

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details		
Product Status	Obsolete	
Core Processor	ST7	
Core Size	8-Bit	
Speed	16MHz	
Connectivity	LINbusSCI, SPI	
Peripherals	LVD, POR, PWM, WDT	
Number of I/O	15	
Program Memory Size	8KB (8K x 8)	
Program Memory Type	FLASH	
EEPROM Size	-	
RAM Size	384 x 8	
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V	
Data Converters	A/D 7x10b	
Oscillator Type	Internal	
Operating Temperature	-40°C ~ 85°C (TA)	
Mounting Type	Surface Mount	
Package / Case	20-VQFN Exposed Pad	
Supplier Device Package	20-QFN (6x5)	
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st7flite35u6tr	

Table of Contents

16.2	LINSCI LIMITATION	 	 	 	 	169
17 REVI	SION HISTORY	 	 	 	 	171

To obtain the most recent version of this datasheet, please check at www.st.com

Please also pay special attention to the Section "KNOWN LIMITATIONS" on page 169.

PIN DESCRIPTION (Cont'd)

Legend / Abbreviations for Table 2:

Type: I = input, O = output, S = supply

In/Output level: $C_T = CMOS \ 0.3V_{DD}/0.7V_{DD}$ with input trigger Output level: $HS = 20mA \ high \ sink \ (on \ N-buffer \ only)$

Port and control configuration:

Input: float = floating, wpu = weak pull-up, int = interrupt, ana = analog

Output: OD = open drain, PP = push-pull

The RESET configuration of each pin is shown in bold which is valid as long as the device is in reset state.

Table 2. Device Pin Description

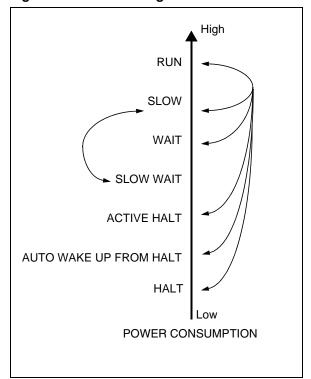
				Le	vel		Ро	rt / C	Cont	rol						
0	P20	Pin Name	Type	_	¥		Inp	out		Out	put	Main Function	Alternate Function			
QFN20	SO20/DIP20	i iii Naiile	Τ	Input	Output	float	ndw	int	ana	ОО	РР	(after reset)	Alternate Function			
19	1	V _{SS} 1)	S									Ground				
20	2	V _{DD} 1)	S									Main pow	er supply			
1	3	RESET	I/O	C_T			Х			Х		Top priori	rity non maskable interrupt (active low)			
2	4	PB0/AIN0/SS	I/O	C	Ç _T	x	x ei3		х	x	x	Port B0	ADC Analog Input 0 or SPI Slave Select (active low) Caution: No negative current injection allowed on this pin. For details, refer to section 13.2.2 on page 132			
3	5	PB1/AIN1/SCK	I/O	C	C _T	x			Х	х	х	Port B1	ADC Analog Input 1 or SPI Serial Clock Caution: No negative current injection allowed on this pin. For details, refer to section 13.2.2 on page 132			
4	6	PB2/AIN2/ MISO	I/O	C	C _T	х			Х	Х	Х	Port B2	ADC Analog Input 2 or SPI Master In/ Slave Out Data			
5	7	PB3/AIN3/ MOSI	I/O	C	Ст	х	е	i2	х	Х	Х	Port B3	ADC Analog Input 3 or SPI Master Out / Slave In Data			
6	8	PB4/AIN4/ CLKIN**	I/O	C	C _T	X	Х		х	х	Х	Port B4	ADC Analog Input 4 or External clock input			
7	9	PB5/AIN5	I/O	C	C _T	X	0	i2	Х	Х	Χ	Port B5	ADC Analog Input 5			
8	10	PB6/AIN6/RDI	I/O	(C _T	X	е	14	Х	Х	Χ	Port B6	ADC Analog Input 6 or LINSCI Input			
9	11	PA7/TDO	I/O	C_{T}	HS	X	Χ			Х	Х	Port A7	LINSCI Output			

CR9 CR8 CR7 CR6 CR5 CR4 CR3 CR2 **RCCR** CR0 SICSR CR1 CLKIN/2 (Ext Clock) Tunable 1% RC Oscillator RC OSC 1MHz PLL Clock 8MHz PLL 1MHz -> 8MHz fosc 4MHz PLL 1MHz -> 4MHz OSCRANGE[2:0] Option bits OSC Option bit PLLx4x8 CLKIN H **CLKIN** /2 OSC,PLLOFF, **DIVIDER** OSCRANGE[2:0] Option bits CLKIN/ OSC1 OSC Crystal OSC /2 OSC2 1-16 MHZ **DIVIDER** or 32kHz f_{LTIMER} 8-BIT (1ms timebase @ 8 MHz f_{OSC}) LITE TIMER 2 COUNTER fosc fosc/32 /32 DIVIDER f_{CPU} TO CPU AND f_{OSC} 0 PERIPHERALS MCO SMS **MCCSR** f_{CPU}

Figure 13. Clock Management Block Diagram

9 POWER SAVING MODES

9.1 INTRODUCTION


To give a large measure of flexibility to the application in terms of power consumption, five main power saving modes are implemented in the ST7 (see Figure 21):

- Slow
- Wait (and Slow-Wait)
- Active Halt
- Auto Wake up From Halt (AWUFH)
- Halt

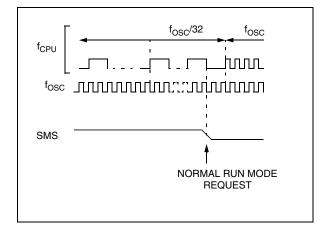
After a RESET the normal operating mode is selected by default (RUN mode). This mode drives the device (CPU and embedded peripherals) by means of a master clock which is based on the main oscillator frequency divided or multiplied by 2 (f_{OSC2}).

From RUN mode, the different power saving modes may be selected by setting the relevant register bits or by calling the specific ST7 software instruction whose action depends on the oscillator status.

Figure 21. Power Saving Mode Transitions

9.2 SLOW MODE

This mode has two targets:


- To reduce power consumption by decreasing the internal clock in the device,
- To adapt the internal clock frequency (f_{CPU}) to the available supply voltage.

SLOW mode is controlled by the SMS bit in the MCCSR register which enables or disables Slow mode.

In this mode, the oscillator frequency is divided by 32. The CPU and peripherals are clocked at this-lower frequency.

Note: SLOW-WAIT mode is activated when entering WAIT mode while the device is already in SLOW mode.

Figure 22. SLOW Mode Clock Transition

POWER SAVING MODES (Cont'd)

Figure 26. ACTIVE-HALT Timing Overview

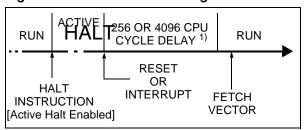
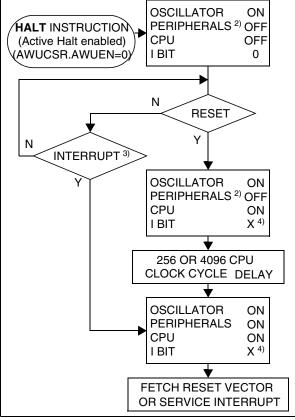
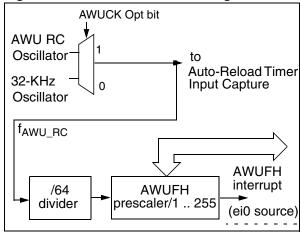



Figure 27. ACTIVE-HALT Mode Flow-chart

Notes:


- 1. This delay occurs only if the MCU exits ACTIVE-HALT mode by means of a RESET.
- 2. Peripherals clocked with an external clock source can still be active.
- **3.** Only the RTC1 interrupt and some specific interrupts can exit the MCU from ACTIVE-HALT mode. Refer to Table 6, "Interrupt Mapping," on page 36 for more details.
- **4.** Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set during the interrupt routine and cleared when the CC register is popped.

9.6 AUTO WAKE UP FROM HALT MODE

Auto Wake Up From Halt (AWUFH) mode is similar to Halt mode with the additional of an internal RC oscillator for wake-up. Compared to ACTIVE-HALT mode, AWUFH has lower power consumption (the main clock is not kept running), but there is no accurate realtime clock available.

It is entered by executing the HALT instruction when the AWUEN bit in the AWUCSR register has been set.

Figure 28. AWUFH Mode Block Diagram

As soon as HALT mode is entered, and if the AWUEN bit has been set in the AWUCSR register, the AWU RC oscillator provides a clock signal (f_{AWU RC}). Its frequency is divided by a fixed divider and a programmable prescaler controlled by the AWUPR register. The output of this prescaler provides the delay time. When the delay has elapsed the AWUF flag is set by hardware and an interrupt wakes-up the MCU from Halt mode. At the same time the main oscillator is immediately turned on and a 256 cycle delay is used to stabilize it. After this start-up delay, the CPU resumes operation by servicing the AWUFH interrupt. The AWU flag and its associated interrupt are cleared by software reading the AWUCSR register.

To compensate for any frequency dispersion of the AWU RC oscillator, it can be calibrated by measuring the clock frequency f_{AWU} RC and then calculating the right prescaler value. Measurement mode is enabled by setting the AWUM bit in the AWUCSR register in Run mode. This connects f_{AWU} RC to the input capture of the 12-bit Auto-Relad timer, allowing the f_{AWU} RC to be measured using the main oscillator clock as a reference time-base.

I/O PORTS (Cont'd)

Figure 31. I/O Port General Block Diagram

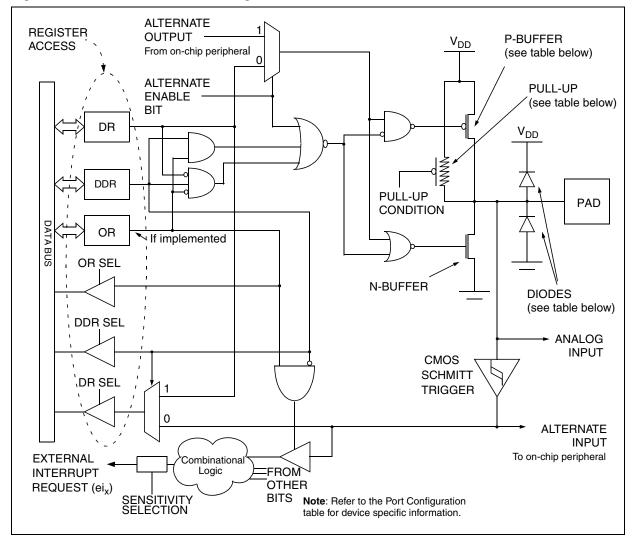


Table 9. I/O Port Mode Options

	Configuration Made	Pull-Up	P-Buffer	Dio	Diodes		
	Configuration Mode	Pull-Op	P-Buller	to V _{DD}	to V _{SS}		
Innut	Floating with/without Interrupt	Off	Off	Off			
Input	Pull-up with/without Interrupt	On	7 011	On			
	Push-pull	Off	On	- On	On		
Output	Open Drain (logic level)		Off		I		
	True Open Drain	NI	NI	NI (see note 1)			

Legend: NI - not implemented

Off - implemented not activated

On - implemented and activated

Note 1: The diode to V_{DD} is not implemented in the true open drain pads. A local protection between

the pad and $\ensuremath{V_{OL}}$ is implemented to protect the device against positive stress.

Note 2: For further details on port configuration, please refer to Table 11 and Table 12 on page 51.

WATCHDOG TIMER (Cont'd)

11.1.5 Interrupts

None.

11.1.6 Register Description CONTROL REGISTER (CR)

Read/Write

Reset Value: 0111 1111 (7Fh)

7							0
WDGA	Т6	T5	T4	Т3	T2	T1	ТО

Bit 7 = **WDGA** Activation bit.

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset.

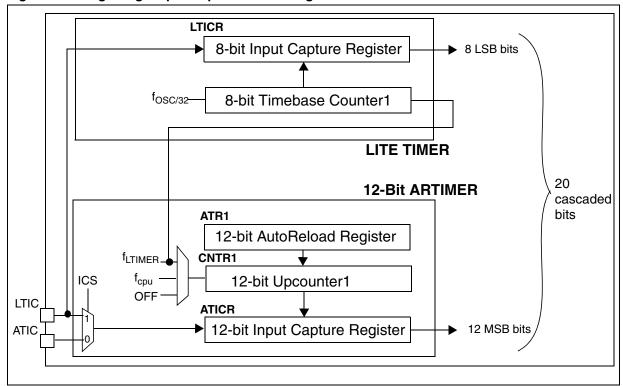
0: Watchdog disabled

1: Watchdog enabled

Note: This bit is not used if the hardware watchdog option is enabled by option byte.

Bit 6:0 = **T[6:0]** *7-bit timer (MSB to LSB)*. These bits contain the decremented value. A reset is produced when it rolls over from 40h to 3Fh (T6 becomes cleared).

DUAL 12-BIT AUTORELOAD TIMER 3 (Cont'd)


Long input capture

Pulses that last between 8 μ s and 2s can be measured with an accuracy of 4 μ s if f_{OSC} = 8MHz in the following conditions:

- The 12-bit AT3 Timer is clocked by the Lite Timer (RTC pulse: CK[1:0] = 01 in the ATCSR register)
- The ICS bit in the ATCSR2 register is set so that the LTIC pin is used to trigger the AT3 Timer capture.
- The signal to be captured is connected to LTIC pin
- Input Capture registers LTICR, ATICRH and ATICRL are read

This configuration allows to cascade the Lite Timer and the 12-bit AT3 Timer to get a 20-bit input capture value. Refer to Figure 44.

Figure 44. Long Range Input Capture Block Diagram

Notes:

- 1. Since the input capture flags (ICF) for both timers (AT3 Timer and LT Timer) are set when signal transition occurs, software must mask one interrupt by clearing the corresponding ICIE bit before setting the ICS bit.
- 2. If the ICS bit changes (from 0 to 1 or from 1 to 0), a spurious transition might occur on the input capture signal because of different values on LTIC and ATIC. To avoid this situation, it is recommended to do as follows:
- First, reset both ICIE bits.
- Then set the ICS bit.
- Reset both ICF bits.

- And then set the ICIE bit of desired interrupt.
- 3. How to compute a pulse length with long input capture feature.

As both timers are used, computing a pulse length is not straight-forward. The procedure is as follows:

 At the first input capture on the rising edge of the pulse, we assume that values in the registers are as follows:

LTICR = LT1
ATICRH = ATH1
ATICRL = ATL1
Hence ATICR1 [11:0] = ATH1 & ATL1

Refer to Figure 45 on page 65.

DUAL 12-BIT AUTORELOAD TIMER 3 (Cont'd)

11.2.6 Register Description

TIMER CONTROL STATUS REGISTER (ATCSR)

Read / Write

Reset Value: 0x00 0000 (x0h)

7	6						0
0	ICF	ICIE	CK1	СКО	OVF1	OVFIE1	CMPIE

Bit 7 = Reserved.

Bit 6 = ICF Input Capture Flag.

This bit is set by hardware and cleared by software by reading the ATICR register (a read access to ATICRH or ATICRL will clear this flag). Writing to this bit does not change the bit value.

0: No input capture

1: An input capture has occurred

Bit 5 = ICIE IC Interrupt Enable.

This bit is set and cleared by software.

0: Input capture interrupt disabled

1: Input capture interrupt enabled

Bits 4:3 = **CK[1:0]** Counter Clock Selection.

These bits are set and cleared by software and cleared by hardware after a reset. They select the clock frequency of the counter.

Counter Clock Selection	CK1	СКО
OFF	0	0
OFF	1	1
f _{LTIMER} (1 ms timebase @ 8 MHz)	0	1
f _{CPU}	1	0

Bit 2 = **OVF1** Overflow Flag.

This bit is set by hardware and cleared by software by reading the TCSR register. It indicates the transition of the counter1 CNTR1 from FFh to ATR1 value.

0: No counter overflow occurred

1: Counter overflow occurred

Bit 1 = **OVFIE1** Overflow Interrupt Enable.

This bit is read/write by software and cleared by hardware after a reset.

0: Overflow interrupt disabled.

1: Overflow interrupt enabled.

Bit 0 = **CMPIE** Compare Interrupt Enable.

This bit is read/write by software and cleared by hardware after a reset. It can be used to mask the interrupt generated when any of the CMPFx bit is set

0: Output compare interrupt disabled.

1: Output Compare interrupt enabled.

COUNTER REGISTER 1 HIGH (CNTR1H)

Read only

Reset Value: 0000 0000 (000h)

15							8
0	0	0	0	CNTR1_ 11	CNTR1_ 10	CNTR1_ 9	CNTR1_ 8

COUNTER REGISTER 1 LOW (CNTR1L)

Read only

Reset Value: 0000 0000 (000h)

| CNTR1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Bits 15:12 = Reserved.

Bits 11:0 = **CNTR1[11:0]** *Counter Value*.

This 12-bit register is read by software and cleared by hardware after a reset. The counter CNTR1 is incremented continuously as soon as a counter clock is selected. To obtain the 12-bit value, software should read the counter value in two consecutive read operations. The CNTR1H register can be incremented between the two reads, and in order to be accurate when f_{TIMER}=f_{CPU}, the software should take this into account when CNTR1L and CNTR1H are read. If CNTR1L is close to its highest value, CNTR1H could be incremented before it is read.

When a counter overflow occurs, the counter restarts from the value specified in the ATR1 register.

0

LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont'd)

11.5.5 SCI Mode - Functional Description

Conventional Baud Rate Generator Mode

The block diagram of the Serial Control Interface in conventional baud rate generator mode is shown in Figure 55.

It uses four registers:

- 2 control registers (SCICR1 and SCICR2)
- A status register (SCISR)
- A baud rate register (SCIBRR)

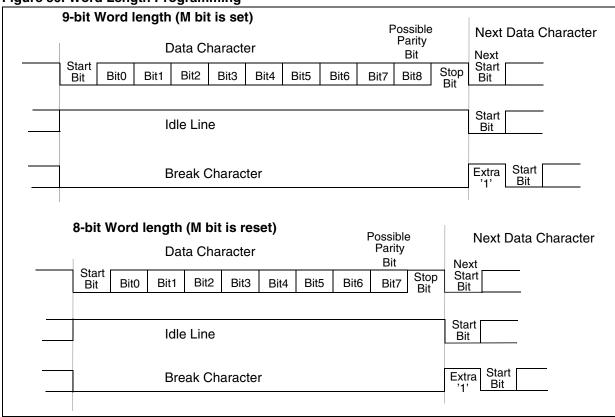
Extended Prescaler Mode

Two additional prescalers are available in extended prescaler mode. They are shown in Figure 57.

- An extended prescaler receiver register (SCIER-PR)
- An extended prescaler transmitter register (SCI-ETPR)

11.5.5.1 Serial Data Format

Word length may be selected as being either 8 or 9 bits by programming the M bit in the SCICR1 register (see Figure 56).


The TDO pin is in low state during the start bit.

The TDO pin is in high state during the stop bit.

An Idle character is interpreted as a continuous logic high level for 10 (or 11) full bit times.

A Break character is a character with a sufficient number of low level bits to break the normal data format followed by an extra "1" bit to acknowledge the start bit.

Figure 56. Word Length Programming

LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont'd)

11.5.5.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status. When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the T8 bit in the SCICR1 register.

Character Transmission

During an SCI transmission, data shifts out least significant bit first on the TDO pin. In this mode, the SCIDR register consists of a buffer (TDR) between the internal bus and the transmit shift register (see Figure 55).

Procedure

- Select the M bit to define the word length.
- Select the desired baud rate using the SCIBRR and the SCIETPR registers.
- Set the TE bit to send a preamble of 10 (M = 0) or 11 (M = 1) consecutive ones (Idle Line) as first transmission.
- Access the SCISR register and write the data to send in the SCIDR register (this sequence clears the TDRE bit). Repeat this sequence for each data to be transmitted.

Clearing the TDRE bit is always performed by the following software sequence:

- 1. An access to the SCISR register
- 2. A write to the SCIDR register

The TDRE bit is set by hardware and it indicates:

- The TDR register is empty.
- The data transfer is beginning.
- The next data can be written in the SCIDR register without overwriting the previous data.

This flag generates an interrupt if the TIE bit is set and the I[11:0] bits are cleared in the CCR register.

When a transmission is taking place, a write instruction to the SCIDR register stores the data in the TDR register and which is copied in the shift register at the end of the current transmission.

When no transmission is taking place, a write instruction to the SCIDR register places the data directly in the shift register, the data transmission starts, and the TDRE bit is immediately set.

When a character transmission is complete (after the stop bit) the TC bit is set and an interrupt is generated if the TCIE is set and the I[1:0] bits are cleared in the CCR register.

Clearing the TC bit is performed by the following software sequence:

- 1. An access to the SCISR register
- 2. A write to the SCIDR register

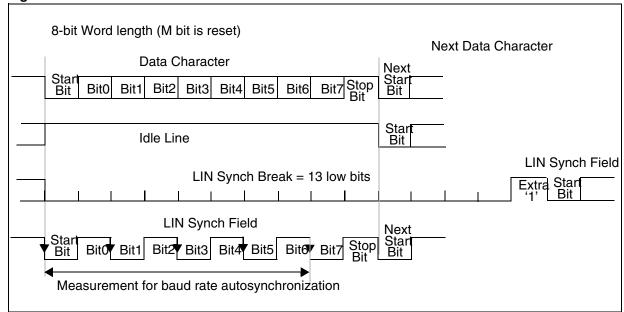
Note: The TDRE and TC bits are cleared by the same software sequence.

Break Characters

Setting the SBK bit loads the shift register with a break character. The break character length depends on the M bit (see Figure 56).

As long as the SBK bit is set, the SCI sends break characters to the TDO pin. After clearing this bit by software, the SCI inserts a logic 1 bit at the end of the last break character to guarantee the recognition of the start bit of the next character.

Idle Line


Setting the TE bit drives the SCI to send a preamble of 10 (M = 0) or 11 (M = 1) consecutive '1's (idle line) before the first character.

In this case, clearing and then setting the TE bit during a transmission sends a preamble (idle line) after the current word. Note that the preamble duration (10 or 11 consecutive '1's depending on the M bit) does not take into account the stop bit of the previous character.

Note: Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore the best time to toggle the TE bit is when the TDRE bit is set, that is, before writing the next byte in the SCIDR.

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont'd)

Figure 58. LIN Characters

11.6 10-BIT A/D CONVERTER (ADC)

11.6.1 Introduction

The on-chip Analog to Digital Converter (ADC) peripheral is a 10-bit, successive approximation converter with internal sample and hold circuitry. This peripheral has up to 7 multiplexed analog input channels (refer to device pin out description) that allow the peripheral to convert the analog voltage levels from up to 7 different sources.

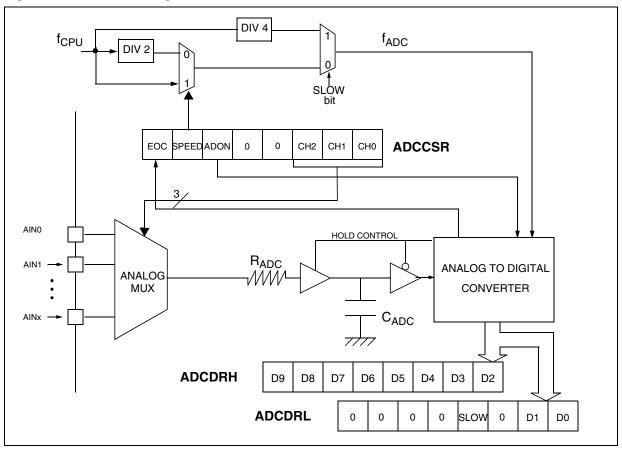
The result of the conversion is stored in a 10-bit Data Register. The A/D converter is controlled through a Control/Status Register.

11.6.2 Main Features

- 10-bit conversion
- Up to 7 channels with multiplexed input
- Linear successive approximation

- Data register (DR) which contains the results
- Conversion complete status flag
- On/off bit (to reduce consumption)

The block diagram is shown in Figure 66.


11.6.3 Functional Description

11.6.3.1 Analog Power Supply

 V_{DDA} and V_{SSA} are the high and low level reference voltage pins. In some devices (refer to device pin out description) they are internally connected to the V_{DD} and V_{SS} pins.

Conversion accuracy may therefore be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines.

Figure 66. ADC Block Diagram

12 INSTRUCTION SET

12.1 ST7 ADDRESSING MODES

The ST7 Core features 17 different addressing modes which can be classified in seven main groups:

Addressing Mode	Example
Inherent	nop
Immediate	ld A,#\$55
Direct	ld A,\$55
Indexed	ld A,(\$55,X)
Indirect	ld A,([\$55],X)
Relative	jrne loop
Bit operation	bset byte,#5

The ST7 Instruction set is designed to minimize the number of bytes required per instruction: To do so, most of the addressing modes may be subdivided in two submodes called long and short:

- Long addressing mode is more powerful because it can use the full 64 Kbyte address space, however it uses more bytes and more CPU cycles.
- Short addressing mode is less powerful because it can generally only access page zero (0000h -00FFh range), but the instruction size is more compact, and faster. All memory to memory instructions use short addressing modes only (CLR, CPL, NEG, BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP)

The ST7 Assembler optimizes the use of long and short addressing modes.

Table 23. ST7 Addressing Mode Overview

	Mode		Syntax	Destination/ Source	Pointer Address (Hex.)	Pointer Size (Hex.)	Length (Bytes)
Inherent			nop				+ 0
Immediate			ld A,#\$55				+ 1
Short	Direct		ld A,\$10	00FF			+ 1
Long	Direct		ld A,\$1000	0000FFFF			+ 2
No Offset	Direct	Indexed	ld A,(X)	00FF			+ 0 (with X register) + 1 (with Y register)
Short	Direct	Indexed	ld A,(\$10,X)	001FE			+ 1
Long	Direct	Indexed	ld A,(\$1000,X)	0000FFFF			+ 2
Short	Indirect		ld A,[\$10]	00FF	00FF	byte	+ 2
Long	Indirect		ld A,[\$10.w]	0000FFFF	00FF	word	+ 2
Short	Indirect	Indexed	ld A,([\$10],X)	001FE	00FF	byte	+ 2
Long	Indirect	Indexed	ld A,([\$10.w],X)	0000FFFF	00FF	word	+ 2
Relative	Direct		jrne loop	PC-128/PC+127 ¹⁾			+ 1
Relative	Indirect		jrne [\$10]	PC-128/PC+127 ¹⁾	00FF	byte	+ 2
Bit	Direct		bset \$10,#7	00FF			+ 1
Bit	Indirect		bset [\$10],#7	00FF	00FF	byte	+ 2
Bit	Direct	Relative	btjt \$10,#7,skip	00FF			+ 2
Bit	Indirect	Relative	btjt [\$10],#7,skip	00FF	00FF	byte	+ 3

Note:

1. At the time the instruction is executed, the Program Counter (PC) points to the instruction following JRxx.

12.2 INSTRUCTION GROUPS

The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions may

be subdivided into 13 main groups as illustrated in the following table:

Load and Transfer	LD	CLR						
Stack operation	PUSH	POP	RSP					
Increment/Decrement	INC	DEC						
Compare and Tests	CP	TNZ	ВСР					
Logical operations	AND	OR	XOR	CPL	NEG			
Bit Operation	BSET	BRES						
Conditional Bit Test and Branch	BTJT	BTJF						
Arithmetic operations	ADC	ADD	SUB	SBC	MUL			
Shift and Rotates	SLL	SRL	SRA	RLC	RRC	SWAP	SLA	
Unconditional Jump or Call	JRA	JRT	JRF	JP	CALL	CALLR	NOP	RET
Conditional Branch	JRxx							
Interruption management	TRAP	WFI	HALT	IRET				
Condition Code Flag modification	SIM	RIM	SCF	RCF				

Using a prebyte

The instructions are described with 1 to 4 bytes.

In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three different prebyte opcodes are defined. These prebytes modify the meaning of the instruction they precede.

The whole instruction becomes:

PC-2 End of previous instruction

PC-1 Prebyte

PC Opcode

PC+1 Additional word (0 to 2) according to the number of bytes required to compute the effective address

These prebytes enable instruction in Y as well as indirect addressing modes to be implemented. They precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes are:

PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent addressing mode by a Y one.

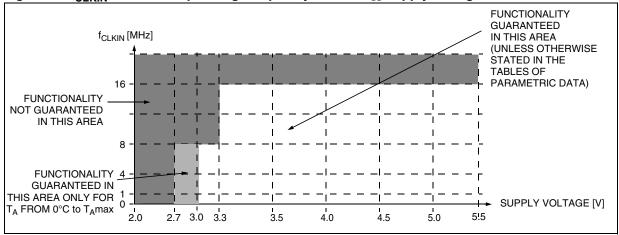
PIX 92 Replace an instruction using direct, direct bit or direct relative addressing mode to an instruction using the corresponding indirect addressing mode. It also changes an instruction using X indexed addressing mode to an instruction using indirect X indexed addressing mode.

PIY 91 Replace an instruction using X indirect indexed addressing mode by a Y one.

12.2.1 Illegal Opcode Reset

In order to provide enhanced robustness to the device against unexpected behavior, a system of illegal opcode detection is implemented. If a code to be executed does not correspond to any opcode or prebyte value, a reset is generated. This, combined with the Watchdog, allows the detection and recovery from an unexpected fault or interference.

Note: A valid prebyte associated with a valid opcode forming an unauthorized combination does not generate a reset.


13.3 OPERATING CONDITIONS

13.3.1 General Operating Conditions: Suffix 6 Devices

 $T_A = -40 \text{ to } +125^{\circ}\text{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Max	Unit
		f _{OSC} = 8 MHz. max., T _A = 0 to 125°C 2.7		5.5	
V_{DD}	Supply voltage	$f_{OSC} = 8 \text{ MHz. max., } T_A = -40 \text{ to } 125^{\circ}\text{C}$	3.0	5.5	V
		f _{OSC} = 16 MHz. max.	3.3	5.5	
f _{CLKIN}	External clock frequency on CLKIN pin	V _{DD} ≥3.3V	up to 16		MHz
		V _{DD} ≥3.0V	up to 8		IVIIIZ

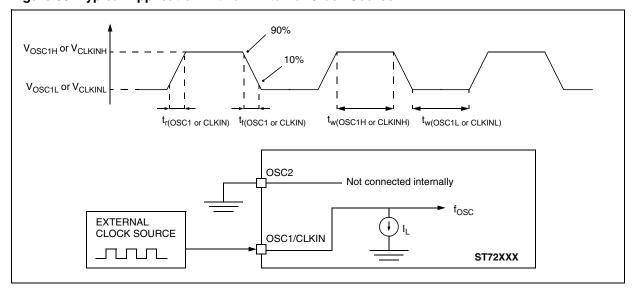
Figure 69. f_{CLKIN} Maximum Operating Frequency Versus V_{DD} Supply Voltage

13.5 CLOCK AND TIMING CHARACTERISTICS

Subject to general operating conditions for V_{DD}, f_{OSC}, and T_A.

13.5.1 General Timings

Symbol	Parameter 1)	Conditions	Min	Typ ²⁾	Max	Unit
+	Instruction cycle time	f _{CPU} =8MHz	2	3	12	t _{CPU}
^t c(INST)			250	375	1500	ns
+	Interrupt reaction time $^{3)}$ $t_{v(IT)} = \Delta t_{c(INST)} + 10$	f _{CPU} =8MHz	10		22	t _{CPU}
τ _{ν(IT)}			1.25		2.75	μS


13.5.2 External Clock Source

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OSC1H} or V _{CLKIN_H}	OSC1/CLKIN input pin high level voltage		0.7xV _{DD}		V_{DD}	V
V _{OSC1L} or V _{CLKIN_L}	OSC1/CLKIN input pin low level voltage		V_{SS}		$0.3xV_{ m DD}$	V
$ \begin{array}{c} t_{w(\text{OSC1H})} \text{ or } t_{w(\text{CLKINH})} \\ t_{w(\text{OSC1L})} \text{ or } t_{w(\text{CLKINL})} \end{array} $	OSC1/CLKIN high or low time 4)	see Figure 83	15			ns
$t_{r(OSC1)}$ or $t_{r(CLKIN)}$ $t_{f(OSC1)}$ or $t_{f(CLKIN)}$	OSC1/CLKIN rise or fall time ⁴⁾				15	115
IL	OSCx/CLKIN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$			±1	μΑ

Notes:

- 1. Guaranteed by Design. Not tested in production.
- 2. Data based on typical application software.
- 3. Time measured between interrupt event and interrupt vector fetch. $\Delta t_{c(INST)}$ is the number of t_{CPU} cycles needed to finish the current instruction execution.
- 4. Data based on design simulation and/or technology characteristics, not tested in production.

Figure 83. Typical Application with an External Clock Source

ADC CHARACTERISTICS (Cont'd)

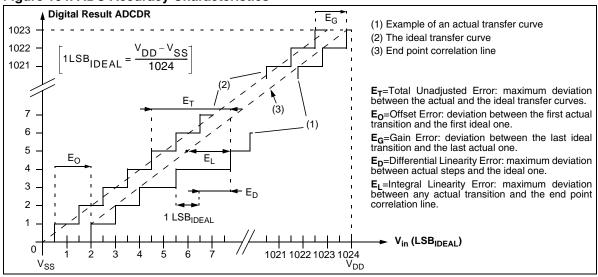
ADC Accuracy with 3V₂V_{DD} <3.6V

Symbol	Parameter	Conditions	Тур	Max ³⁾	Unit
IE _T I	Total unadjusted error		2.5	6	
IE _O I	Offset error		0.9	4	
IE _G I	Gain Error	f _{CPU} =4MHz, f _{ADC} =2MHz ^{1) 2)}	1.3	4.5	LSB
IE _D I	Differential linearity error		1.8	3	
IE _L I	Integral linearity error		1.0	3	

ADC Accuracy with 4.5V_SV_{DD} 5.5V

Symbol	Parameter	Conditions	Тур	Max ³⁾	Unit
IE _T I	Total unadjusted error		2.0	4	
IE _O I	Offset error		0.6	1.5	LSB
IE _G I	Gain Error	f _{CPU} =8MHz, f _{ADC} =4MHz ^{1) 2)}	1.2		
IE _D I	Differential linearity error		1.6	2.5	
IE _L I	Integral linearity error		1.8	2.5	

Notes:


- 1. Data based on characterization results over the whole temperature range, monitored in production.
- 2. ADC accuracy vs negative injection current: Injecting negative current on any of the analog input pins may reduce the accuracy of the conversion being performed on another analog input.

The effect of negative injection current on robust pins is specified in section 13.11 on page 157

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 13.2.2 does not affect the ADC accuracy.

3. Data based on characterization results, monitored in production to guarantee 99.73% within \pm max value from -40°C to +125°C (\pm 3 σ distribution limits).

Figure 104. ADC Accuracy Characteristics

ST7LITE	E3xF2 FASTROM MIC (Last update:	ROCONTRO November 20		-
Customer				
Contact Phone No Reference FASTROM Code*: *FASTROM code name is ass FASTROM code must be sent	igned by STMicroelec in .S19 formatHex e	tronics.		
Device type: [] S	T7PLITE30F2	ST7PLITE35	F2 []ST7PLIT	E39F2
Special Marking: [] N Authorized characters are lette Maximum character count: 8 c	ers, digits, '.', '-', '/' and		"	
Temperature range	[] - 40°C to + 85	5°C	[] - 40°C to + 125°	С
AWUCK Selection	[] 32-kHz Oscill	ator	[] AWU RC Oscilla	tor
Clock Source Selection:	[] Resonator:	[] LP: Low [] MP: Me [] MS: Me	ry Low power resona power resonator (1 t dium power resonato dium speed resonato n speed resonator (8	to 2 MHz) r (2 to 4 MHz) r (4 to 8 MHz)
	[] External Clod	[] on PB4 [] on OSC	1	·
	[] Internal RC C	Oscillator		
Sector 0 size:	[] 0.5K	[]1K	[] 2K	[]4K
Readout Protection:	[] Disabled	[] Enabled		
FLASH Write Protection	[] Disabled	[] Enabled		
PLL	[] Disabled	[] PLLx4	[] PLLx8	
LVD Reset	[] Disabled	[] Highest [] Medium [] Lowest	threshold	
Watchdog Selection:	[] Software Act	tivation	[] Hardware	Activation
Watchdog Reset on Halt:	[] Disabled		[] Enabled	
Date:	application:			
Important note: Not all config Refer to Figu		nation schem	e.	
rlease download the latest versio	n of this option list fron	n:		

15.4 ST7 APPLICATION NOTES

Table 27. ST7 Application Notes

IDENTIFICATION	DESCRIPTION					
	APPLICATION EXAMPLES					
AN1658	SERIAL NUMBERING IMPLEMENTATION					
AN1720	MANAGING THE READ-OUT PROTECTION IN FLASH MICROCONTROLLERS					
AN1755	A HIGH RESOLUTION/PRECISION THERMOMETER USING ST7 AND NE555					
AN1756	CHOOSING A DALI IMPLEMENTATION STRATEGY WITH ST7DALI					
AN1812	A HIGH PRECISION, LOW COST, SINGLE SUPPLY ADC FOR POSITIVE AND NEGATIVE IN- PUT VOLTAGES					
EXAMPLE DRIVER	RS					
AN 969	SCI COMMUNICATION BETWEEN ST7 AND PC					
AN 970	SPI COMMUNICATION BETWEEN ST7 AND EEPROM					
AN 971	I ² C COMMUNICATION BETWEEN ST7 AND M24CXX EEPROM					
AN 972	ST7 SOFTWARE SPI MASTER COMMUNICATION					
AN 973	SCI SOFTWARE COMMUNICATION WITH A PC USING ST72251 16-BIT TIMER					
AN 974	REAL TIME CLOCK WITH ST7 TIMER OUTPUT COMPARE					
AN 976	DRIVING A BUZZER THROUGH ST7 TIMER PWM FUNCTION					
AN 979	DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC					
AN 980	ST7 KEYPAD DECODING TECHNIQUES, IMPLEMENTING WAKE-UP ON KEYSTROKE					
AN1017	USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER					
AN1041	USING ST7 PWM SIGNAL TO GENERATE ANALOG OUTPUT (SINUSOÏD)					
AN1042	ST7 ROUTINE FOR I ² C SLAVE MODE MANAGEMENT					
AN1044	MULTIPLE INTERRUPT SOURCES MANAGEMENT FOR ST7 MCUS					
AN1045	ST7 S/W IMPLEMENTATION OF I ² C BUS MASTER					
AN1046	UART EMULATION SOFTWARE					
AN1047	MANAGING RECEPTION ERRORS WITH THE ST7 SCI PERIPHERALS					
AN1048	ST7 SOFTWARE LCD DRIVER					
AN1078	PWM DUTY CYCLE SWITCH IMPLEMENTING TRUE 0% & 100% DUTY CYCLE					
AN1082	DESCRIPTION OF THE ST72141 MOTOR CONTROL PERIPHERALS REGISTERS					
AN1083	ST72141 BLDC MOTOR CONTROL SOFTWARE AND FLOWCHART EXAMPLE					
AN1105	ST7 PCAN PERIPHERAL DRIVER					
AN1129	PWM MANAGEMENT FOR BLDC MOTOR DRIVES USING THE ST72141					
AN1130	AN INTRODUCTION TO SENSORLESS BRUSHLESS DC MOTOR DRIVE APPLICATIONS WITH THE ST72141					
AN1148	USING THE ST7263 FOR DESIGNING A USB MOUSE					
AN1149	HANDLING SUSPEND MODE ON A USB MOUSE					
AN1180	USING THE ST7263 KIT TO IMPLEMENT A USB GAME PAD					
AN1276	BLDC MOTOR START ROUTINE FOR THE ST72141 MICROCONTROLLER					
AN1321	USING THE ST72141 MOTOR CONTROL MCU IN SENSOR MODE					
AN1325	USING THE ST7 USB LOW-SPEED FIRMWARE V4.X					
AN1445	EMULATED 16-BIT SLAVE SPI					
AN1475	DEVELOPING AN ST7265X MASS STORAGE APPLICATION					
AN1504	STARTING A PWM SIGNAL DIRECTLY AT HIGH LEVEL USING THE ST7 16-BIT TIMER					
AN1602	16-BIT TIMING OPERATIONS USING ST7262 OR ST7263B ST7 USB MCUS					
AN1633	DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 NON-USB APPLICATIONS					
AN1712	GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART					
AN1713	SMBUS SLAVE DRIVER FOR ST7 I2C PERIPHERALS					
AN1753	SOFTWARE UART USING 12-BIT ART					