

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	16MHz
Connectivity	LINbusSCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	15
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-50
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st7flite30f2m6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

16.2	LINSCI LIMITATIO	ΟΝ	 	 	 	9
17 REVI	SION HISTORY		 	 	 17	'1

To obtain the most recent version of this datasheet, please check at www.st.com

57

Please also pay special attention to the Section "KNOWN LIMITATIONS" on page 169.

2 PIN DESCRIPTION

Figure 2. 20-Pin QFN Package Pinout

(HS) 20mA high sink capability eix associated external interrupt vector

Δ7/

MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP6 to SP0 bits are set) which is the stack higher address.

The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD instruction.

Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow.

The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instruc-

Figure 11. Stack Manipulation Example

tions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in Figure 11.

- When an interrupt is received, the SP is decremented and the context is pushed on the stack.
- On return from interrupt, the SP is incremented and the context is popped from the stack.

A subroutine call occupies two locations and an interrupt five locations in the stack area.

If both the RC oscillator and the PLL are disabled, f_{OSC} is driven by the external clock.

Figure 12. PLL Output Frequency Timing Diagram

When the PLL is started, after reset or wakeup from Halt mode or AWUFH mode, it outputs the clock after a delay of t_{STARTUP} .

When the PLL output signal reaches the operating frequency, the LOCKED bit in the SICSCR register is set. Full PLL accuracy (ACC_{PLL}) is reached after a stabilization time of t_{STAB} (see Figure 12 and 13.3.4Internal RC Oscillator and PLL)

Refer to section 7.6.4 on page 34 for a description of the LOCKED bit in the SICSR register.

7.3 REGISTER DESCRIPTION

MAIN CLOCK CONTROL/STATUS REGISTER (MCCSR)

Read / Write

Reset Value: 0000 0000 (00h)

7							0
0	0	0	0	0	0	мсо	SMS

Bits 7:2 = Reserved, must be kept cleared.

Bit 1 = MCO Main Clock Out enable

This bit is read/write by software and cleared by hardware after a reset. This bit allows to enable the MCO output clock.

- 0: MCO clock disabled, I/O port free for general purpose I/O.
- 1: MCO clock enabled.

Bit 0 = SMS Slow Mode select

This bit is read/write by software and cleared by hardware after a reset. This bit selects the input clock f_{OSC} or $f_{OSC}/32$.

0: Normal mode (f_{CPU =} f_{OSC}

1: Slow mode ($f_{CPU} = f_{OSC}/32$)

RC CONTROL REGISTER (RCCR)

Read / Write

Reset Value: 1111 1111 (FFh)

7

С

R9	CR8	CR7	CR6	CR5	CR4	CR3	CR2

Bits 7:0 = **CR[9:2]** *RC* Oscillator Frequency Adjustment Bits

These bits must be written immediately after reset to adjust the RC oscillator frequency and to obtain an accuracy of 1%. The application can store the correct value for each voltage range in EEPROM and write it to this register at start-up.

00h = maximum available frequency

FFh = lowest available frequency

These bits are used with the CR[1:0] bits in the SICSR register. Refer to section 7.6.4 on page 34 **Note:** To tune the oscillator, write a series of different values in the register until the correct frequency is reached. The fastest method is to use a dichotomy starting with 80h.

DUAL 12-BIT AUTORELOAD TIMER 3 (Cont'd)

11.2.3 Functional Description

11.2.3.1 PWM Mode

This mode allows up to four Pulse Width Modulated signals to be generated on the PWMx output pins.

PWM Frequency

The four PWM signals can have the same frequency (f_{PWM}) or can have two different frequencies. This is selected by the ENCNTR2 bit which enables single timer or dual timer mode (see Figure 34 and Figure 35).

The frequency is controlled by the counter period and the ATR register value. In dual timer mode, PWM2 and PWM3 can be generated with a different frequency controlled by CNTR2 and ATR2.

 $f_{PWM} = f_{COUNTER} / (4096 - ATR)$

Following the above formula,

 If f_{COUNTER} is 4 Mhz, the maximum value of f_{PWM} is 2 MHz (ATR register value = 4094),the minimum value is 1 KHz (ATR register value = 0).

Duty Cycle

The duty cycle is selected by programming the DCRx registers. These are preload registers. The DCRx values are transferred in Active duty cycle registers after an overflow event if the corresponding transfer bit (TRANx bit) is set.

The TRAN1 bit controls the PWMx outputs driven by counter 1 and the TRAN2 bit controls the PWMx outputs driven by counter 2.

PWM generation and output compare are done by comparing these active DCRx values with the counter.

The maximum available resolution for the PWMx duty cycle is:

Resolution = 1 / (4096 - ATR)

where ATR is equal to 0. With this maximum resolution, 0% and 100% duty cycle can be obtained by changing the polarity.

At reset, the counter starts counting from 0.

When a upcounter overflow occurs (OVF event), the preloaded Duty cycle values are transferred to

the active Duty Cycle registers and the PWMx signals are set to a high level. When the upcounter matches the active DCRx value the PWMx signals are set to a low level. To obtain a signal on a PWMx pin, the contents of the corresponding active DCRx register must be greater than the contents of the ATR register.

The maximum value of ATR is 4094 because it must be lower than the DCR value which must be 4095 in this case.

Polarity Inversion

The polarity bits can be used to invert any of the four output signals. The inversion is synchronized with the counter overflow if the corresponding transfer bit in the ATCSR2 register is set (reset value). See Figure 36.

Figure 36. PWM Polarity Inversion

The Data Flip Flop (DFF) applies the polarity inversion when triggered by the counter overflow input.

Output Control

The PWMx output signals can be enabled or disabled using the OEx bits in the PWMCR register.

DUAL 12-BIT AUTORELOAD TIMER 3 (Cont'd)

Bit 4 = **OVFIE2** *Overflow interrupt 2 enable* This bit is read/write by software and controls the overflow interrupt of counter2.

0: Overflow interrupt disabled.

1: Overflow interrupt enabled.

Bit 3 = OVF2 Overflow Flag.

This bit is set by hardware and cleared by software by reading the ATCSR2 register. It indicates the transition of the counter2 from FFFh to ATR2 value.

0: No counter overflow occurred

1: Counter overflow occurred

Bit 2 = ENCNTR2 Enable counter2

This bit is read/write be software and switches the second counter CNTR2. If this bit is set, PWM2 and PWM3 will be generated using CNTR2.

0: CNTR2 stopped.

1: CNTR2 starts running.

Bit 1= TRAN2 Transfer enable2

This bit is read/write by software, cleared by hardware after each completed transfer and set by hardware after reset. It controls the transfers on CNTR2.

It allows the value of the Preload DCRx registers to be transferred to the Active DCRx registers after the next overflow event.

The OPx bits are transferred to the shadow OPx bits in the same way.

(Only DCR2/DCR3 can be controlled with this bit)

Bit 0 = TRAN1 Transfer enable 1

This bit is read/write by software, cleared by hardware after each completed transfer and set by hardware after reset. It controls the transfers on CNTR1. It allows the value of the Preload DCRx registers to be transferred to the Active DCRx registers after the next overflow event.

The OPx bits are transferred to the shadow OPx bits in the same way.

AUTORELOAD REGISTER2 (ATR2H)

Read / Write

Reset Value: 0000 0000 (00h)

1	5							8
(D	0	0	0	ATR11	ATR10	ATR9	ATR8

AUTORELOAD REGISTER (ATR2L)

Read / Write

Reset Value: 0000 0000 (00h)

7							0
ATR7	ATR6	ATR5	ATR4	ATR3	ATR2	ATR1	ATR0

Bits 11:0 = **ATR2[11:0]** Autoreload Register 2. This is a 12-bit register which is written by software. The ATR2 register value is automatically loaded into the upcounter CNTR2 when an overflow of CNTR2 occurs. The register value is used to set the PWM2/PWM3 frequency when ENCNTR2 is set.

DEAD TIME GENERATOR REGISTER (DTGR)

Read/Write Reset Value: 0000 0000 (00h)

7							0
DTE	DT6	DT5	DT4	DT3	DT2	DT1	DT0

Bits 7 = DTE Dead Time Enable

This bit is read/write by software. It enables a dead time generation on PWM0/PWM1.

0: No Dead time insertion.

1: Dead time insertion enabled.

Bit 6:0 = DT[6:0] Dead Time Value

These bits are read/write by software. They define the dead time inserted between PWM0/PWM1. Dead time is calculated as follows:

Dead Time = DT[6:0] x Tcounter1

DUAL 12-BIT AUTORELOAD TIMER 3 (Cont'd)

Table 16. Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0D	ATCSR Reset Value	0	ICF 0	ICIE 0	CK1 0	СК0 0	OVF1 0	OVFIE1 0	CMPIE 0
0E	CNTR1H Reset Value	0	0	0	0	CNTR1_11 0	CNTR1_10 0	CNTR1_9 0	CNTR1_8 0
0F	CNTR1L Reset Value	CNTR1_7 0	CNTR1_6 0	CNTR1_5 0	CNTR1_4 0	CNTR1_3 0	CNTR1_2 0	CNTR1_1 0	CNTR1_0 0
10	ATR1H Reset Value	0	0	0	0	ATR11 0	ATR10 0	ATR9 0	ATR8 0
11	ATR1L Reset Value	ATR7 0	ATR6 0	ATR5 0	ATR4 0	ATR3 0	ATR2 0	ATR1 0	ATR0 0
12	PWMCR Reset Value	0	OE3 0	0	OE2 0	0	OE1 0	0	OE0 0
13	PWM0CSR Reset Value	0	0	0	0	0	0	OP0 0	CMPF0 0
14	PWM1CSR Reset Value	0	0	0	0	0	0	OP1 0	CMPF1 0
15	PWM2CSR Reset Value	0	0	0	0	0	0	OP2 0	CMPF2 0
16	PWM3CSR Reset Value	0	0	0	0	0	0	OP3 0	CMPF3 0
17	DCR0H Reset Value	0	0	0	0	DCR11 0	DCR10 0	DCR9 0	DCR8 0
18	DCR0L Reset Value	DCR7 0	DCR6 0	DCR5 0	DCR4 0	DCR3 0	DCR2 0	DCR1 0	DCR0 0
19	DCR1H Reset Value	0	0	0	0	DCR11 0	DCR10 0	DCR9 0	DCR8 0
1A	DCR1L Reset Value	DCR7 0	DCR6 0	DCR5 0	DCR4 0	DCR3 0	DCR2 0	DCR1 0	DCR0 0
1B	DCR2H Reset Value	0	0	0	0	DCR11 0	DCR10 0	DCR9 0	DCR8 0
1C	DCR2L Reset Value	DCR7 0	DCR6 0	DCR5 0	DCR4 0	DCR3 0	DCR2 0	DCR1 0	DCR0 0
1D	DCR3H Reset Value	0	0	0	0	DCR11 0	DCR10 0	DCR9 0	DCR8 0
1E	DCR3L Reset Value	DCR7 0	DCR6 0	DCR5 0	DCR4 0	DCR3 0	DCR2 0	DCR1 0	DCR0 0
1F	ATICRH Reset Value	0	0	0	0	ICR11 0	ICR10 0	ICR9 0	ICR8 0
20	ATICRL Reset Value	ICR7 0	ICR6 0	ICR5 0	ICR4 0	ICR3 0	ICR2 0	ICR1 0	ICR0 0

11.3 LITE TIMER 2 (LT2)

11.3.1 Introduction

The Lite Timer can be used for general-purpose timing functions. It is based on two free-running 8-bit upcounters and an 8-bit input capture register.

11.3.2 Main Features

47/

- Realtime Clock (RTC)
 - One 8-bit upcounter 1 ms or 2 ms timebase period (@ 8 MHz $f_{OSC})$

Figure 46. Lite Timer 2 Block Diagram

- One 8-bit upcounter with autoreload and programmable timebase period from 4µs to 1.024ms in 4µs increments (@ 8 MHz f_{OSC})
- 2 Maskable timebase interrupts
- Input Capture
 - 8-bit input capture register (LTICR)
 - Maskable interrupt with wakeup from Halt Mode capability

SERIAL PERIPHERAL INTERFACE (cont'd)

11.4.5 Error Flags

11.4.5.1 Master Mode Fault (MODF)

Master mode fault occurs when the master device's \overline{SS} pin is pulled low.

When a Master mode fault occurs:

- The MODF bit is set and an SPI interrupt request is generated if the SPIE bit is set.
- The SPE bit is reset. This blocks all output from the device and disables the SPI peripheral.
- The MSTR bit is reset, thus forcing the device into slave mode.

Clearing the MODF bit is done through a software sequence:

1. A read access to the SPICSR register while the MODF bit is set.

2. A write to the SPICR register.

Notes: To avoid any conflicts in an application with multiple slaves, the SS pin must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits may be restored to their original state during or after this clearing sequence.

Hardware does not allow the user to set the SPE and MSTR bits while the MODF bit is set except in the MODF bit clearing sequence.

In a slave device, the MODF bit can not be set, but in a multimaster configuration the device can be in slave mode with the MODF bit set.

The MODF bit indicates that there might have been a multimaster conflict and allows software to handle this using an interrupt routine and either perform a reset or return to an application default state.

11.4.5.2 Overrun Condition (OVR)

An overrun condition occurs when the master device has sent a data byte and the slave device has not cleared the SPIF bit issued from the previously transmitted byte.

When an Overrun occurs:

 The OVR bit is set and an interrupt request is generated if the SPIE bit is set.

In this case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A read to the SPIDR register returns this byte. All other bytes are lost.

The OVR bit is cleared by reading the SPICSR register.

11.4.5.3 Write Collision Error (WCOL)

A write collision occurs when the software tries to write to the SPIDR register while a data transfer is taking place with an external device. When this happens, the transfer continues uninterrupted and the software write will be unsuccessful.

Write collisions can occur both in master and slave mode. See also Section 11.4.3.2 Slave Select Management.

Note: A "read collision" will never occur since the received data byte is placed in a buffer in which access is always synchronous with the CPU operation.

The WCOL bit in the SPICSR register is set if a write collision occurs.

No SPI interrupt is generated when the WCOL bit is set (the WCOL bit is a status flag only).

Clearing the WCOL bit is done through a software sequence (see Figure 53).

Figure 53. Clearing the WCOL Bit (Write Collision Flag) Software Sequence

LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont'd)

CONTROL REGISTER 2 (SCICR2)

Read/Write Reset Value: 0000 0000 (00h)

-
7

7							0
TIE	TCIE	RIE	ILIE	TE	RE	RWU ¹⁾	SBK ¹⁾

¹⁾This bit has a different function in LIN mode, please refer to the LIN mode register description.

Bit 7 = **TIE** *Transmitter interrupt enable* This bit is set and cleared by software. 0: Interrupt is inhibited

1: In SCI interrupt is generated whenever TDRE = 1 in the SCISR register

Bit 6 = **TCIE** Transmission complete interrupt enable

This bit is set and cleared by software.

- 0: Interrupt is inhibited
- 1: An SCI interrupt is generated whenever TC = 1 in the SCISR register

Bit 5 = **RIE** Receiver interrupt enable

This bit is set and cleared by software.

- 0: Interrupt is inhibited
- 1: An SCI interrupt is generated whenever OR = 1 or RDRF = 1 in the SCISR register

Bit 4 = **ILIE** Idle line interrupt enable

This bit is set and cleared by software. 0: Interrupt is inhibited

1: An SCI interrupt is generated whenever IDLE = 1 in the SCISR register.

Bit 3 = **TE** Transmitter enable

This bit enables the transmitter. It is set and cleared by software.

0: Transmitter is disabled

1: Transmitter is enabled

Notes:

- During transmission, a "0" pulse on the TE bit ("0" followed by "1") sends a preamble (idle line) after the current word.
- When TE is set there is a 1 bit-time delay before the transmission starts.

Bit 2 = **RE** Receiver enable

This bit enables the receiver. It is set and cleared bv software.

0: Receiver is disabled in the SCISR register

1: Receiver is enabled and begins searching for a start bit

Bit 1 = RWU Receiver wake-up

This bit determines if the SCI is in mute mode or not. It is set and cleared by software and can be cleared by hardware when a wake-up sequence is recognized.

0: Receiver in active mode

1: Receiver in mute mode

Notes:

- Before selecting Mute mode (by setting the RWU bit) the SCI must first receive a data byte, otherwise it cannot function in Mute mode with wakeup by Idle line detection.
- In Address Mark Detection Wake-Up configuration (WAKE bit = 1) the RWU bit cannot be modified by software while the RDRF bit is set.

Bit 0 = SBK Send break

This bit set is used to send break characters. It is set and cleared by software.

0: No break character is transmitted

1: Break characters are transmitted

Note: If the SBK bit is set to "1" and then to "0", the transmitter will send a BREAK word at the end of the current word.

DATA REGISTER (SCIDR)

Read/Write

Reset Value: Undefined

Contains the Received or Transmitted data character, depending on whether it is read from or written to.

7							0
DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0

The Data register performs a double function (read and write) since it is composed of two registers, one for transmission (TDR) and one for reception (RDR).

The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure 55).

The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure 55).

LINSCITM SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont'd)

<u>ل</u>رک

LINSCI[™] SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont'd) LIN PRESCALER FRACTION REGISTER (LPFR) will effectively upd eration.

Read/Write

Reset Value: 0000 0000 (00h)

7							0
0	0	0	0	LPFR 3	LPFR 2	LPFR 1	LPFR 0

Bits 7:4 = Reserved.

Bits 3:0 = LPFR[3:0] Fraction of LDIV

These 4 bits define the fraction of the LIN Divider (LDIV):

LPFR[3:0]	Fraction (LDIV)
0h	0
1h	1/16
Eh	14/16
Fh	15/16

1. When initializing LDIV, the LPFR register must be written first. Then, the write to the LPR register

will effectively update LDIV and so the clock generation.

2. In LIN Slave mode, if the LPR[7:0] register is equal to 00h, the transceiver and receiver input clocks are switched off.

Examples of LDIV coding:

Example 1: LPR = 27d and LPFR = 12d This leads to: Mantissa (LDIV) = 27d Fraction (LDIV) = 12/16 = 0.75d Therefore LDIV = 27.75d

Example 2: LDIV = 25.62dThis leads to: LPFR = rounded(16*0.62d) = rounded(9.92d) = 10d = Ah LPR = mantissa (25.620d) = 25d = 1Bh

Example 3: LDIV = 25.99d This leads to: LPFR = rounded(16*0.99d) = rounded(15.84d) = 16d

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Master/Slave) (Cont'd)

Addr.	Pagiotar Nama	7	6	E	4	2	_	-	•
(Hex.)	Register Name		0	5	4	3	2		U
40	SCISR	TDRE	TC	RDRF	IDLE	OR/LHE	NF	FE	PE
40	Reset Value	1	1	0	0	0	0	0	0
41	SCIDR	DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0
41	Reset Value	-	-	-	-	-	-	-	-
	SCIBRR	SCP1	SCP0	SCT2	SCT1	SCT0	SCR2	SCR1	SCR0
42	LPR (LIN Slave Mode)	LPR7	LPR6	LPR5	LPR4	LPR3	LPR2	LPR1	LPR0
	Reset Value	0	0	0	0	0	0	0	0
12	SCICR1	R8	T8	SCID	М	WAKE	PCE	PS	PIE
43	Reset Value	x	0	0	0	0	0	0	0
11	SCICR2	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
44	Reset Value	0	0	0	0	0	0	0	0
45	SCICR3	NP	LINE	LSLV	LASE	LHDM	LHIE	LHDF	LSF
45	Reset Value	0	0	0	0	0	0	0	0
	SCIERPR	ERPR7	ERPR6	ERPR5	ERPR4	ERPR3	ERPR2	ERPR1	ERPR0
46	LHLR (LIN Slave Mode)	LHL7	LHL6	LHL5	LHL4	LHL3	LHL2	LHL1	LHL0
	Reset Value	0	0	0	0	0	0	0	0
	SCITPR	ETPR7	ETPR6	ETPR5	ETPR4	ETPR3	ETPR2	ETPR1	ETPR0
47	LPFR (LIN Slave Mode)	LDUM	0	0	0	LPFR3	LPFR2	LPFR1	LPFR0
	Reset Value	0	0	0	0	0	0	0	0

Table 21. LINSCI1 Register Map and Reset Values

INSTRUCTION GROUPS (cont'd)

Mnemo	Description	Function/Example	Dst	Src	н	I	Ν	Ζ	С
JRULE	Jump if $(C + Z = 1)$	Unsigned <=							
LD	Load	dst <= src	reg, M	M, reg			Ν	Z	
MUL	Multiply	X,A = X * A	A, X, Y	X, Y, A	0				0
NEG	Negate (2's compl)	neg \$10	reg, M				Ν	Z	С
NOP	No Operation								
OR	OR operation	A=A+M	А	М			Ν	Z	
POP	Pop from the Stack	pop reg	reg	М					
		pop CC	сс	М	Н	Ι	Ν	Z	С
PUSH	Push onto the Stack	push Y	М	reg, CC					
RCF	Reset carry flag	C = 0							0
RET	Subroutine Return								
RIM	Enable Interrupts	I = 0				0			
RLC	Rotate left true C	C <= Dst <= C	reg, M				Ν	Z	С
RRC	Rotate right true C	C => Dst => C	reg, M				Ν	Z	С
RSP	Reset Stack Pointer	S = Max allowed							
SBC	Subtract with Carry	A = A - M - C	А	М			Ν	Z	С
SCF	Set carry flag	C = 1							1
SIM	Disable Interrupts	l = 1				1			
SLA	Shift left Arithmetic	C <= Dst <= 0	reg, M				Ν	Z	С
SLL	Shift left Logic	C <= Dst <= 0	reg, M				Ν	Z	С
SRL	Shift right Logic	0 => Dst => C	reg, M				0	Z	С
SRA	Shift right Arithmetic	Dst7 => Dst => C	reg, M				Ν	Z	С
SUB	Subtraction	A = A - M	А	М			Ν	Z	С
SWAP	SWAP nibbles	Dst[74] <=> Dst[30]	reg, M				Ν	Z	
TNZ	Test for Neg & Zero	tnz lbl1					Ν	Z	
TRAP	S/W trap	S/W interrupt				1			
WFI	Wait for Interrupt					0			
XOR	Exclusive OR	A = A XOR M	А	М			Ν	Z	

driven by external square wave, LVD disabled.

3. SLOW mode selected with f_{CPU} based on f_{OSC} divided by 32. All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load), all peripherals in reset state; clock input (CLKIN) driven by external square wave, LVD disabled.

4. SLOW-WAIT mode selected with f_{CPU} based on f_{OSC} divided by 32. All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load), all peripherals in reset state; clock input (CLKIN) driven by external square wave, LVD disabled.

5. All I/O pins in output mode with a static value at V_{SS} (no load), LVD disabled. Data based on characterization results, tested in production at V_{DD} max and f_{CPU} max.

6. All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load). Data tested in production at V_{DD} max. and f_{CPU} max.

7. This consumption refers to the Halt period only and not the associated run period which is software dependent.

Figure 77. Typical I_{DD} in RUN vs. f_{CPU}

Figure 78. Typical I_{DD} in SLOW vs. f_{CPU}

13.6 MEMORY CHARACTERISTICS

 $T_A = -40^{\circ}C$ to 125°C, unless otherwise specified

13.6.1 RAM and Hardware Registers

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{RM}	Data retention mode ¹⁾	HALT mode (or RESET)	1.6			V

13.6.2 FLASH Program Memory

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD}	Operating voltage for Flash write/erase	Refer to operating range of V_{DD} with T_{A} , section 13.3.1 on page 133	2.7		5.5	v
+	Programming time for 1~32 bytes ²⁾	T _A =-40 to +125°C		5	10	ms
^L prog	Programming time for 1.5 kBytes	T _A =+25°C		0.24	0.48	S
t _{RET}	Data retention ⁴⁾	T _A =+55°C ³⁾	20			years
N _{RW}	Write erase cycles	T _A =+25°C	10K			cycles
	Supply current	Read / Write / Erase modes f _{CPU} = 8MHz, V _{DD} = 5.5V			2.6 ⁶⁾	mA
		No Read/No Write Mode			100	μA
		Power down mode / HALT		0	0.1	μA

13.6.3 EEPROM Data Memory

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD}	Operating voltage for EEPROM write/erase	Refer to operating range of V_{DD} with T_{A} , section 13.3.1 on page 133	2.7		5.5	V
t _{prog}	Programming time for 1~32 bytes	T _A =–40 to +125°C		5	10	ms
t _{ret}	Data retention ⁴⁾	T _A =+55°C ³⁾	20			years
N _{RW}	Write erase cycles	T _A =+25°C	300K			cycles

Notes:

57

1. Minimum V_{DD} supply voltage without losing data stored in RAM (in HALT mode or under RESET) or in hardware registers (only in HALT mode). Guaranteed by construction, not tested in production.

2. Up to 32 bytes can be programmed at a time.

- 3. The data retention time increases when the T_A decreases.
- 4. Data based on reliability test results and monitored in production.
- **5.** Data based on characterization results, not tested in production.

6. Guaranteed by Design. Not tested in production.

Figure 86. Typical V_{OL} at V_{DD}=3V

Figure 88. Typical V_{OL} at V_{DD}=5V

Figure 89. Typical V_{OL} at V_{DD}=3V (high-sink)

Figure 91. Typical V_{OL} at V_{DD}=5V (high-sink)

Figure 92. Typical V_{DD}-V_{OH} at V_{DD}=3.0V

Figure 93. Typical V_{DD}-V_{OH} at V_{DD}=4.0V

15.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE

Customer code is made up of the FASTROM contents and the list of the selected options (if any). The FASTROM contents are to be sent on diskette, or by electronic means, with the S19 hexadecimal file generated by the development tool. All unused bytes must be set to FFh. The selected options are communicated to STMicroelectronics using the correctly completed OPTION LIST appended on page 164.

Refer to application note AN1635 for information on the counter listing returned by ST after code has been transferred.

The STMicroelectronics Sales Organization will be pleased to provide detailed information on contractual points.

Figure 108. Ordering information scheme

Example:	ST7	F	LITE3x	F	2	U	3	TR
Family ST7 Microcontroller Family								
Memory type F: Flash P: FASTROM								
Sub-family LITE30, LITE35 or LITE39								
No. of pins F = 20								
Memory size 2 = 8K								
Package B = DIP M = SO U= QFN								
Temperature range 6 = -40 °C to 85 °C 3 = -40 °C to 125 °C								
Shipping Option TR = Tape & Reel packing Blank = Tube (DIP20 or SO20) o	r Tray (QFN	20)						
For a list of available options (e.g. data EEPROM, package) and orderable part numbers or for further information on any aspect of this device, please contact the ST Sales Office pearest to you								

ST7LITE3xF2 FASTROM MICROCONTROLLER OPTION LIST (Last update: November 2007)									
Customer Address									
Contact Phone No Reference FASTROM Code*: *FASTROM code name is assigned FASTROM code must be sent in .S	Contact Phone No Reference FASTROM Code*: *FASTROM code name is assigned by STMicroelectronics. FASTROM code must be sent in .S19 formatHex extension cannot be processed.								
Device type: [] ST7PL	.ITE30F2 [] S	ST7PLITE35	F2 [] ST7PLITE	39F2					
Conditioning (check only one optio PDIP20: []Tube SO20: []Tape & QFN20: []Tape &	n): « Reel [] Tub « Reel [] Tray	e /							
Special Marking: [] No Authorized characters are letters, c Maximum character count: 8 char.	ligits, '.', '-', '/' and s max	[] Yes " paces only.							
Temperature range	[] - 40°C to + 85°	С	[] - 40°C to + 125°C						
AWUCK Selection	[] 32-kHz Oscillat	tor	[] AWU RC Oscillato	r					
Clock Source Selection: [] Resonator: [] VLP: Very Low power resonator (32 to 100 kHz) [] LP: Low power resonator (1 to 2 MHz) [] MP: Medium power resonator (2 to 4 MHz) [] MS: Medium speed resonator (4 to 8 MHz) [] HS: High speed resonator (6 to 16 MHz)									
	[] External Clock	[] on PB4 [] on OSC1		,					
	[] Internal RC US	cillator							
Sector 0 size:	[]0.5K	[]1K	[]2K	[]4K					
Readout Protection:	[] Disabled	[] Enabled							
FLASH Write Protection	[] Disabled	[] Enabled							
PLL	[] Disabled	[] PLLx4	[] PLLx8						
LVD Reset	[] Disabled	[] Highest tl [] Medium t [] Lowest th	hreshold hreshold nreshold						
Watchdog Selection:	[] Software Activ	vation	[] Hardware A	ctivation					
Watchdog Reset on Halt:	[] Disabled		[] Enabled						
Comments : Supply Operating Range in the app Notes Date: Signature:	lication:			· · · · · · · · · · · · · · · · · · ·					
Important note: Not all configuration Refer to Figure 10 Please contact th	ons are available. 08.Ordering informa e ST Sales Office r	ation scheme nearest to you	u for any further inforn	nation.					
Please download the latest version of t www.st.com	his option list from:								

15.3 DEVELOPMENT TOOLS

Development tools for the ST7 microcontrollers include a complete range of hardware systems and software tools from STMicroelectronics and thirdparty tool suppliers. The range of tools includes solutions to help you evaluate microcontroller peripherals, develop and debug your application, and program your microcontrollers.

15.3.1 Starter kits

ST offers complete, affordable **starter kits**. Starter kits are complete, affordable hardware/software tool packages that include features and samples to help you quickly start developing your application.

15.3.2 Development and Debugging Tools

Application development for ST7 is supported by fully optimizing **C Compilers** and the **ST7 Assembler-Linker** toolchain, which are all seamlessly integrated in the ST7 integrated development environments in order to facilitate the debugging and fine-tuning of your application. The Cosmic C Compiler is available in a free version that outputs up to 16 Kbytes of code.

The range of hardware tools includes full-featured **ST7-EMU3 series emulators**, cost effective **ST7-DVP3 series emulators** and the low-cost **RLink** in-circuit debugger/programmer. These tools are supported by the **ST7 Toolset** from STMicroelectronics, which includes the STVD7 integrated development environment (IDE) with high-level lan-

guage debugger, editor, project manager and integrated programming interface.

15.3.3 Programming Tools

During the development cycle, the **ST7-DVP3** and **ST7-EMU3 series emulators** and the **RLink** provide in-circuit programming capability for programming the Flash microcontroller on your application board.

ST also provides dedicated a low-cost dedicated in-circuit programmer, the **ST7-STICK**, as well as **ST7 Socket Boards** which provide all the sockets required for programming any of the devices in a specific ST7 sub-family on a platform that can be used with any tool with in-circuit programming capability for ST7.

For production programming of ST7 devices, ST's third-party tool partners also provide a complete range of gang and automated programming solutions, which are ready to integrate into your production environment.

15.3.4 Order Codes for Development and Programming Tools

Table 26 below lists the ordering codes for the ST7LITE3 development and programming tools. For additional ordering codes for spare parts and accessories, refer to the online product selector at www.st.com.

15.3.5 Order codes for ST7LITE3 development tools

Table 26. Development tool order codes for the ST7LITE3 family

Supported Products	In-circuit Debugge	er, RLink Series ¹⁾	Emu	ator	Programming Tool		
	Starter Kit without Demo Board	Starter Kit with Demo Board	DVP Series	EMU Series	In-circuit Programmer	ST Socket Boards and EPBs	
ST7FLITE30 ST7FLITE35 ST7FLITE39	STX-RLINK ²⁾	STFLITE- SK/RAIS ²⁾	ST7MDT10- DVP3 ⁴⁾	ST7MDT10- EMU3	STX-RLINK ST7-STICK ³⁾⁵⁾	ST7SB10- 123 ³⁾	

Notes:

1. Available from ST or from Raisonance, www.raisonance.com

2. USB connection to PC

3. Add suffix /EU, /UK or /US for the power supply for your region

4. Includes connection kit for DIP16/SO16 only. See "How to order an EMU or DVP" in ST product and tool selection guide for connection kit ordering information

5. Parallel port connection to PC