can be disabled by setting the MDCHODIS bit in the MDCARH register for the carrier high source and the MDCLODIS bit in the MDCARL register for the carrier low source.

23.7 Programmable Modulator Data

The MDBIT of the MDCON register can be selected as the source for the modulator signal. This gives the user the ability to program the value used for modulation.

23.8 Modulator Source Pin Disable

The modulator source default connection to a pin can be disabled by setting the MDMSODIS bit in the MDSRC register.

23.9 Modulated Output Polarity

The modulated output signal provided on the MDOUT pin can also be inverted. Inverting the modulated output signal is enabled by setting the MDOPOL bit of the MDCON register.

23.10 Slew Rate Control

The slew rate limitation on the output port pin can be disabled. The slew rate limitation can be removed by clearing the MDSLR bit in the MDCON register.

23.11 Operation in Sleep Mode

The DSM module is not affected by Sleep mode. The DSM can still operate during Sleep, if the Carrier and Modulator input sources are also still operable during Sleep.

23.12 Effects of a Reset

Upon any device Reset, the DSM module is disabled. The user's firmware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

R/W-x/u	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
MDMSODIS	_	_			MDMS	8<3:0>	
bit 7				·			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	MDMSODIS:	Modulation So	urce Output	Disable bit			
	1 = Output s	ignal driving the	e peripheral o	output pin (selec	ted by MDMS<	3:0>) is disable	ed
	0 = Output s	ignal driving the	e peripheral o	output pin (selec	ted by MDMS<	3:0>) is enable	ed
bit 6-4	Unimplemen	ted: Read as ')'				
bit 3-0	MDMS<3:0>	Modulation Sou	urce Selectio	n bits			
	1111 = Res	erved. No char	nnel connect	ed.			
	1110 = Res	erved. No char	nnel connect	ed.			
		erved. No char					
		erved. No char					
		erved. No char		ed.			
		SART TX output					
		SP2 SDO1 outp SP1 SDO2 outp					
		parator2 outpu					
		parator1 outpu					
		P4 output (PWN		de only)			
	0100 = CCF	P3 output (PWN	1 Output mod	de only)			
		P2 output (PWN					
		P1 output (PWN	I Output mod	de only)			
	0001 = MDM						
	0000 = MDE	BIT bit of MDCC	ON register is	s modulation sou	irce		

REGISTER 23-2: MDSRC: MODULATION SOURCE CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

24.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 24-4.

EQUATION 24-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 24-5:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 32 MHz)

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 24-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 24-7: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

24.3.7 **OPERATION IN SLEEP MODE**

In Sleep mode, the TMRx register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMRx will continue from its previous state.

24.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 5.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

24.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

24.3.10 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFCON0 and APFCON1. To determine which pins can be moved and what their default locations are upon a Reset, see Section 12.1 "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON1	-	—	SDO2SEL ⁽²⁾	SS2SEL ⁽²⁾	P1DSEL	P1CSEL	P2BSEL	CCP2SEL	119
CCP1CON	P1M<	1:0>(1)	DC1B<1:0>			CCP1I		224	
CCP2CON	P2M<	1:0> ⁽¹⁾	DC2B	<1:0>		CCP2I	M<3:0>		224
CCP3CON	_	_	DC3B	<1:0>		CCP3I	M<3:0>		224
CCP4CON	-	—	DC4B	<1:0>		CCP4I	M<3:0>		224
CCPTMRS	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	EL<1:0>	225
CCPR1L	Capture/Comp	oare/PWM Regi	ster x Low Byte	(LSB)					
INLVLA	-	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	124
INLVLC	INLVLC7 ⁽²⁾	INLVLC6 ⁽²⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	135
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	_	_	CCP2IE	89
PIE3	_	—	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	—	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	_	_	CCP2IF	93
PIR3	_	—	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	_	94
PRx	Timer2/4/6 Pe	riod Register							188*
T2CON	-		T2OUTF	PS<3:0>		TMR2ON	T2CKP	'S<1:0>	190
T4CON	_		T4OUTF	PS<3:0>		TMR4ON	T4CKP	'S<1:0>	190
T6CON	-		T6OUTF	PS<3:0>		TMR6ON	'S<1:0>	190	
TMRx	Timer2/4/6 Mo	dule Register							188*
TRISA	_	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISC	TRISC7 ⁽²⁾	TRISC6 ⁽²⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	133

TABLE 24-8: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM

Legend: — Unimplemented location, read as '0'. Shaded cells are not used by the PWM.

Page provides register information.

Applies to ECCP modules only. PIC16(L)F1829 only. Note 1:

2:

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
CCPxASE		CCPxAS<2:0>		PSSxA	\C<1:0>	PSSxB	PSSxBD<1:0>				
bit 7							bit				
Legend:											
R = Readabl	e bit	W = Writable b	pit	U = Unimpler	nented bit, read	d as '0'					
u = Bit is und	changed	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets				
'1' = Bit is se	t	'0' = Bit is clea	ared								
bit 7	CCPxASE: CCPx Auto-Shutdown Event Status bit										
		own event has oo utputs are operat		x outputs are in	shutdown state	e					
bit 6-4	CCPxAS<2:0>: CCPx Auto-Shutdown Source Select bits										
		000 = Auto-shutdown is disabled									
	001 = Com	001 = Comparator C1 output high ⁽¹⁾									
	010 = Comparator C2 output high ⁽¹⁾										
	011 = Either Comparator C1 or C2 high ⁽¹⁾ 100 = Vi∟ on FLT0 pin										
		100 = VIL on FLT0 pin 101 = VIL on FLT0 pin or Comparator C1 high ⁽¹⁾									
		$110 = V_{IL}$ on FLT0 pin or Comparator C2 high ⁽¹⁾									
	111 = VIL on FLT0 pin or Comparator C1 or Comparator C2 high ⁽¹⁾										
bit 3-2	PSSxAC<1	:0>: Pins PxA an	d PxC Shutdo	own State Conti	rol bits						
	•	oins PxA and PxC									
		01 = Drive pins PxA and PxC to '1'									
	1x = Pins PxA and PxC tri-state										
bit 1-0	PSSxBD<1:0>: Pins PxB and PxD Shutdown State Control bits										
		pins PxB and PxE									
	01 = Drive pins PxB and PxD to '1' 1x = Pins PxB and PxD tri-state										

REGISTER 24-3: CCPxAS: CCPx AUTO-SHUTDOWN CONTROL REGISTER

Note 1: If CxSYNC is enabled, the shutdown will be delayed by Timer1.

25.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDAx pin after the falling edge of SCLx is asserted. SCLx is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCLx is released high. When the SCLx pin is released high, it is held that way for TBRG. The data on the SDAx pin must remain stable for that duration and some hold time after the next falling edge of SCLx. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDAx. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCLx low and SDAx unchanged (Figure 25-28).

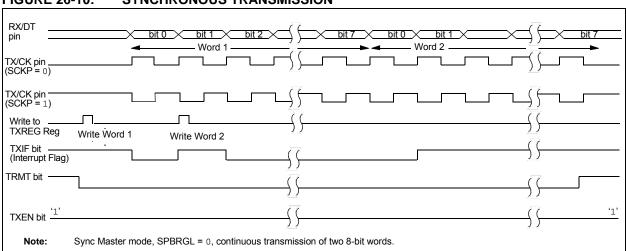
After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCLx until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDAx pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDAx pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCLx low and allowing SDAx to float.

25.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPxSTAT register is set when the CPU writes to SSPxBUF and is cleared when all eight bits are shifted out.

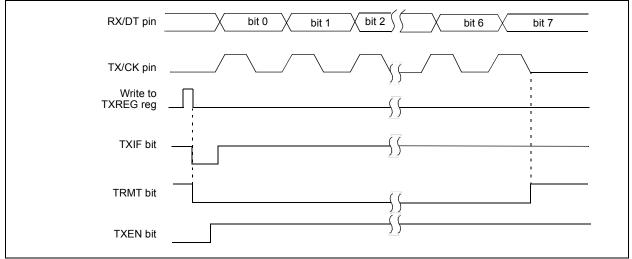
25.6.6.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).


WCOL must be cleared by software before the next transmission.

25.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPxCON2 register is cleared when the slave has sent an Acknowledge ($\overline{ACK} = 0$) and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.


25.6.6.4 Typical Transmit Sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. The MSSPx module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPxBUF with the slave address to transmit.
- 6. Address is shifted out the SDAx pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- The MSSPx module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 9. The user loads the SSPxBUF with eight bits of data.
- 10. Data is shifted out the SDAx pin until all eight bits are transmitted.
- 11. The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPxCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

FIGURE 26-10: SYNCHRONOUS TRANSMISSION

TABLE 26-7: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL ⁽¹⁾	SS1SEL ⁽¹⁾	_	T1GSEL	TXCKSEL	_	—	118
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	292
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	291
SPBRGL				SPBRG	6<7:0>				293*
SPBRGH				SPBRG	<15:8>				293*
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	133
TXREG	EUSART Transmit Data Register								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	290

- Unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission. Legend:

Page provides register information.
PIC16(L)F1825 only.

Note 1:

FIGURE 26-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin TX/CK pin (SCKP = 0)	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TX/CK pin	
SREN bit	°0
RCIF bit (Interrupt) — Read RCREG —	
	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TABLE 26-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
APFCON0	RXDTSEL	SDO1SEL ⁽¹⁾	SS1SEL ⁽¹⁾	—	T1GSEL	TXCKSEL		—	118	
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	292	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92	
RCREG	EUSART Re	ceive Data Reg	ister						286*	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	291	
SPBRGL		SPBRG<7:0>								
SPBRGH	SPBRG<15:8>									
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	290	

Legend: — Unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

Note 1: PIC16(L)F1825 only.

26.4.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

26.4.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see **Section 27.4.1.3 "Synchronous Master Transmission")**, except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 26.4.2.2 Synchronous Slave Transmission Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

TABLE 26-9: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL ⁽¹⁾	SS1SEL ⁽¹⁾	_	T1GSEL	TXCKSEL	-	—	118
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	292
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	291
TXREG EUSART Transmit Data Register									283*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	290

Legend: — Unimplemented location, read as '0'. Shaded cells are not used for Synchronous Slave Transmission. * Page provides register information.

Note 1: PIC16(L)F1825 only.

26.4.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 26.4.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- · SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 26.4.2.4 Synchronous Slave Reception Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

TABLE 26-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL ⁽¹⁾	SS1SEL ⁽¹⁾	_	T1GSEL	TXCKSEL	_	—	118
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	292
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92
RCREG	EUSART Re	ceive Data Reg	jister						286*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	291
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	290

Legend: — Unimplemented location, read as '0'. Shaded cells are not used for synchronous slave reception. * Page provides register information.

Note 1: PIC16(L)F1825 only.

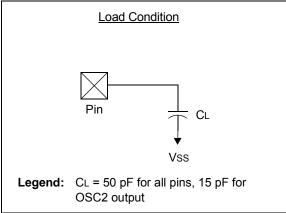
PIC16(L)F1825/9

Mnen	nonic,	Description			14-Bit	Opcode)	Status	
Oper	rands	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE	REGISTER OPE	RATIC	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	z	2
INCF	f. d	Increment f	1	00	1010	dfff		z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100		ffff	z	2
MOVF	f. d	Move f	1	0.0	1000	dfff		z	2
MOVWF	f.	Move W to f	1	00	0000	1fff		-	2
RLF	f, d	Rotate Left f through Carry	1	00		dfff		С	2
RRF	f, d	Rotate Right f through Carry	1	00		dfff		C	2
SUBWF	f, d	Subtract W from f	1	00		dfff		C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11		dfff		C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff		0, 00, 2	2
XORWF	f. d	Exclusive OR W with f	1	00	0110		ffff	z	2
XOIT	1, U	BYTE ORIENTED	•		0110	ulli	LLLL	2	2
050507	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
DECFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
INCFSZ	1, u	Increment 1, Skip ir 0	1(2)	00		alli	LLLL		1, 2
		BIT-ORIENTED FILE I	REGISTER OPER	RATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED	SKIP OPERATIO	NS				1	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
	OPERA	TIONS							
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11		kkkk			
	1.							0 00 7	
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	

TABLE 29-3: PIC16(L)F1825/9 ENHANCED INSTRUCTION SET

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.


30.7 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

2. 1000		-	
т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDIx	SC	SCKx
do	SDO1	SS	SS
dt	Data in	t0	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 30-5: LOAD CONDITIONS

PIC16F	1825/9		Standard Operating Conditions: (unless otherwise stated) Operating Temperature: $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Condition		
D001	Vdd	Supply Voltage	2.5		5.5	V	Fosc ≤ 32 MHz (Note 2)		
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	2.1	_	5.5	V	Device in Sleep mode		
D003	VADFVR	Fixed Voltage Reference Voltage for ADC	-10	_	8	%	$\begin{array}{l} 1.024V, \mbox{ Vdd} \geq 2.5V \\ 2.048V, \mbox{ Vdd} \geq 2.5V \\ 4.096V, \mbox{ Vdd} \geq 4.75V \end{array}$		
D003A	VCDAFVR	Fixed Voltage Reference Voltage for ADC	-13		9	%	$\begin{array}{l} 1.024V, \mbox{ Vdd} \geq 2.5V \\ 2.048V, \mbox{ Vdd} \geq 2.5V \\ 4.096V, \mbox{ Vdd} \geq 4.75V \end{array}$		

TABLE 30-19: DC CHARACTERISTICS FOR PIC16F1825/9-H (High Temp.)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: PLL required for 32 MHz operation.

PIC16(L)F1825/9

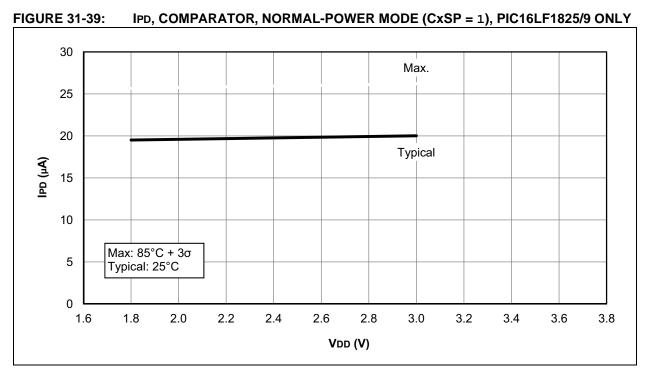
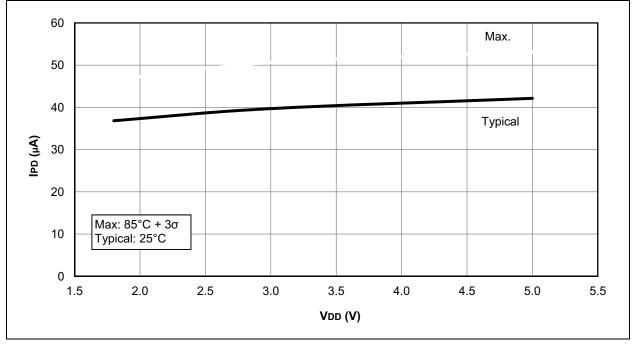



FIGURE 31-40: IPD, CO

IPD, COMPARATOR, NORMAL-POWER MODE (CxSP = 1), PIC16F1825/9 ONLY

