

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1829-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IABLE	. 3-0.	SPECIAL F	UNCTION	REGIST	ER SUMI			-D)	1	1	1
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3	1										
F80h ⁽¹⁾	INDF0	DF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)									XXXX XXXX
F81h ⁽¹⁾	INDF1	Addressing the (not a physic)		es contents of	FSR1H/FSR1	1L to address	data memory	ý		XXXX XXXX	XXXX XXXX
F82h ⁽¹⁾	PCL	Program Cou	inter (PC) Lea	st Significant E	Byte					0000 0000	0000 0000
F83h ⁽¹⁾	STATUS	_	_	—	TO	PD	Z	DC	С	1 1000	q quuu
F84h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poi	nter			•	•	0000 0000	uuuu uuuu
F85h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Po	inter					0000 0000	0000 0000
F86h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poi	nter					0000 0000	uuuu uuuu
F87h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Po	inter					0000 0000	0000 0000
F88h ⁽¹⁾	BSR		—	—			BSR<4:0>			0 0000	0 0000
F89h ⁽¹⁾	WREG	Working Reg	ister							0000 0000	uuuu uuuu
F8Ah ⁽¹⁾	PCLATH	_	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	er			-000 0000	-000 0000
F8Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
F8Ch	—	Unimplement	ted							-	_
FE3h						-					
FE4h	STATUS_ SHAD	-	_	—	_	_	Z_SHAD	DC_SHAD	C_SHAD	xxx	uuu
FE5h	WREG_ SHAD	Working Reg	ister Shadow							0000 0000	uuuu uuuu
FE6h	BSR_ SHAD	—	_	_	Bank Select	Register Sha	dow			x xxxx	u uuuu
FE7h	PCLATH_ SHAD	-	Program Cou	Inter Latch Hig	h Register Sh	nadow				-xxx xxxx	uuuu uuuu
FE8h	FSR0L_ SHAD	Indirect Data	Memory Addr	ess 0 Low Poi	nter Shadow					XXXX XXXX	uuuu uuuu
FE9h	FSR0H_ SHAD	Indirect Data	Memory Addr	ess 0 High Po	inter Shadow					XXXX XXXX	uuuu uuuu
FEAh	FSR1L_ SHAD	Indirect Data	Indirect Data Memory Address 1 Low Pointer Shadow							XXXX XXXX	uuuu uuuu
FEBh	FSR1H_ SHAD	Indirect Data	Indirect Data Memory Address 1 High Pointer Shadow							XXXX XXXX	uuuu uuuu
FECh	—	Unimplement	Unimplemented							_	-
FEDh	STKPTR	—	_	_	Current Stac	k pointer				1 1111	1 1111
FEEh	TOSL	Top-of-Stack	Low byte		1					xxxx xxxx	uuuu uuuu
FEFh	TOSE	_	Top-of-Stack	Hiah byte						-xxx xxxx	
	1030			• •							auu uuu

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-8:**

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: These registers can be addressed from any bank.

2: PIC16(L)F1829 only.

3: PIC16(L)F1825 only.

4: Unimplemented, read as '1'.

EXAM	PLE 11-4:	ERASING ON	E ROW OF PROGRAM MEMORY									
; This	row erase	routine assumes	the following:									
; 1. A	valid addr	ess within the	erase block is loaded in ADDRH:ADDRL									
; 2. A	; 2. ADDRH and ADDRL are located in shared data memory $0x70$ - $0x7F$											
	BCF BANKSEL MOVF MOVWF MOVF BSF BCF	EECON1,CFGS										
	BSF		; Specify an erase operation									
	BSF	EECON1,WREN	; Enable writes									
Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP	55h EECON2 0AAh EECON2 EECON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; Any instructions here are ignored as processor</pre>									
	NOP		; halts to begin erase sequence ; Processor will stop here and wait for erase complete.									
	BCF BSF	EECON1, WREN INTCON, GIE	 ; after erase processor continues with 3rd instruction ; Disable writes ; Enable interrupts 									
			-									

11.7 EEPROM and Flash Control Registers

REGISTER 11-1: EEDATL: EEPROM LOW BYTE DATA REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			EEDA	T<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	3	
u = Bit is unchang	ed	x = Bit is unknow	n	-n/n = Value at F	POR and BOR/Valu	ue at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared	I				

bit 7-0

-0 EEDAT<7:0>: Read/write value for EEPROM data byte or Least Significant bits of program memory

REGISTER 11-2: EEDATH: EEPROM DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			EEDA	T<13:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 EEDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 11-3: EEADRL: EEPROM ADDRESS REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | EEADI | R<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Logondy | | | | | | | |

Legend.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 EEADR<7:0>: Specifies the Least Significant bits for program memory address or EEPROM address

REGISTER 11-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				EEADR<14:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 EEADR<14:8>: Specifies the Most Significant bits for program memory address or EEPROM address

Note 1: Unimplemented, read as '1'.

12.2 PORTA Registers

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 12-4). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input only and its TRIS bit will always read as '1'. Example 12-2 shows how to initialize a port.

Reading the PORTA register (Register 12-3) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

The TRISA register (Register 12-4) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

The INLVLA register (Register 12-8) controls the input voltage threshold for each of the available PORTA input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTA register and also the level at which an Interrupt-on-Change occurs, if that feature is enabled. See Section 30.4 "DC Characteristics: PIC16(L)F1825/9-I/E" for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

12.2.1 ANSELA REGISTER

The ANSELA register (Register 12-6) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELA bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

EXAMPLE 12-2: INITIALIZING PORTA

BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF	ANSELA	;digital I/O
BANKSEL	TRISA	;
MOVLW	B'00111000'	;Set RA<5:3> as inputs
MOVWF	TRISA	;and set RA<2:0> as
		;outputs

— — LATA5 LATA4 — LATA2 LATA1 LATA0	I a manual.							
— — LATA5 LATA4 — LATA2 LATA1 LATA0								
	bit 7							bit 0
U-0 U-0 R/W-x/u R/W-x/u U-0 R/W-x/u R/W-x/u R/W-x/u	—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0
	U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u

REGISTER 12-5: LATA: PORTA DATA LATCH REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	LATA<5:4>: RA<5:4> Output Latch Value bits ⁽¹⁾
bit 3	Unimplemented: Read as '0'

bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-6: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	 ANSA4: Analog Select between Analog or Digital Function on pins RA4, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
Note 1:	When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
_		WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0		
bit 7							bit 0		
Legend:									
R = Readable b	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						

REGISTER 12-7: WPUA: WEAK PULL-UP PORTA REGISTER

bit 7-6	Unimplemented: Read as '0'
bit 5-0	WPUA<5:0>: Weak Pull-up Register bits ^(1,2)
	1 = Pull-up enabled
	0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 12-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-0/0
—	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 INLVLA<5:0>: PORTA Input Level Select bits For RA<5:0> pins, respectively 1 = ST input used for port reads and interrupt-on-change 0 = TTL input used for port reads and interrupt-on-change

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	_	_	ANSA4	—	ANSA2	ANSA1	ANSA0	123
ANSELB ⁽¹⁾	—	_	ANSB5	ANSB4	—	—	_	—	129
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	124
INLVLB ⁽¹⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4			-		129
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
IOCAF	_	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	138
IOCAN	—	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	138
IOCAP	_		IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	137
IOCBF ⁽¹⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	_	_	_	139
IOCBN ⁽¹⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	_		_	_	139
IOCBP ⁽¹⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	—	—	_	—	138
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	128

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — Unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

Note 1: PIC16(L)F1829 only.

REGISTER 16-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
			ADRE	S<9:2>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
u = Bit is unch	anged	x = Bit is unkn	nown	n -n/n = Value at POR and E			other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

REGISTER 16-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADRES | 6<1:0> | — | — | — | — | _ | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 ADRES<1:0>: ADC Result Register bits Lower two bits of 10-bit conversion result

bit 5-0 **Reserved**: Do not use.

19.9 Interaction with ECCP Logic

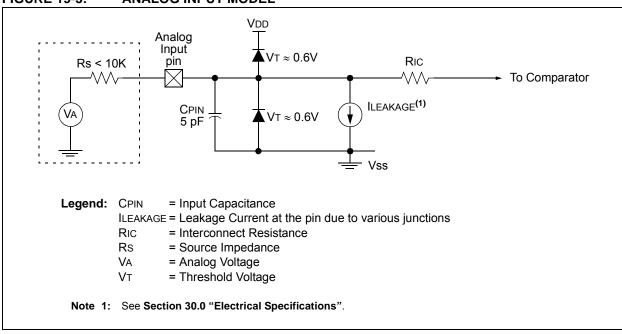
In some devices, a comparator output signal can be used to trigger the auto-shutdown feature found within the ECCP module. When the ECCP auto-shutdown feature is enabled and a comparator output signal is selected as the source, the comparator can be used simultaneously as a general purpose comparator and as the ECCP auto-shutdown source. In addition, the comparator output signal can also be routed to the designated I/O pin. If the ECCP Auto-Restart mode is also enabled, the comparators can be used as a closed loop analog feedback circuit to the ECCP, thereby creating an analog controlled PWM.

Please see section

for more information.

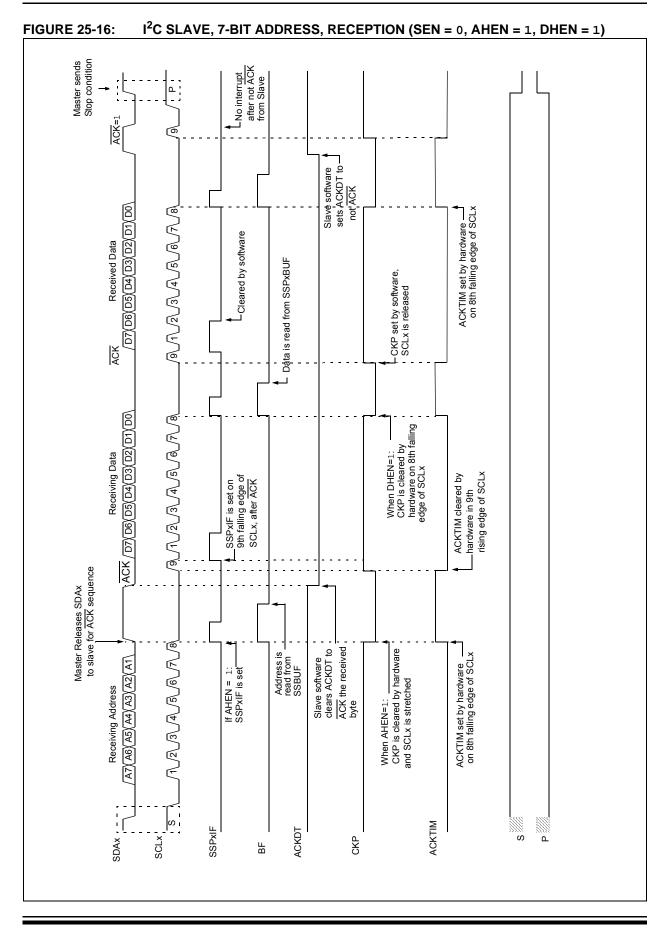
Note: When the comparator module is first initialized the output state is unknown. Upon initialization, the user should verify the output state of the comparator prior to relying on the result, primarily when using the result in connection with other peripheral features, such as the ECCP Auto-Shutdown mode.

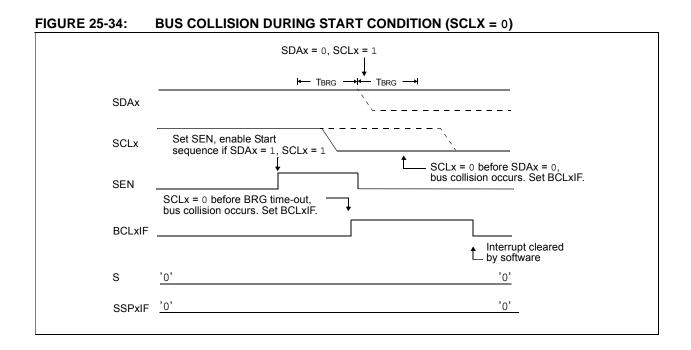
FIGURE 19-3: ANALOG INPUT MODEL

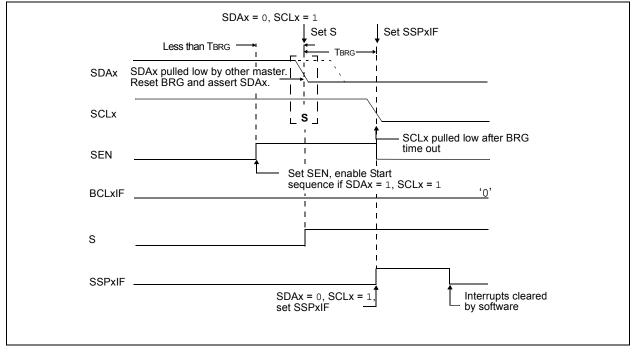

19.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 19-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD.

If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.


A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.


- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.


R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0
CxON	CxOUT	CxOE	CxPOL	_	CxSP	CxHYS	CxSYNC
bit 7							bit 0
Levende							
Legend: R = Readable	, hit	W = Writable	hit	II – Unimple	emented bit, read	d ac 'O'	
u = Bit is unc		x = Bit is unkr		•	at POR and BC		other Pesets
'1' = Bit is set	•	'0' = Bit is cle					
			urcu				
bit 7	CxON: Com	parator Enable	bit				
		ator is enabled					
	0 = Compara	ator is disabled	and consumes	s no active pov	wer		
bit 6		nparator Output					
		(inverted polar	<u>ity):</u>				
	1 = CxVP < 0 = CxVP >	-					
) (non-inverted p	<u>oolarity):</u>				
	1 = CxVP >	-	• •				
	0 = CxVP <	-					
bit 5		parator Output I					
		is present on the e pin. Not affected		Requires that	the associated T	RIS bit be clea	ared to actually
		is internal only					
bit 4		nparator Output	Polarity Sele	ct bit			
		ator output is inv	•				
	0 = Compara	ator output is no	t inverted				
bit 3	Unimpleme	nted: Read as '	0'				
bit 2		parator Speed/F					
		ator operates in					
		ator operates in			9		
bit 1		nparator Hyster		it			
		ator hysteresis ator hysteresis					
bit 0		omparator Outp		us Mode bit			
			-		ronous to chang	ges on Timer1	clock source
	Output	updated on the	falling edge of	Timer1 clock	source.	,	
	0 = Compar	ator output to T	imer1 and I/O	pin is asynchr	onous.		

REGISTER 19-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

FIGURE 25-35: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

26.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH mark state which represents a '1' data bit, and a VOL space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 26-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

26.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 26-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

26.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note 1: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

26.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

26.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 26.4.1.2 "Clock Polarity"**.

26.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

U-0	U-0	U-0	U-0	R/W-0/0 ⁽¹⁾	R/W-0/0	R/W-0/0	R/W-0/0
—					CPSCI	H<3:0>	
bit 7							bit (
Legend:							
R = Readable I	pit	W = Writable b	it	U = Unimpleme	ented bit, read a	is '0'	
u = Bit is uncha	anged	x = Bit is unkno	own	-n/n = Value at	POR and BOR	Value at all oth	er Resets
'1' = Bit is set		'0' = Bit is clea	red				
bit 7-4	Unimplement	ed: Read as '0'					
bit 3-0	CPSCH<3:0>	: Capacitive Sen	sing Channe	el Select bits			
	<u>If CPSON = 0</u>						
		s are ignored. N	o channel is	selected.			
	$\frac{\text{If CPSON} = 1}{20000}$		20)				
		channel 0, (CPS channel 1, (CPS	,				
		channel 2, (CPS	,				
		channel 3, (CPS					
		channel 4, (CPS	,				
		channel 5, (CPS	,				
		channel 6, (CPS	,				
		channel 7, (CPS					
		channel 8, (CPS					
	1001 =	channel 9, (CPS	59) ⁽¹⁾				
	1010 =	channel 10, (CF	PS10) ⁽¹⁾				
	1011 =	channel 11, (CF	°S11) ⁽¹⁾				
	1100 =	Reserved. Do n	ot use.				
	•						
	•						
	•						
	1111 =	Reserved. Do n	ot use.				

Note 1: These channels are only implemented on the PIC16(L)F1829.

TABLE 27-3:	SUMM	REGISTER	S ASSOC	IATED WI	ТН САРА	CITIVE SE	NSING	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	_	—	ANSA4	—	ANSA2	ANSA1	ANSA0	123
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	—	_	ANSC3	ANSC2	ANSC1	ANSC0	134
CPSCON0	CPSON	CPSRM	—	_	CPSRN	IG<1:0>	CPSOUT	T0XCS	315
CPSCON1	—	_	—	-		CPSC	H<3:0>		316
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	124
INLVLB ⁽¹⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	_	_	_	_	129
INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	135
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	176
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	-	TMR10N	185
TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	—	128
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	133

Legend: — Unimplemented locations, read as '0'. Shaded cells are not used by the CPS module. Note 1: PIC16(L)F1829 only.

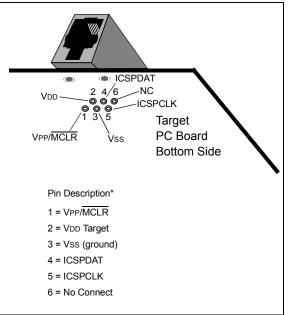
28.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC16(L)F1825/9 devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Word 2 is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. $\overline{\text{MCLR}}$ is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.


If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 7.3 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

28.3 Common Programming Interfaces

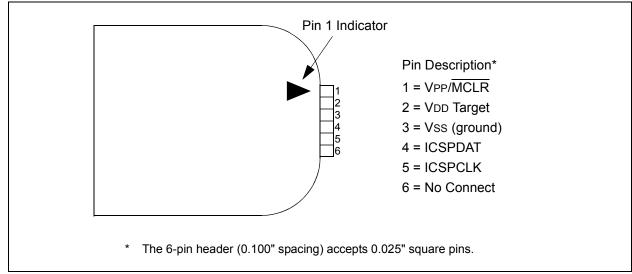
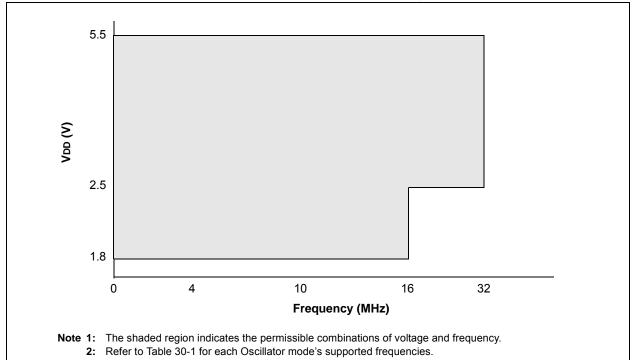

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6 connector) configuration. See Figure 28-2.

FIGURE 28-2: ICD RJ-11 STYLE CONNECTOR INTERFACE



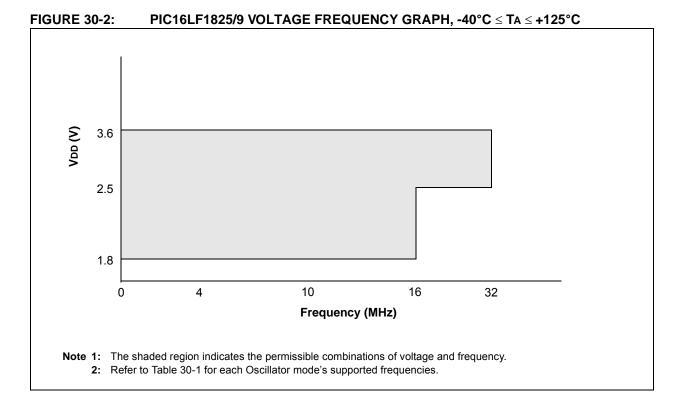
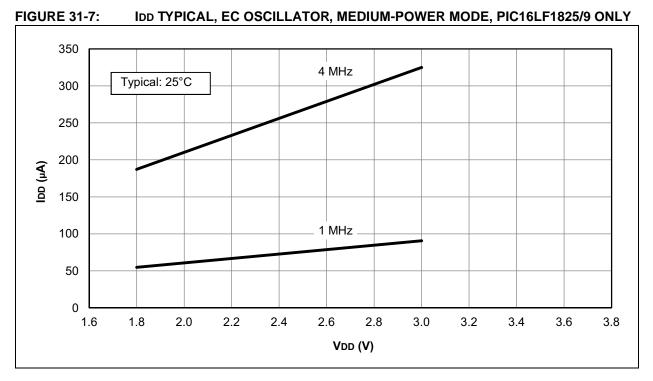
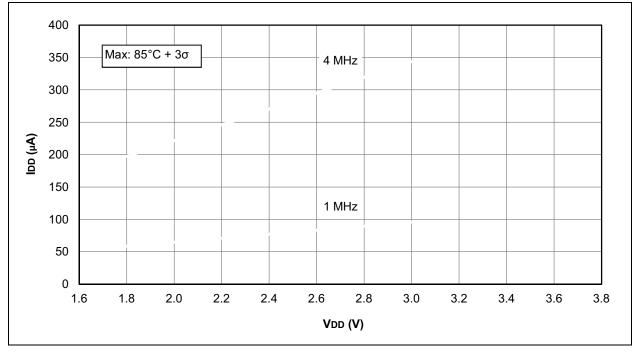

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 28-3.

FIGURE 28-3: PICkit[™] STYLE CONNECTOR INTERFACE

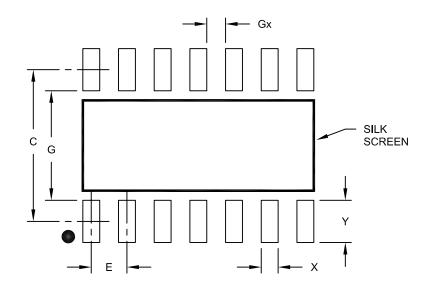

TABLE 30-15:	SPI MODE REQUIREMENTS
--------------	-----------------------

Param No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	SSx↓ to SCKx↓ or SCKx↑ input		2.25 TCY		—	ns	
SP71*	TscH	SCKx input high time (Slave mo	de)	Tcy + 20	_	—	ns	
SP72*	TscL	SCKx input low time (Slave mod	e)	Tcy + 20	_	—	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDIx data input to	SCKx edge	100		—	ns	
SP74*	TscH2diL, TscL2diL	Hold time of SDIx data input to S	ne of SDIx data input to SCKx edge			—	ns	
SP75*	TDOR	SDOx data output rise time	3.0-5.5V	—	10	25	ns	
			1.8-5.5V	—	25	50	ns	
SP76*	TDOF	SDOx data output fall time		_	10	25	ns	
SP77*	TssH2doZ	SSx↑ to SDOx output high-impe	dance	10		50	ns	
SP78*	TscR	SCKx output rise time	3.0-5.5V	_	10	25	ns	
		(Master mode)	1.8-5.5V	_	25	50	ns	
SP79*	TscF	SCKx output fall time (Master me	ode)	_	10	25	ns	
SP80*	TscH2doV,	SDOx data output valid after	3.0-5.5V	_		50	ns	
	TscL2DoV	SCKx edge	1.8-5.5V	_		145	ns	
SP81*	TDOV2scH, TDOV2scL	SDOx data output setup to SCKx edge		Тсу		_	ns	
SP82*	TssL2doV	SDOx data output valid after SS	↓ edge	_	_	50	ns	
SP83*	TscH2ssH, TscL2ssH	SSx ↑ after SCKx edge		1.5Tcy + 40		—	ns	


These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

*



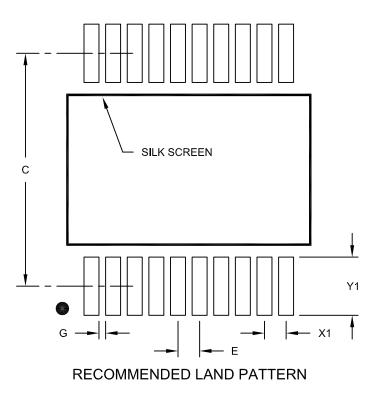
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX		
Contact Pitch		1.27 BSC				
Contact Pad Spacing	С		5.40			
Contact Pad Width	X			0.60		
Contact Pad Length	Y			1.50		
Distance Between Pads	Gx	0.67				
Distance Between Pads	G	3.90				

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	ILLIMETER	S	
Dimension	Dimension Limits			
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A