

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1829t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-3: PIC16(L)F1825/9 MEMORY MAP, BANKS 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	INDF0	080h	INDF0	100h	INDF0	180h	INDF0	200h	INDF0	280h	INDF0	300h	INDF0	380h	INDF0
001h	INDF1	081h	INDF1] 101h	INDF1] 181h	INDF1	201h	INDF1	281h	INDF1] 301h	INDF1] 381h [INDF1
002h	PCL	082h	PCL	102h	PCL	182h	PCL	202h	PCL	282h	PCL	302h	PCL	382h	PCL
003h	STATUS	083h	STATUS	103h	STATUS	183h	STATUS	203h	STATUS	283h	STATUS	303h	STATUS	383h	STATUS
004h	FSR0L	084h	FSR0L	104h	FSR0L	184h	FSR0L	204h	FSR0L	284h	FSR0L	304h	FSR0L	384h	FSR0L
005h	FSR0H	085h	FSR0H	105h	FSR0H	185h	FSR0H	205h	FSR0H	285h	FSR0H	305h	FSR0H	385h	FSR0H
006h	FSR1L	086h	FSR1L	106h	FSR1L	186h	FSR1L	206h	FSR1L	286h	FSR1L	306h	FSR1L	386h	FSR1L
007h	FSR1H	087h	FSR1H	107h	FSR1H	187h	FSR1H	207h	FSR1H	287h	FSR1H	307h	FSR1H	387h	FSR1H
008h	BSR	0880	BSR	108n	BSR	188n	BSR	208h	BSR	288n	BSR	308n	BSR	388n	BSR
0090		0090		1091		10911		2090		2090		2046		30911	
00An				10A11				20An		20A11		20Ph		200AII	
00BI		08Ch	TRISA	10Ch		18Ch		2001 20Ch		20DII 28Ch		30Ch		38Ch	
0000				1000		1806		2001	W/DI IB(1)	2001		3000		3804	
00Eh	PORTC	08Eh	TRISC	10Eh		18Eh		20Dh	WPUC	20D11		30Eh		38Eh	
00Eh		08Fh		10Eh		18Fh		20Eh		28Fh		30Fh		38Fh	
010h	_	090h	_	110h	_	190h	_	210h	_	290h	_	310h	_	390h	_
011h	PIR1	091h	PIE1	1111h	CM1CON0	191h	EEADRL	211h	SSP1BUF	291h	CCPR1L	311h	CCPR3L	391h	IOCAP
012h	PIR2	092h	PIE2	1 112h	CM1CON1	192h	EEADRH	212h	SSP1ADD	292h	CCPR1H	312h	CCPR3H	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	EEDATL	213h	SSP1MSK	293h	CCP1CON	313h	CCP3CON	393h	IOCAF
014h	PIR4 ⁽¹⁾	094h	PIE4 ⁽¹⁾	114h	CM2CON1	194h	EEDATH	214h	SSP1STAT	294h	PWM1CON	314h	_	394h	IOCBP ⁽¹⁾
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	EECON1	215h	SSP1CON1	295h	CCP1AS	315h	—	395h	IOCBN ⁽¹⁾
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSP1CON2	296h	PSTR1CON	316h	_	396h	IOCBF ⁽¹⁾
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	—	217h	SSP1CON3	297h	—	317h	_	397h	—
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h		218h	_	298h	CCPR2L	318h	CCPR4L	398h	
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	SSP2BUF ⁽¹⁾	299h	CCPR2H	319h	CCPR4H	399h	_
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TXREG	21Ah	SSP2ADD ⁽¹⁾	29Ah	CCP2CON	31Ah	CCP4CON	39Ah	CLKRCON
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh	SSP2MSK ⁽¹⁾	29Bh	PWM2CON	31Bh	_	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	SSP2STAT ⁽¹⁾	29Ch	CCP2AS	31Ch	_	39Ch	MDCON
01Dh	_	09Dh	ADCON0	11Dh	APFCON0	19Dh	RCSTA	21Dh	SSP2CON1 ⁽¹⁾	29Dh	PSTR2CON	31Dh	—	39Dh	MDSRC
01Eh	CPSCON0	09Eh	ADCON1	11Eh	APFCON1	19Eh	TXSTA	21Eh	SSP2CON2 ⁽¹⁾	29Eh	CCPTMRS	31Eh		39Eh	MDCARL
01Fh	CPSCON1	09Fh	—	11Fh	_	19Fh	BAUDCON	21Fh	SSP2CON3 ⁽¹⁾	29Fh	_	31Fh	_	39Fh	MDCARH
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General		General		General		General		General		General		General		General
	Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose
	Register		Register		Register		Register		Register		Register		Register		Register
	96 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes
06Eb		OFFh		16Fh		1EEb		26Eb		2EEb		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
			Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	Common RAM		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'

Note 1: Available only on PIC16(L)F1829.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 0											
000h ⁽¹⁾	INDF0	Addressing tl (not a physic	his location us al register)	es contents of	FSR0H/FSR0	L to address	data memory	,		XXXX XXXX	XXXX XXXX
001h ⁽¹⁾	INDF1	Addressing tl (not a physic	his location us al register)	es contents of	FSR1H/FSR1	L to address	data memory	,		XXXX XXXX	XXXX XXXX
002h ⁽¹⁾	PCL	Program Cou	unter (PC) Lea	st Significant E	lyte					0000 0000	0000 0000
003h ⁽¹⁾	STATUS	_	_	—	TO	PD	Z	DC	С	1 1000	q quuu
004h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poir	nter					0000 0000	uuuu uuuu
005h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Poi	nter					0000 0000	0000 0000
006h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu
007h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	nter					0000 0000	0000 0000
008h ⁽¹⁾	BSR	—	_	_			BSR<4:0>			0 0000	0 0000
009h ⁽¹⁾	WREG	Working Reg	ister		•					0000 0000	uuuu uuuu
00Ah ⁽¹⁾	PCLATH	—	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	er			-000 0000	-000 0000
00Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
00Ch	PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	xx xxxx
00Dh	PORTB ⁽²⁾	RB7	RB6	RB5	RB4	_	_	_	_	xxxx	xxxx
00Eh	PORTC	RC7 ⁽²⁾	RC6 ⁽²⁾	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	xxxx xxxx
00Fh	—	Unimplement	ted							_	_
010h	—	Unimplement	ted							_	_
011h	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
012h	PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	_	_	CCP2IF	0000 00	0000 00
013h	PIR3	_	_	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	00 0-0-	00 0-0-
014h	PIR4 ⁽²⁾	_	_	—	_	_	_	BCL2IF	SSP2IF	00	00
015h	TMR0	Timer0 Modu	le Register							xxxx xxxx	uuuu uuuu
016h	TMR1L	Holding Regi	ster for the Le	ast Significant	Byte of the 16	6-bit TMR1 Re	egister			xxxx xxxx	uuuu uuuu
017h	TMR1H	Holding Regi	ster for the Mo	ost Significant E	Byte of the 16	-bit TMR1 Re	gister			xxxx xxxx	uuuu uuuu
018h	T1CON	TMR1CS1	TMR1CS0	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	uuuu uu-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS	6<1:0>	0000 0x00	uuuu uxuu
01Ah	TMR2	Timer2 Module Register						0000 0000	0000 0000		
01Bh	PR2	Timer2 Period Register							1111 1111	1111 1111	
01Ch	T2CON	—		T2OUTP	'S<3:0>		TMR2ON	T2CKP	S<1:0>	-000 0000	-000 0000
01Dh	—	Unimplement	ted							-	—
01Eh	CPSCON0	CPSON	CPSRM	—	—	CPSRN	G<1:0>	CPSOUT	T0XCS	00 0000	00 0000
01Fh	CPSCON1	_	_	_	_		CPSC	H<3:0>		0000	0000

TABLE 3-8:	SPECIAL	FUNCTION REGISTER	SUMMARY
			0011111/1111

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: PIC16(L)F1829 only.

3: PIC16(L)F1825 only.

4: Unimplemented, read as '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 7										1	1
380h ⁽¹⁾	INDF0	Addressing th (not a physica	nis location us al register)	es contents of	FSR0H/FSR0	L to address	data memory	/		XXXX XXXX	XXXX XXXX
381h ⁽¹⁾	INDF1	Addressing th (not a physica	nis location us al register)	es contents of	FSR1H/FSR1	L to address	data memory	1		XXXX XXXX	XXXX XXXX
382h ⁽¹⁾	PCL	Program Cou	inter (PC) Lea	st Significant B	yte					0000 0000	0000 0000
383h ⁽¹⁾	STATUS	_	—	—	TO	PD	Z	DC	С	1 1000	q quuu
384h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poir	nter					0000 0000	uuuu uuuu
385h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Poi	nter					0000 0000	0000 0000
386h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu
387h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	nter					0000 0000	0000 0000
388h ⁽¹⁾	BSR	_	—	—			BSR<4:0>			0 0000	0 0000
389h ⁽¹⁾	WREG	Working Reg	ister							0000 0000	uuuu uuuu
38Ah ⁽¹⁾	PCLATH	_	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	۲			-000 0000	-000 0000
38Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
38Ch	INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	00 0100	00 0100
38Dh	INLVLB ⁽²⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	_	_	—	_	0000	0000
38Eh	INLVLC ⁽³⁾	_	_	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	00 0000	00 0000
	INLVLC ⁽²⁾	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111
38Fh	—	Unimplement	ed							_	_
390h	—	Unimplement	ed							_	_
391h	IOCAP	_	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
392h	IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
393h	IOCAF	_	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
394h	IOCBP ⁽²⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	_	_	_	0000	0000
395h	IOCBN ⁽²⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	_	_	_	_	0000	0000
396h	IOCBF ⁽²⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	_	_	_	_	0000	0000
397h	—	Unimplement	ed							_	_
398h	—	Unimplemented						_	_		
399h	—	Unimplemented						_	_		
39Ah	CLKRCON	CLKREN	CLKROE	CLKRSLR	CLKRD	C<1:0>	(CLKRDIV<2:0	>	0011 0000	0011 0000
39Bh	—	Unimplement	ed							_	_
39Ch	MDCON	MDEN	MDOE	MDSLR	MDOPOL	MDOUT	_	_	MDBIT	00100	00100
39Dh	MDSRC	MDMSODIS	_	_	_		MDMS	S<3:0>		x xxxx	u uuuu
39Eh	MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	_		MDCI	<3:0>		xxx- xxxx	uuu- uuuu
39Fh	MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	—		MDCH	1<3:0>		xxx- xxxx	uuu- uuuu

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-8

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: PIC16(L)F1829 only.

3: PIC16(L)F1825 only.

4: Unimplemented, read as '1'.

REGISTER 4-1: CONFIGURATION WORD 1

		R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1
		FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD
		bit 13					bit 8
R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1
CP	MCLRE	PWRTE	WD	TE<1:0>		FOSC<2:0	
bit 7							bit U
l egend:							
R = Readal	ble bit	P = Programma	able bit	U = Unimplemer	nted bit read as	· '1'	
'0' = Bit is c	cleared	'1' = Bit is set		-n = Value when	blank or after E	Julk Erase	
o Bitio							
bit 13	FCMEN: Fail-Safe (1 = Fail-Safe (0 = Fail-Safe (Safe Clock Monito Clock Monitor is e Clock Monitor is d	or Enable bit nabled isabled				
bit 12	IESO: Internal 1 = Internal/E> 0 = Internal/E>	l External Switcho kternal Switchover kternal Switchover	ver bit mode is enabl mode is disab	ed			
bit 11	CLKOUTEN: 0 If FOSC config This bit is All other FOSO	Clock Out Enable guration bits are so ignored, CLKOU ^{- C modes:}	bit <u>et to LP, XT, HS</u> ſ function is dis	<u>s modes</u> : abled. Oscillator fui	nction on the Cl	-KOUT pin.	
	1 = CLK0 0 = CLK0	OUT function is di OUT function is er	sabled. I/O fund nabled on the C	ction on the CLKOU	JT pin.		
bit 10-9	BOREN<1:0>	: Brown-out Rese	t Enable bits ⁽¹⁾				
	11 = BOR ena 10 = BOR ena 01 = BOR con	abled abled during opera atrolled by SBORE	ation and disabl N bit of the BO	ed in Sleep RCON register			
h it 0	00 = BOR disa	abled	2)				
DILO	1 = Data mem 0 = Data mem	ory code protection ory code protection	on is disabled				
bit 7	CP: Code Prot	tection bit ⁽³⁾					
	1 = Program n	nemory code prot	ection is disable	ed			
1.11.0	0 = Program n	nemory code prot	ection is enable	d 			
DIT 6	If LVP bit = 1:	MCLR/VPP PIn FU	Inction Select b	oit			
	This bit is	ignored.					
	$\frac{\text{If LVP bit = 0:}}{1 = \text{MCLR}}$ $0 = \text{MCLR}$ WPUA	NPP pin function i NPP pin function i register.	s MCLR; Wea <u>k</u> s digital input; N	<u>pull-</u> up enabled. ICLR internally disat	bled; Weak pull-u	up under control of	
bit 5	PWRTE : Powe 1 = PWRT di 0 = PWRT er	er-up Timer Enabl sabled nabled	e bit ⁽¹⁾				
bit 4-3	WDTE<1:0>: 11 = WDT ena 10 = WDT ena 01 = WDT cor 00 = WDT dis	Watchdog Timer E abled abled while runnir ntrolled by the SW abled	Enable bit ng and disabled /DTEN bit in the	in Sleep WDTCON registe	r		
Note 1: 2:	Enabling Brown-ou The entire data EE	ut Reset does not PROM will be era	automatically e sed when the c	nable Power-up Tir ode protection is tu	ner. Irned off during	an erase.	

3: The entire program memory will be erased when the code protection is turned off.

SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM FIGURE 5-1:

R-1/q	R-0/q	R-q/q	R-0/q	R-0/q	R-q/q	R-0/0	R-0/q		
T1OSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS		
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared	q = Condition	al				
bit 7	T1OSCR: Tim <u>If T1OSCEN</u> = 1 = Timer1 c 0 = Timer1 c <u>If T1OSCEN</u> = 1 = Timer1 c	ner1 Oscillator <u>= 1</u> : oscillator is rea oscillator is not <u>= 0</u> : clock source is	Ready bit dy ready alwavs ready						
bit 6	6 PLLR 4xPLL Ready bit 1 = 4xPLL is ready 0 = 4xPLL is not ready								
bit 5	OSTS: Oscilla	ator Start-up Ti	mer Status bit						
	1 = Running 0 = Running	from the clock from an intern	defined by the al oscillator (F	e FOSC<2:0> k OSC<2:0> = 1	oits of the Confi 00)	guration Word	1		
bit 4	HFIOFR: High 1 = HFINTOS 0 = HFINTOS	n-Frequency Ir SC is ready SC is not ready	nternal Oscillat	or Ready bit					
bit 3	HFIOFL: High 1 = HFINTOS 0 = HFINTOS	n-Frequency In SC is at least 2 SC is not 2% a	ternal Oscillato % accurate ccurate	or Locked bit					
bit 2	MFIOFR: Med 1 = MFINTOS 0 = MFINTOS	dium-Frequenc SC is ready SC is not ready	cy Internal Osc	illator Ready bi	t				
bit 1	LFIOFR: Low 1 = LFINTOS 0 = LFINTOS	r-Frequency Inf SC is ready SC is not ready	ternal Oscillato	r Ready bit					
bit 0	HFIOFS: High 1 = HFINTOS 0 = HFINTOS	n-Frequency In SC is at least 0 SC is not 0.5%	ternal Oscillato .5% accurate accurate	or Stable bit					

REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER

	ABLE 7-5. SUMMANT OF REGISTERS ASSOCIATED WITH REGETS								
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN							BORRDY	76
PCON	STKOVF	STKUNF		_	RMCLR	RI	POR	BOR	80
STATUS	_	_		TO	PD	Z	DC	С	22
WDTCON				V	VDTPS<4:0	>		SWDTEN	100

TABLE 7-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — Unimplemented bit, reads as '0'. Shaded cells are not used by Resets.

EXAMPLE 11-5: WRITING TO FLASH PROGRAM MEMORY

;	This	write routi	ne assumes the f	ollowing:
;	1. Tł	ne 16 bytes	of data are load	ed, starting at the address in DATA_ADDR
;	2. Ea	ach word of	data to be writt	en is made up of two adjacent bytes in DATA_ADDR,
;	st	cored in lit	tle endian forma	t
;	3. A	valid start	ing address (the	least significant bits = 000) is loaded in ADDRH:ADDRL
;	4. AI	DDRH and ADD	RL are located i	n shared data memory 0x70 - 0x7F
,		DCF	INTCON CIT	· Diaphle into an required acquerace will execute preperly
		BANKSET.	FFADRH	: Bank 3
		MOVE	ADDRH.W	; Load initial address
		MOVWF	EEADRH	;
		MOVF	ADDRL,W	;
		MOVWF	EEADRL	;
		MOVLW	LOW DATA_ADDR	; Load initial data address
		MOVWF	FSROL	;
		MOVLW	HIGH DATA_ADDR	; Load initial data address
		MOVWF	FSROH	;
		BSF	EECON1,EEPGD	; Point to program memory
		BCF	EECON1,CFGS	; Not configuration space
		BSF	EECON1,WREN	; Enable writes
		BSF	EECON1,LWLO	; Only Load Write Latches
LС	UΡ	моуты	FCDUTT	: Load first data bute into lower
		MOVIW	FEDATI.	:
		MOVTW	FSR0++	, ; Load second data byte into upper
		MOVWF	EEDATH	;
		MOVF	EEADRL,W	; Check if lower bits of address are '000'
		XORLW	0x07	; Check if we're on the last of 8 addresses
		ANDLW	0x07	;
		BTFSC	STATUS, Z	; Exit if last of eight words,
		GOTO	START_WRITE	;
		MOVITW	5 5 b	· Start of required write genuerge:
		MOVE	FECON2	: Write 55h
		MOVIW	0AAh	:
	nced	MOVWF	EECON2	; Write AAh
	quii	BSF	EECON1,WR	; Set WR bit to begin write
	Sec	NOP		; Any instructions here are ignored as processor
	_ 0,			; halts to begin write sequence
		NOP		; Processor will stop here and wait for write to complete.
				; After write processor continues with 3rd instruction.
		INCF	EEADRL, F	; Still loading latches Increment address
		GOTO	LOOP	; Write next latches
SI	ART_V	VRITE		
		BCF	EECON1,LWLO	; No more loading latches - Actually start Flash program
				; memory write
		MOVIW	55h	; Start of required write sequence:
		MOVWF	EECON2	; Write 55h
	ы В	MOVLW	0AAh	;
	enc	MOVWF	EECON2	; Write AAh
	eqเ €	BSF	EECON1,WR	; Set WR bit to begin write
	ъ "	NOP		; Any instructions here are ignored as processor
				; halts to begin write sequence
		NOP		; Processor will stop here and wait for write complete.
				: after write processor continues with and instruction
		BCF	EECON1 . WREN	; Disable writes
		BSF	INTCON, GIE	; Enable interrupts
				-

11.7 EEPROM and Flash Control Registers

REGISTER 11-1: EEDATL: EEPROM LOW BYTE DATA REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			EEDA	AT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	3	
u = Bit is unchange	d	x = Bit is unknow	n	-n/n = Value at l	POR and BOR/Val	ue at all other Res	sets
'1' = Bit is set		'0' = Bit is cleared	d				

bit 7-0

-0 EEDAT<7:0>: Read/write value for EEPROM data byte or Least Significant bits of program memory

REGISTER 11-2: EEDATH: EEPROM DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			EEDA	T<13:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 EEDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 11-3: EEADRL: EEPROM ADDRESS REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | EEADI | R<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Logondy | | | | | | | |

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 EEADR<7:0>: Specifies the Least Significant bits for program memory address or EEPROM address

REGISTER 11-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				EEADR<14:8>	•		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 EEADR<14:8>: Specifies the Most Significant bits for program memory address or EEPROM address

Note 1: Unimplemented, read as '1'.

12.1 Alternate Pin Function

The Alternate Pin Function Control 0 (APFCON0) and Alternate Pin Function Control 1 (APFCON1) registers are used to steer specific peripheral input and output functions between different pins. The APFCON0 and APFCON1 registers are shown in Register 12-1 and Register 12-2. For this device family, the following functions can be moved between different pins.

- RX/DT/TX/CK
- SDO1
- SS (Slave Select)
- T1G
- P1B/P1C/P1D/P2B
- CCP1/P1A/CCP2

These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected.

20.2 Option and Timer0 Control Register

REGISTER 20-1: OPTION_REG: OPTION REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>			
bit 7							bit 0		
Legend:									
R = Readable I	oit	W = Writable b	oit	U = Unimplen	nented bit, read	as '0'			
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	t POR and BOR	/Value at all oth	er Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	WPUEN: Wea	k Pull-up Enabl	e bit						
	1 = All weak p	ull-ups are disa	bled (except M	CLR. if it is ena	abled)				
	0 = Weak pull-	ups are enable	d by individual	WPUx latch va	lues				
bit 6	INTEDG: Inter	rupt Edge Sele	ct bit						
	1 = Interrupt o	n rising edge of	INT pin						
	0 = Interrupt o	n falling edge o	f INT pin						
bit 5	TMR0CS: Tim	er0 Clock Sour	ce Select bit						
	1 = Transition	on T0CKI pin							
	0 = Internal ins	struction cycle c	lock (Fosc/4)						
bit 4	TMR0SE: Tim	er0 Source Edd	e Select bit						
	1 = Increment	on high-to-low transition on T0CKI pin							
	0 = Increment	on low-to-high	transition on T	0CKI pin					
bit 3	PSA: Prescale	er Assignment b	oit						
	1 = Prescaler	is not assigned	to the Timer0 r	module					
	0 = Prescaler	is assigned to th	ne Timer0 mod	ule					
bit 2-0	PS<2:0>: Pres	scaler Rate Sele	ect bits						
	Bit	Value Timer0	Rate						
	0	00 1:2							
	0	01 1:4							
	0	10 1:8							
	0	11 1:1	6						
	1	.00 1:3	2						
	1	.01 1:6	4						
	1	.10 1:1	28						
	1	.11 1:2	56						

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CPSCON0	CPSON	CPSRM	_		CPSRNG<1:0>		CPSOUT	T0xCS	315
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFVR<1:0>		142
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	124
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	87
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		176		
TMR0	Timer0 Module Register								174*
TRISA	_		TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122

Legend: — Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

* Page provides register information.

FIGURE 21-4: TIMER1 GATE TOGGLE MODE

24.3.2 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for standard PWM operation:

- 1. Disable the CCPx pin output driver by setting the associated TRIS bit.
- 2. Load the PRx register with the PWM period value.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- Load the CCPRxL register and the DCxBx bits of the CCPxCON register, with the PWM duty cycle value.
- 5. Configure and start Timer2/4/6:
 - •Select the Timer2/4/6 resource to be used for PWM generation by setting the CxTSEL<1:0> bits in the CCPTMRS register.
 - •Clear the TMRxIF interrupt flag bit of the PIRx register. See Note below.
 - •Configure the TxCKPS bits of the TxCON register with the Timer prescale value.
 - •Enable the Timer by setting the TMRxON bit of the TxCON register.
- 6. Enable PWM output pin:
 - •Wait until the Timer overflows and the TMRxIF bit of the PIRx register is set. See Note below.
 - •Enable the CCPx pin output driver by clearing the associated TRIS bit.
- **Note:** In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

24.3.3 TIMER2/4/6 TIMER RESOURCE

The PWM standard mode makes use of one of the 8-bit Timer2/4/6 timer resources to specify the PWM period.

Configuring the CxTSEL<1:0> bits in the CCPTMRS register selects which Timer2/4/6 timer is used.

24.3.4 PWM PERIOD

The PWM period is specified by the PRx register of Timer2/4/6. The PWM period can be calculated using the formula of Equation 24-1.

EQUATION 24-1: PWM PERIOD

 $PWM Period = [(PRx) + 1] \bullet 4 \bullet Tosc \bullet$ (TMRx Prescale Value)

Note 1: Tosc = 1/Fosc

When TMRx is equal to PRx, the following three events occur on the next increment cycle:

- TMRx is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPRxL into CCPRxH.

Note: The Timer postscaler (see Section 22.1 "Timer2/4/6 Operation") is not used in the determination of the PWM frequency.

24.3.5 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PRx and TMRx registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 24-2 is used to calculate the PWM pulse width.

Equation 24-3 is used to calculate the PWM duty cycle ratio.

EQUATION 24-2: PULSE WIDTH

$$Pulse Width = (CCPRxL:CCPxCON < 5:4>) \bullet$$

TOSC • (TMRx Prescale Value)

EQUATION 24-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(CCPRxL:CCPxCON < 5:4>)}{4(PRx+1)}$$

The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMRx register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2/4/6 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (see Figure 24-4).

	SDI MODE WAVEEODM		
FIGURE 23-9.	SFI WODE WAVEFORING	(SLAVE WODE WITH CRE = 0)	1

	1 1 1 1 1										
ČKE ≈ 0)	:	; ••••••• • : •	;; ;; ;;	(; <i>********</i>	; ·····; ; ·	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	, / , ,		: : :	(((
80%) (CXP1# 5 (CXE1# 5)			4					,			5 5 5 5 5
90000 00 SBRX814F VisBM	, , , ,	· ·	: ; ; ; ;	(•	<pre><</pre>	c	• • • • •	, , , , , , , , , , , , , , , , , , ,		3 3 3
\$920%		X 68.7		X 68 8 [N 58 4		Xazz	X 68 -	X		255 197
- SEES	· · · ·					, ,		; ,			1 3 3 1 1 2
input Sampia		4				: · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	: 			
skssindii Internatio	۰ ۲۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰		· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · ·	 	·	, , , ,	· · · · · · · · · · · · · · · · · · ·		
***9 369288 & 369288 &	1 5 1 5 2 5	· · · · · · · · · · · · · · · · · · ·	; · · · · · · · · · · · · · · · · · · ·	: · · · · · · · · · · · · · · · · · · ·		s · · ·	s	: : : :	· : · ; · ;	ġ.	
Write Collinear	· · ·										···
deteción activo											

FIGURE 25-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

SSx SCKx (CKP = 0 CKE = 1) SCKx (CKP = 1 CKE = 1)					
SSPxBUF					
SDOx	bit 7	bit 6 bit 5 bit 4	bit 3 bit 2	bit 1 bit 0	
SDIx	bit 7			bit 0	1 1 1 1 1 1 1 1 1 1
Input Sample	↑	<u> </u>	<u>↑</u> ↑	<u>†</u> †	1 1 1 1 1
SSPxIF Interrupt Flag					1
SSPxSR to SSPxBUF					! 2
Note Cossian					•

26.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH mark state which represents a '1' data bit, and a VOL space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 26-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

26.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 26-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

26.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note 1: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

26.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

26.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 26.4.1.2 "Clock Polarity"**.

26.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

TABLE 30-6: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.		Characteristi	c	Min.	Тур†	Max.	Units	Conditions	
40*	T⊤0H	T0CKI High-I	(I High-Pulse Width No Prescaler		0.5 Tcy + 20	—	-	ns		
				10	—	_	ns			
41*	TT0L	T0CKI Low-F	Pulse Width	No Prescaler	0.5 Tcy + 20	—	_	ns		
			With Prescaler 10 — —				_	ns		
42*	Тт0Р	T0CKI Period	1		Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (2, 4,, 256)	
45*	T⊤1H	T1CKI High	Synchronous, No Prescaler		0.5 Tcy + 20	_		ns		
		Time	Synchronous, with Prescaler		15	—		ns		
			Asynchronous		30	—		ns		
46*	T⊤1L	T1CKI Low	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns		
		Time	Synchronous, with Prescaler		15	_		ns		
			Asynchronous		30	—		ns		
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	_		ns	N = prescale value (1, 2, 4, 8)	
			Asynchronous		60	—	_	ns		
48	F⊤1	Timer1 Oscill (oscillator en	lator Input Frequency Range abled by setting bit T1OSCEN)		32.4	32.768	33.1	kHz		
49*	TCKEZTMR1	Delay from E Increment	xternal Clock E	dge to Timer	2 Tosc	—	7 Tosc	—	Timers in Sync mode	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 30-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteris	Min.	Тур†	Max.	Units	Conditions			
CC01*	TccL	CCP Input Low Time	No Prescaler	0.5Tcy + 20	_	_	ns			
			With Prescaler	20	-		ns			
CC02*	TccH	CCP Input High Time	No Prescaler	0.5Tcy + 20	-		ns			
			With Prescaler	20	-		ns			
CC03*	TccP	CCP Input Period		<u>3Tcy + 40</u> N	_	_	ns	N = prescale value		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

32.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

32.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

32.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

32.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility