

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

201010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1825-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Flash Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM
- Data EEPROM memory⁽¹⁾

Note 1:	The	Data	El	EPROM	Men	nory	and	the
	meth	nod to a	aco	cess Flas	sh me	emory	y thro	ugh
	the	EECO	Ν	register	s is	dese	cribec	in l
	Sect	ion 11	.0	"Data El	EPRO	DM a	nd Fl	ash
	Prog	gram N	le	mory Co	ntro	".		

TABLE 3-1:DEVICE SIZES AND ADDRESSES

Device	Program Memory Space (Words)	Last Program Memory Address
PIC16(L)F1825 PIC16(L)F1829	8,192	7FFFh

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing $32K \times 14$ program memory space. Table 3-1 shows the memory sizes implemented for the PIC16(L)F1825/9 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (See Figure 3-1).

PIC16(L)F1825/9

PIC16(L)F1825/9

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR

	PC<14:0>	7				
CALL, CALLW RETURN, RETLW Interrupt, RETFIE						
	Stack Level 0	7 I				
	Stack Level 1					
	Stack Level 15					
	Reset Vector	0000h				
		000011				
(Interrupt Vector	0004h 0005h				
	Page 0	0005h 07FFh				
		0800h				
	Page 1					
On-chip		0FFFh				
Program < Memory		1000h				
memory	Page 2	17FFh				
	Page 3	1800h				
	Fage 3					
		1FFFh				
	Rollover to Page 0	2000h				
	•					
	•					
	Rollover to Page 3	7FFFh				

3.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1:	RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	IDEX
call constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The High directive will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants					
RETLW	DATA0	;Ir	ndex0	data	
RETLW	DATA1	;Ir	ndex1	data	
RETLW	DATA2				
RETLW	DATA3				
my_functi	on				
; LO	IS OF CODE.				
MOVLW	LOW cons	tants			
MOVWF	FSR1L				
MOVLW	HIGH con	stants	5		
MOVWF	FSR1H				
MOVIW	0[FSR1]				
;THE PROG	RAM MEMORY	IS IN	W		

3.2 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-2):

- · 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- · 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.5** "**Indirect Addressing**" for more information.

Data Memory uses a 12-bit address. The upper seven bits of the address define the Bank address and the lower five bits select the registers/RAM in that bank.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation of the PIC16(L)F1825/9. These registers are listed below:

- INDF0
- INDF1
- PCL
- STATUS
- FSR0 Low
- FSR0 High
- FSR1 Low
- FSR1 High
- BSR
- WREG
- PCLATH
- INTCON

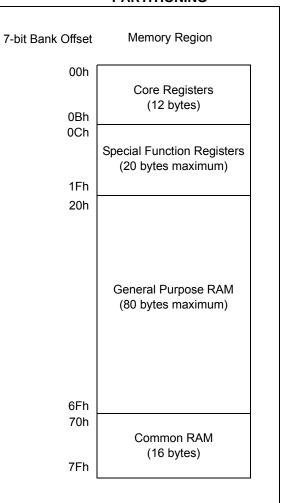
Note: The core registers are the first 12 addresses of every data memory bank.

3.2.2 SPECIAL FUNCTION REGISTER

The Special Function Registers (FSR) are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.2.3 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).


3.2.3.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.5.2** "**Linear Data Memory**" for more information.

3.2.4 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-2: BANKED MEMORY PARTITIONING

3.2.5 DEVICE MEMORY MAPS

The memory maps for the device family are as shown in Table 3-2.

TABLE 3-2: MEMORY MAP TABLES

Device	Banks	Table No.
PIC16(L)F1825	0-7	Table 3-3
PIC16(L)F1829	8-15	Table 3-4
	16-23	Table 3-5
	24-31	Table 3-6
	31	Table 3-7

8.6.9 PIR4 REGISTER⁽¹⁾

The PIR4 register contains the interrupt flag bits, as shown in Register 8-9.

Note 1:	The PIR4 register is available only on the
	PIC16(L)F1829 device.

2: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 8-9: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
—	—	—	_	—	—	BCL2IF	SSP2IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set '0' = Bit is cleared		HS = Bit is set by hardware

Unimplemented: Read as '0'
BCL2IF: MSSP2 Bus Collision Interrupt Flag bit
1 = A Bus Collision was detected (must be cleared in software)
0 = No Bus collision was detected
SSP2IF: Master Synchronous Serial Port 2 (MSSP2) Interrupt Flag bit
 1 = The Transmission/Reception/Bus Condition is complete (must be cleared in software) 0 = Waiting to Transmit/Receive/Bus Condition in progress

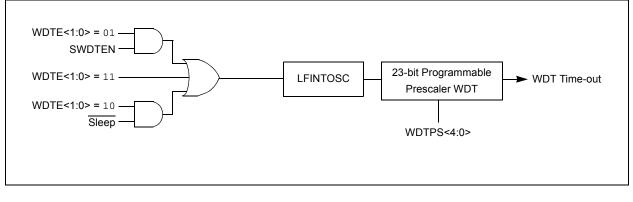
Note 1: This register is only available on PIC16(L)F1829.

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>			176
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE			CCP2IE	89
PIE3	—		CCP4IE	CCP3IE	TMR6IE	-	TMR4IE	_	90
PIE4 ⁽¹⁾	—	-	-	-	_	_	BCL2IE	SSP2IE	91
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	_	_	CCP2IF	93
PIR3	_	—	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	94
PIR4 ⁽¹⁾	_	_	_	_	_	_	BCL2IF	SSP2IF	95

Legend: — Unimplemented locations read as '0'. Shaded cells are not used by interrupts.

Note 1: PIC16(L)F1829 only.


10.0 WATCHDOG TIMER

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- · Independent clock source
- · Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (typical)
- Multiple Reset conditions
- Operation during Sleep

PIC16(L)F1825/9

EXAM	PLE 11-4:	ERASING ON	E ROW OF PROGRAM MEMORY
; This	row erase	routine assumes	the following:
; 1. A	valid addr	ess within the	erase block is loaded in ADDRH:ADDRL
; 2. A	DDRH and AD	DRL are located	l in shared data memory 0x70 - 0x7F
	BCF BANKSEL MOVF MOVWF MOVF BSF BCF	EECON1,CFGS	
	BSF		; Specify an erase operation
	BSF	EECON1,WREN	; Enable writes
Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP	55h EECON2 0AAh EECON2 EECON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; Any instructions here are ignored as processor</pre>
	NOP		; halts to begin erase sequence ; Processor will stop here and wait for erase complete.
	BCF BSF	EECON1, WREN INTCON, GIE	 ; after erase processor continues with 3rd instruction ; Disable writes ; Enable interrupts
			-

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
		l	EEPROM Co	ontrol Register 2			
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable	bit	U = Unimplen	as '0'		
S = Bit can only I	be set	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all			ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 11-6: EECON2: EEPROM CONTROL 2 REGISTER

bit 7-0 Data EEPROM Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the EECON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes. Refer to **Section 11.2.2** "Writing to the Data EEPROM Memory" for more information.

TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	114
EECON2	EEPROM Control Register 2 (not a physical register)						115*		
EEADRL		EEADRL<7:0>						113	
EEADRH	(1)	(1) EEADRH<6:0						113	
EEDATL				EEDAT	[L<7:0>				113
EEDATH	—	_			EEDAT	H<5:0>			113
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	—	CCP2IE	89
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	—		CCP2IF	93

Legend: — Unimplemented location, read as '0'. Shaded cells are not used by data EEPROM module. * Page provides register information.

Note 1: Unimplemented, read as '1'.

16.2.7 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

REGISTER 16-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0

Legend:			
R = Read	lable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is	unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is	s set	'0' = Bit is cleared	
bit 7	Unimpler	mented: Read as '0'	
bit 6-2	CHS<4:0	3	
	00000 =	AN0	
	00001 =	AN1	
	00010 =	AN2	
	00011 =	-	
	00100 =		
	00101 =		
	00110 = 00111 =		
	01000 =		
	01000 =		
	01010 =		
	01011 =		
	01100 =	Reserved. No channel conne	ected.
	•		
	•		
	•		
		Reserved. No channel conne	cted.
		Temperature Indicator ⁽⁴⁾	
		DAC_output ⁽²⁾ FVR (Fixed Voltage Referenc	$a \rightarrow 0.1 \pm 1.1 \pm $
		- ` *	
bit 1		E: A/D Conversion Status bit	
			Setting this bit starts an A/D conversion cycle.
			hardware when the A/D conversion has completed.
		onversion completed/not in p	rogress
bit 0	-	DC Enable bit	
	-	is enabled	
		is disabled and consumes no	operating current
Note 1:	()	•	
2:			verter (DAC) Module"for more information.
3:	See Section 1	4.0 "Fixed Voltage Referen	ce (FVR)" for more information.
4:	See Section 1	5.0 "Temperature Indicator	Module" for more information.

19.9 Interaction with ECCP Logic

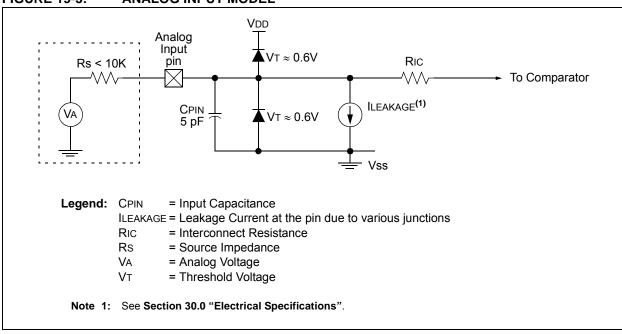
In some devices, a comparator output signal can be used to trigger the auto-shutdown feature found within the ECCP module. When the ECCP auto-shutdown feature is enabled and a comparator output signal is selected as the source, the comparator can be used simultaneously as a general purpose comparator and as the ECCP auto-shutdown source. In addition, the comparator output signal can also be routed to the designated I/O pin. If the ECCP Auto-Restart mode is also enabled, the comparators can be used as a closed loop analog feedback circuit to the ECCP, thereby creating an analog controlled PWM.

Please see section

for more information.

Note: When the comparator module is first initialized the output state is unknown. Upon initialization, the user should verify the output state of the comparator prior to relying on the result, primarily when using the result in connection with other peripheral features, such as the ECCP Auto-Shutdown mode.

FIGURE 19-3: ANALOG INPUT MODEL


19.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 19-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD.

If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1			
_	_	—	STRxSYNC	STRxD	STRxC	STRxB	STRxA			
bit 7				•	•		bit C			
Legend:										
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
u = Bit is unchanged		x = Bit is unk	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets			
'1' = Bit is s	et	'0' = Bit is cle	'0' = Bit is cleared							
bit 7-5	Unimplemented: Read as '0'									
bit 4	STRxSYNC: Steering Sync bit									
		teering update occurs on next PWM period								
0 = Output steering update occurs at the beginning of the instruction cycle boundary										
bit 3		ering Enable bi								
	•	1 = PxD pin has the PWM waveform with polarity control from CCPxM<1:0>								
	•	s assigned to port pin								
bit 2		ering Enable bi								
	•		vaveform with p	olarity control	from CCPxM<	1:0>				
	•	is assigned to	•							
bit 1		ering Enable bi								
	•		vaveform with p	olarity control	from CCPxM<	1:0>				
	0 = PxB pin i	0 = PxB pin is assigned to port pin								
bit 0 STRxA: Steering Enable bit A										
	1 = PxA pin ł	has the PWM v	vaveform with p	olarity control	from CCPxM<	1:0>				
	0 = PxA pin i	s assigned to p	port pin							
Note 1:	The PWM Steerin	ia mode is ava	ilable only wher	the CCPxCO	N register hits (CCPxM<3·2> =	11 and			

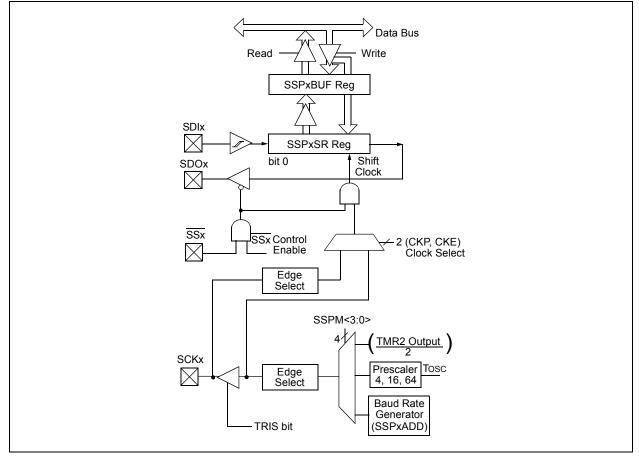
REGISTER 24-5: PSTRxCON: PWM STEERING CONTROL REGISTER⁽¹⁾

Note 1: The PWM Steering mode is available only when the CCPxCON register bits CCPxM<3:2> = 11 and PxM<1:0> = 00.

25.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP1 AND MSSP2) MODULE

25.1 Master SSPx (MSSPx) Module Overview

The Master Synchronous Serial Port (MSSPx) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSPx module can operate in one of two modes:


- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

The SPI interface supports the following modes and features:

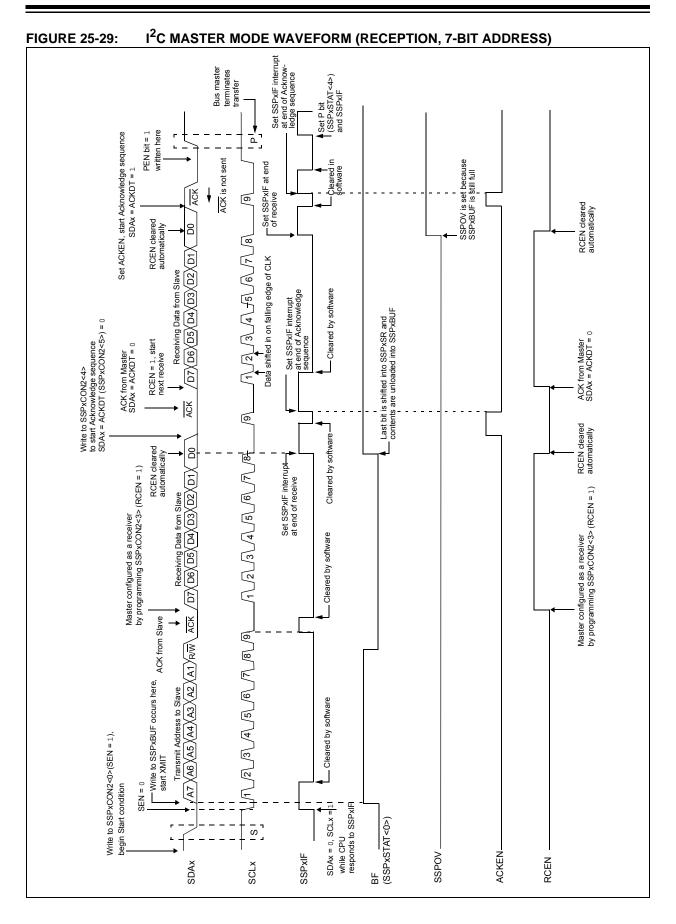

- Master mode
- · Slave mode
- · Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 25-1 is a block diagram of the SPI interface module.

FIGURE 25-1: MSSPx BLOCK DIAGRAM (SPI MODE)

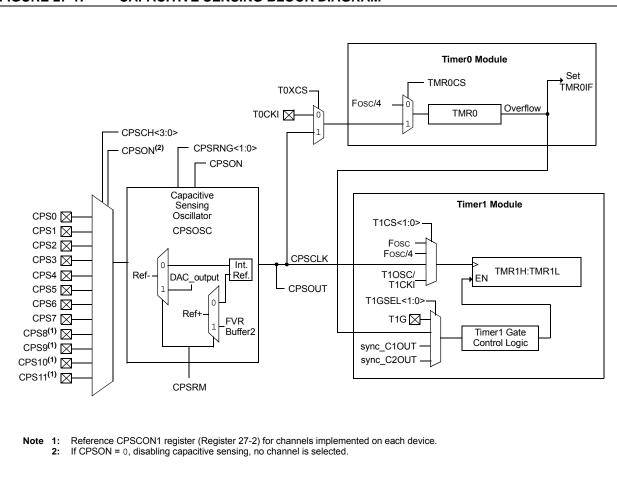
PIC16(L)F1825/9

FIGURE 26-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin TX/CK pin (SCKP = 0)	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TX/CK pin	
SREN bit	°0
RCIF bit (Interrupt) — Read RCREG — RCREG	
	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TABLE 26-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL ⁽¹⁾	SS1SEL ⁽¹⁾	-	T1GSEL	TXCKSEL	-	—	118
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	292
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	92
RCREG	EUSART Re	ceive Data Reg	ister						286*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	291
SPBRGL		SPBRG<7:0>						293*	
SPBRGH		SPBRG<15:8>						293*	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	290

Legend: — Unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.


* Page provides register information.

Note 1: PIC16(L)F1825 only.

27.0 CAPACITIVE SENSING (CPS) MODULE

The Capacitive Sensing (CPS) module allows for an interaction with an end user without a mechanical interface. In a typical application, the CPS module is attached to a pad on a Printed Circuit Board (PCB), which is electrically isolated from the end user. When the end user places their finger over the PCB pad, a capacitive load is added, causing a frequency shift in the CPS module. The CPS module requires software and at least one timer resource to determine the change in frequency. Key features of this module include:

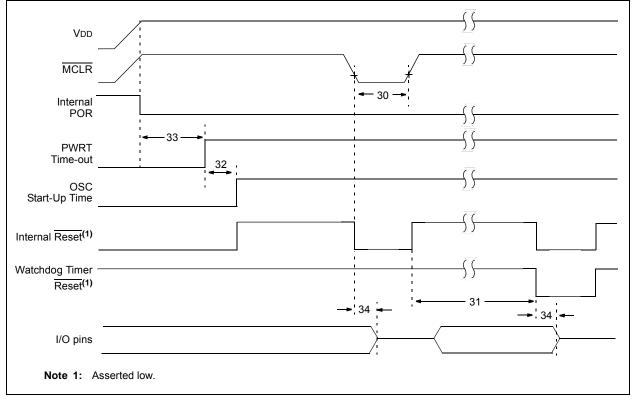
- · Analog MUX for monitoring multiple inputs
- · Capacitive sensing oscillator
- · Multiple current modes
- Multiple voltage reference modes
- Multiple timer resources
- · Software control
- · Operation during Sleep

FIGURE 27-1: CAPACITIVE SENSING BLOCK DIAGRAM

R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R-0/0	R/W-0/0	
CPSON	CPSRM	_	_	CPSRN	NG<1:0>	CPSOUT	T0XCS	
bit 7							bit (
d.								
Legend:						1		
R = Readable		W = Writable		•	nented bit, read			
u = Bit is unch	0	x = Bit is unki		-n/n = value a	at POR and BC	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is cle	ared					
bit 7 CPSON: Capacitive Sensing Module Enable bit 1 = CPS module is enabled 0 = CPS module is disabled								
bit 6 CPSRM: Capacitive Sensing Reference Mode bit 1 = Capacitive Sensing module is in Variable Voltage Reference mode. 0 = Capacitive Sensing module is in Fixed Voltage Reference mode								
bit 5-4	Unimplemer	Unimplemented: Read as '0'						
bit 3-2	CPSRNG<1:0>: Capacitive Sensing Current Range bits <u>If CPSRM = 0 (Fixed Voltage Reference mode):</u> 00 = Oscillator is off 01 = Oscillator is in low range 10 = Oscillator is in medium range 11 = Oscillator is in high range							
	00 = Oscillat 01 = Oscillat 10 = Oscillat	<u>1 (Variable Volt</u> or is on. Noise or is in low rang or is in medium or is in high rar	Detection mo ge range	<u>ce mode):</u> ode. No Charge/	Discharge curr	ent is supplied.		
bit 1	1 = Oscillato		irrent (Currer	Status bit nt flowing out of flowing into the				
bit 0 TOXCS: Timer0 External Clock Source Select bit If TMR0CS = 1: The TOXCS bit controls which clock external to the core/Timer0 module s 1 = Timer0 clock source is the capacitive sensing oscillator 0 = Timer0 clock source is the TOCKI pin If TMR0CS = 0: Timer0 clock source is controlled by the core/Timer0 module and is Fosc.):		

REGISTER 27-1: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0

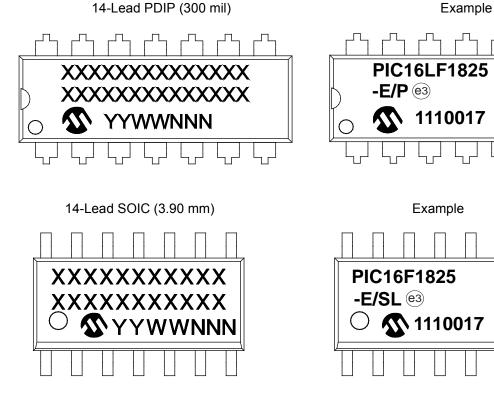
TABLE 30-4: **CLKOUT AND I/O TIMING PARAMETERS**


Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C \leq TA \leq +125°C								
Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	_		70	ns	VDD = 3.3-5.0V		
TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—	_	72	ns	VDD = 3.3-5.0V		
TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	_	_	20	ns			
TioV2ckH	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns	_	_	ns			
TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-5.0V		
TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50		—	ns	VDD = 3.3-5.0V		
TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20		—	ns			
TioR	Port output rise time	_	40 15	72 32	ns	VDD = 1.8V VDD = 3.3-5.0V		
TioF	Port output fall time	_	28 15	55 30	ns	VDD = 1.8V VDD = 3.3-5.0V		
Tinp	INT pin input high or low time	25	_	—	ns			
Tioc	Interrupt-on-change new input level time	25		—	ns			
	sym. TosH2ckL TosH2ckH TckL2ioV TioV2ckH TosH2ioV TosH2ioI TioV2osH TioR TioF Tinp Tioc	sym.CharacteristicTosH2ckLFosc^ to CLKOUT \downarrow (1)TosH2ckHFosc^ to CLKOUT \uparrow (1)TokL2ioVCLKOUT \downarrow to Port out valid (1)TioV2ckHPort input valid before CLKOUT \uparrow (1)TosH2ioVFosc^ (Q1 cycle) to Port out validTosH2ioIFosc^ (Q2 cycle) to Port input invalid (I/O in hold time)TioV2osHPort input valid to Fosc^ (Q2 cycle) (I/O in setup time)TioRPort output rise timeTioFPort output fall timeTinpINT pin input high or low timeTiocInterrupt-on-change new input level	ng Temperature -40°C \leq TA \leq +125°CSym.CharacteristicMin.TosH2ckLFosc^t to CLKOUT \downarrow (1)—TosH2ckHFosc^t to CLKOUT \uparrow (1)—TckL2ioVCLKOUT \downarrow to Port out valid (1)—TioV2ckHPort input valid before CLKOUT \uparrow (1)Tosc + 200 nsTosH2ioVFosc^t (Q1 cycle) to Port out valid—TosH2ioIFosc^t (Q2 cycle) to Port input invalid (I/O in hold time)50TioV2osHPort input valid to Fosc^t (Q2 cycle) (I/O in setup time)20TioRPort output rise time—TioFPort output fall time—TinpINT pin input high or low time25TiocInterrupt-on-change new input level time25	Sym.CharacteristicMin.TyptTosH2ckLFosc^t to CLKOUT \downarrow (1)TosH2ckHFosc^t to CLKOUT \uparrow (1)TckL2ioVCLKOUT \downarrow to Port out valid (1)TioV2ckHPort input valid before CLKOUT \uparrow (1)Tosc + 200 nsTosH2ioVFosc^t (Q1 cycle) to Port out valid50TosH2ioVFosc^t (Q2 cycle) to Port input invalid50TioV2osHPort input valid to Fosc^t (Q2 cycle)20TioRPort output rise time40TioFPort output fall time15TinpINT pin input high or low time25TiocInterrupt-on-change new input level25	Ing Temperature -40°C \leq TA \leq +125°CMin.TyptMax.Sym.CharacteristicMin.TyptMax.TosH2ckLFosc^t to CLKOUT \downarrow (1)70TosH2ckHFosc^t to CLKOUT \uparrow (1)72TckL2ioVCLKOUT \downarrow to Port out valid (1)20TioV2ckHPort input valid before CLKOUT \uparrow (1)Tosc + 200 nsTosH2ioVFosc^t (Q1 cycle) to Port out valid5070*TosH2ioIFosc^t (Q2 cycle) to Port input invalid (I/O in hold time)50TioV2osHPort input valid to Fosc^t (Q2 cycle) (I/O in setup time)20TioRPort output rise time4072TioFPort output fall time2855TioPINT pin input high or low time25TiocInterrupt-on-change new input level time25	sym.CharacteristicMin.TyptMax.UnitsTosH2ckLFosc^ to CLKOUT \downarrow (1)70nsTosH2ckHFosc^ to CLKOUT \uparrow (1)72nsTckL2ioVCLKOUT \downarrow to Port out valid (1)20nsTioV2ckHPort input valid before CLKOUT \uparrow (1)Tosc + 200 nsnsTosH2ioVFosc^ (Q1 cycle) to Port out valid5070*nsTosH2ioVFosc^ (Q2 cycle) to Port input invalid50nsTosH2ioIFosc^ (Q2 cycle) to Port input invalid50nsTioV2osHPort input valid to Fosc^ (Q2 cycle)20nsTioRPort output rise time4072nsTioFPort output fall time2855nsTinpINT pin input high or low time25nsTioCInterrupt-on-change new input level25ns		

These parameters are characterized but not tested.

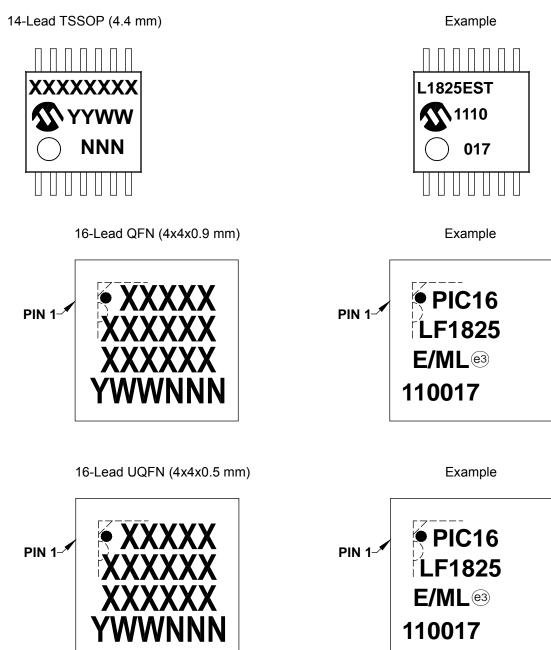
Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. t

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

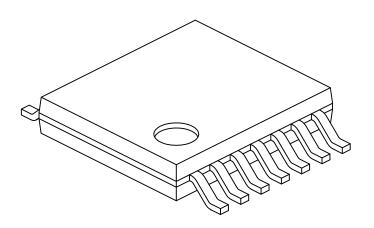

RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP **FIGURE 30-8:** TIMER TIMING

33.0 **PACKAGING INFORMATION**

33.1 **Package Marking Information**


14-Lead PDIP (300 mil)

Legend	d: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.


PIC16(L)F1825/9

33.1 Package Marking Information (Continued)

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	14		
Pitch	е	0.65 BSC		
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.80	1.00	1.05
Standoff	A1	0.05	-	0.15
Overall Width	E	6.40 BSC		
Molded Package Width	E1	4.30	4.40	4.50
Molded Package Length	D	4.90	5.00	5.10
Foot Length	L	0.45	0.60	0.75
Footprint	(L1)	1.00 REF		
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.19	-	0.30

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or

protrusions shall not exceed 0.15mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2