

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1825-e-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.6 Oscillator Control Registers

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0
SPLLEN		IRCF	<3:0>			SCS	<1:0>
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	SPLLEN: Software PLL Enable bit If PLLEN in Configuration Word 2 = 1: SPLLEN bit is ignored. 4xPLL is always er If PLLEN in Configuration Word 2 = 0: 1 = 4xPLL Is enabled 0 = 4xPLL is disabled				to oscillator red	quirements)	
bit 6-3	IRCF<3:0>: I 000x = 31 kI 0010 = 31.2: 0011 = 31.2: 0100 = 62.5 0101 = 125 0110 = 250 1010 = 250 1010 = 500 1010 = 500 1011 = 1 MH 1100 = 2 MH 1101 = 4 MH 1110 = 8 MH 1111 = 16 M	nternal Oscillat Hz LF 5 kHz MF 5 kHz HF ⁽¹⁾ kHz MF kHz MF kHz MF (defaul kHz HF ⁽¹⁾ kHz HF ⁽¹⁾ kHz HF ⁽¹⁾ tz HF tz HF tz HF tz or 32 MHz H IHz HF	or Frequency t upon Reset) F(see Sectio i	Select bits n 5.2.2.1 "HFIN	TOSC")		
bit 2 bit 1-0	Unimplemented: Read as '0' SCS<1:0>: System Clock Select bits 1x = Internal oscillator block 01 = Timer1 oscillator 00 = Clock determined by FOSC<2:0> in Configuration Word 1.						

Note 1: Duplicate frequency derived from HFINTOSC.

U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u
—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0
bit 7							bit 0

REGISTER 12-5: LATA: PORTA DATA LATCH REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	LATA<5:4>: RA<5:4> Output Latch Value bits ⁽¹⁾
bit 3	Unimplemented: Read as '0'

bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-6: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	 ANSA4: Analog Select between Analog or Digital Function on pins RA4, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
Note 1:	When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 12-9: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0
RB7	RB6	RB5	RB4		—		_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-4	RB<7:4> : PORTB General Purpose I/O Pin bits
	1 = Port pin is <u>></u> Vін
	0 = Port pin is <u><</u> VI ∟
bit 3-0	Unimplemented: Read as '0'

REGISTER 12-10: TRISB: PORTB TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **TRISB<7:4>:** PORTB Tri-State Control bits 1 = PORTB pin configured as an input (tri-stated) 0 = PORTB pin configured as an output

bit 3-0 Unimplemented: Read as '0'

REGISTER 12-11: LATB: PORTB DATA LATCH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0
LATB7	LATB6	LATB5	LATB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 LATB<7:4>: PORTB Output Latch Value bits⁽¹⁾

bit 3-0 Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

16.2.7 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

REGISTER 16-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0

Legend:			
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unc	nanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set		'0' = Bit is cleared	
bit 7	Unimplemen	ted: Read as '0'	
bit 6-2	CHS<4:0>: A	nalog Channel Select bits	
	00000 = ANG)	
	00001 = AN	1	
	00010 = AN2	2	
	00011 = AN3	3	
	$00100 = AN^{4}$	+ 5	
	00101 = AN(5	
	00111 = AN	7	
	01000 = AN8	₃ (1)	
	01001 = ANS	₉ (1)	
	01010 = AN	$10^{(1)}$	
	$01011 = AN^{2}$	11(')	4
	01100 = Res	served. No channel connected	1.
	•		
	•		
	11100 = Res	served. No channel connected	1.
	11101 = Tem	perature Indicator ⁽⁴⁾	
	11110 = DAC	C_output ⁽²⁾	(3)
	11111 = FVR	(Fixed Voltage Reference) O	utput ^{vo}
bit 1	GO/DONE: A	/D Conversion Status bit	
	1 = A/D conv	ersion cycle in progress. Setti	ng this bit starts an A/D conversion cycle.
		automatically cleared by hard	dware when the A/D conversion has completed.
h # 0			
DITU			
	0 = ADC is di	sabled and consumes no ope	rating current
Note 1: Pl	C16(L)F1829 or	nlv.	·······
2: Se	e Section 17.0	"Digital-to-Analog Converte	er (DAC) Module"for more information.
3: Se	e Section 14.0	"Fixed Voltage Reference (FVR)" for more information.
4: Se	e Section 15.0	"Temperature Indicator Mo	dule" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	123
CCP1CON	P1M·	<1:0>	DC1B	<1:0>		CCP1N	1<3:0>		224
CCP2CON	P2M·	<1:0>	DC2B	<1:0>		CCP2N	1<3:0>		224
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	124
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92
TMR1H	Holding Regist	er for the Most	Significant Byte	of the 16-bit T		181*			
TMR1L	Holding Regist	er for the Least	Significant Byte	e of the 16-bit ⊺	FMR1 Register				181*
TRISA	—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
T1CON	TMR1C	CS<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	185
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GS	S<1:0>	186

 Unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.
 * Page provides register information. Legend:

R/W-x/u	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
MDMSODIS		_	_		MDMS	S<3:0>	
bit 7		•					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	MDMSODIS:	Modulation So	urce Output D	Disable bit			
	1 = Output si	gnal driving the	e peripheral o	utput pin (selec	ted by MDMS<	3:0>) is disable	ed
	0 = Output si	gnal driving the	e peripheral o	utput pin (selec	ted by MDMS<	3:0>) is enable	d
bit 6-4	Unimplemen	ted: Read as '	0'				
bit 3-0	MDMS<3:0>	Modulation Sou	urce Selection	n bits			
	1111 = Rese	erved. No char	nnel connecte	d.			
	1110 = Rese	erved. No char	nnel connecte	d.			
	1101 = Rese	erved. No char	nnel connecte	d.			
	1011 = Rese	erved No char	nel connecte	d.			
	1010 = EUS	ART TX output	t	·u.			
	1001 = MSS	P2 SDO1 outp	out				
	1000 = MSS	P1 SDO2 outp	out				
	0111 = Com	parator2 outpu	t				
	0110 = Com	parator1 outpu	t				
	0101 = CCP	4 output (PWN	1 Output mode	e only)			
	0100 = CCP	'3 output (PWN	1 Output mode	e only)			
	0011 = CCP	2 output (PWN	1 Output mode	e only)			
	0010 = CCP	1 Output (PVVIV	1 Output mode	e only)			
		AT hit of MDCC	N register is	modulation sou	Irce		
			Sin register is				

REGISTER 23-2: MDSRC: MODULATION SOURCE CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

24.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (FOSC/4), or by an external clock source.

When Timer1 is clocked by FOSC/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

24.1.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFCON0 and APFCON1. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 12.1** "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON1	—		SDO2SEL ⁽²⁾	SS2SEL ⁽²⁾	P1DSEL	P1CSEL	P2BSEL	CCP2SEL	119
CCP1CON	P1M<	1:0>(1)	DC1B	<1:0>		CCP1M<	:3:0>		224
CCP2CON	P2M<	1:0> (1)	DC2B	<1:0>		CCP2M<	:3:0>		224
CCP3CON	—	_	DC3B	<1:0>		CCP3M<	:3:0>		224
CCP4CON	—	_	DC4B	<1:0>		CCP4M<	:3:0>		224
CCPRxL	Capture/Com	pare/PWM Reg	gister x Low By	rte (LSB)					202*
CCPRxH	Capture/Com	pare/PWM Reg	gister x High B	yte (MSB)					202*
CMxCON0	CxON	CxOUT	CxOE	CxPOL	—	CxSP	CxHYS	CxSYNC	171
CMxCON1	CxINTP	CxINTN	CxPCH	H<1:0>	—	_	CxNCI	H<1:0>	172
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	124
INLVLC	INLVLC7(2)	INLVLC6(2)	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	135
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE		_	CCP2IE	89
PIE3	_		CCP4IE	CCP3IE	TMR6IE		TMR4IE	_	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	-	—	CCP2IF	93
PIR3	_		CCP4IF	CCP3IF	TMR6IF		TMR4IF	_	94
T1CON	TMR1C	:S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	—	TMR10N	185
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GTM T1GSPM T1GGO/DONE T1GVAL T1				S<1:0>	186
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								181*
TMR1H	Holding Regis	ster for the Mos	st Significant B	yte of the 16-b	it TMR1 Register				181*
TRISA	—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISC	TRISC7(2)	TRISC6 ⁽²⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	133

TABLE 24-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

Legend: — Unimplemented location, read as '0'. Shaded cells are not used by Capture mode.

* Page provides register information.

1: Applies to ECCP modules only.

2: PIC16(L)F1829 only.

Note

FIGURE 24-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

xM<	1:0>	Signal	⁰ ;◀	Pulse Width	▶	PRx+1
			-		Period	—
00	(Single Output)	PxA Modulated	= — <u> </u>			
		PxA Modulated			→ Delav	<u> </u>
10	(Half-Bridge)	PxB Modulated		iy		
		PxA Active			· · ·	
01	(Full-Bridge,	PxB Inactive	_ :		- I I I	
	T Of Wald)	PxC Inactive	!			
		PxD Modulated	= —į́			
		PxA Inactive			 	
11	(Full-Bridge,	PxB Modulated	= — <u>i</u>			
	Reverse)	PxC Active	;		- - - -	
		PxD Inactive	;		 	I I

Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
Delay = 4 * Tosc * (PWMxCON<6:0>)

24.4.2 FULL-BRIDGE MODE

In Full-Bridge mode, all four pins are used as outputs. An example of full-bridge application is shown in Figure 24-10.

In the Forward mode, pin CCPx/PxA is driven to its active state, pin PxD is modulated, while PxB and PxC will be driven to their inactive state as shown in Figure 24-11.

In the Reverse mode, PxC is driven to its active state, pin PxB is modulated, while PxA and PxD will be driven to their inactive state as shown Figure 24-11.

PxA, PxB, PxC and PxD outputs are multiplexed with the PORT data latches. The associated TRIS bits must be cleared to configure the PxA, PxB, PxC and PxD pins as outputs.

FIGURE 24-10: EXAMPLE OF FULL-BRIDGE APPLICATION

TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL ⁽²⁾	SS1SEL ⁽²⁾		T1GSEL	TXCKSEL		—	118
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN	292
INLVLA ⁽³⁾	—	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	124
INLVLB ⁽¹⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	_	_		_	129
INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	135
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	291
SPBRGL				SPBRG	6<7:0>				293*
SPBRGH				SPBRG	<15:8>				293*
TRISA	—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	—		_	128
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	133
TXREG	EUSART Transmit Data Register								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	290

Legend: — Unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission.

* Page provides register information.

Note 1: PIC16(L)F1829 only.

2: PIC16(L)F1825 only.

3: Unshaded cells apply to PIC16(L)F1825 only.

27.5 Timer Resources

To measure the change in frequency of the capacitive sensing oscillator, a fixed time base is required. For the period of the fixed time base, the capacitive sensing oscillator is used to clock either Timer0 or Timer1. The frequency of the capacitive sensing oscillator is equal to the number of counts in the timer divided by the period of the fixed time base.

27.6 Fixed Time Base

To measure the frequency of the capacitive sensing oscillator, a fixed time base is required. Any timer resource or software loop can be used to establish the fixed time base. It is up to the end user to determine the method in which the fixed time base is generated.

Note:	The fixed time base can not be generated
	by the timer resource that the capacitive
	sensing oscillator is clocking.

27.6.1 TIMER0

To select Timer0 as the timer resource for the CPS module:

- Set the T0XCS bit of the CPSCON0 register.
- Clear the TMR0CS bit of the OPTION_REG register.

When Timer0 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer0. Refer to **Section 20.0** "**Timer0 Module**" for additional information.

27.6.2 TIMER1

To select Timer1 as the timer resource for the CPS module, set the TMR1CS<1:0> of the T1CON register to '11'. When Timer1 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer1. Because the Timer1 module has a gate control, developing a time base for the frequency measurement can be simplified by using the Timer0 overflow flag.

It is recommend that the Timer0 overflow flag, in conjunction with the Toggle mode of the Timer1 Gate, be used to develop the fixed time base required by the software portion of the CPS module. Refer to **Section 21.12 "Timer1 Gate Control Register"** for additional information.

TABLE 27-2: TIMER1 ENABLE FUNCTION

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	On
1	1	Count Enabled by input

27.7 Software Control

The software portion of the CPS module is required to determine the change in frequency of the capacitive sensing oscillator. This is accomplished by the following:

- Setting a fixed time base to acquire counts on Timer0 or Timer1.
- Establishing the nominal frequency for the capacitive sensing oscillator.
- Establishing the reduced frequency for the capacitive sensing oscillator due to an additional capacitive load.
- Set the frequency threshold.

27.7.1 NOMINAL FREQUENCY (NO CAPACITIVE LOAD)

To determine the nominal frequency of the capacitive sensing oscillator:

- Remove any extra capacitive load on the selected CPSx pin.
- At the start of the fixed time base, clear the timer resource.
- At the end of the fixed time base save the value in the timer resource.

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator for the given time base. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base.

27.7.2 REDUCED FREQUENCY (ADDITIONAL CAPACITIVE LOAD)

The extra capacitive load will cause the frequency of the capacitive sensing oscillator to decrease. To determine the reduced frequency of the capacitive sensing oscillator:

- Add a typical capacitive load on the selected CPSx pin.
- Use the same fixed time base as the nominal frequency measurement.
- At the start of the fixed time base, clear the timer resource.
- At the end of the fixed time base save the value in the timer resource.

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator with an additional capacitive load. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base. This frequency should be less than the value obtained during the nominal frequency measurement.

28.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC16(L)F1825/9 devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Word 2 is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. $\overline{\text{MCLR}}$ is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 7.3 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

28.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP™ header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6 connector) configuration. See Figure 28-2.

FIGURE 28-2: ICD RJ-11 STYLE CONNECTOR INTERFACE

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 28-3.

FIGURE 28-3: PICkit[™] STYLE CONNECTOR INTERFACE

LSLF	Logical Left Shift	MOVF	Move f		
Syntax:	[<i>label</i>] LSLF f {,d}	Syntax:	[<i>label</i>] MOVF f,d		
Operands:	$0 \le f \le 127$ d $\in [0,1]$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	$(f < 7 >) \rightarrow C$	Operation:	$(f) \rightarrow (dest)$		
	$(f < 6:0 >) \rightarrow dest < 7:1 >$	Status Affected:	Z		
Status Affected:	tus Affected: C, Z		The contents of register f is moved to a destination dependent upon the		
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.		status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.		
	C	Words:	1		
		Cycles:	1		
		Example:	MOVF FSR, 0		
LSRF Logical Right Shift			After Instruction W = value in FSR register		
Syntax:	[<i>label</i>]LSRF f{,d}		Z = 1		

Syntax:	[<i>label</i>]LSRF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$\begin{array}{l} 0 \rightarrow dest < 7 \\ (f < 7:1 >) \rightarrow dest < 6:0 >, \\ (f < 0 >) \rightarrow C, \end{array}$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

0-	register f		С
	9	I L	

TABLE 30-10: COMPARATOR SPECIFICATIONS

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C							
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
CM01	VIOFF	Input Offset Voltage ⁽¹⁾		±7.5	±60	mV	High-Power mode VICM = VDD/2
CM02	VICM	Input Common Mode Voltage	0	—	Vdd	V	
CM03	CMRR	Common Mode Rejection Ratio	_	50		dB	
CM04A		Response Time Rising Edge	_	400	800	ns	High-Power mode
CM04B	тогор(1)	Response Time Falling Edge		200	400	ns	High-Power mode
CM04C	TRESPY	Response Time Rising Edge	_	1200		ns	Low-Power mode
CM04D		Response Time Falling Edge	_	550	-	ns	Low-Power mode
CM05	Тмс2о∨	Comparator Mode Change to Output Valid*	_	_	10	μS	
CM06	CHYSTER	Comparator Hysteresis ⁽²⁾	_	65	_	mV	CxHYS = 1

Note 1: High-Power mode only.

2: Comparator Hysteresis is available when the CxHYS bit of the CMxCON0 register is enabled.

TABLE 30-11: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
DAC01*	CLSB	Step Size ⁽²⁾		VDD/32		V		
DAC02*	CACC	Absolute Accuracy	—	_	± 1/2	LSb		
DAC03*	CR	Unit Resistor Value (R)	—	5K		Ω		
DAC04*	Сѕт	Settling Time ⁽¹⁾	_	_	10	μS		

These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '0000' to '1111'.

TABLE 30-12: PIC16(L)F1825/9 LOW DROPOUT (LDO) REGULATOR CHARACTERISTICS:

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic Min. Typ† Max. Units Conditions						
LD001		LDO Regulation Voltage	—	3.2		V		
LD002		LDO External Capacitor	0.1	_	1	μF		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 31-35: IPD, CAPACITIVE SENSING (CPS) MODULE, HIGH-CURRENT RANGE, CPSRM = 0, PIC16LF1825/9 ONLY

FIGURE 31-36: IPD, CAPACITIVE SENSING (CPS) MODULE, HIGH-CURRENT RANGE, CPSRM = 0, PIC16F1825/9 ONLY

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-065C Sheet 1 of 2

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087C Sheet 1 of 2