

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

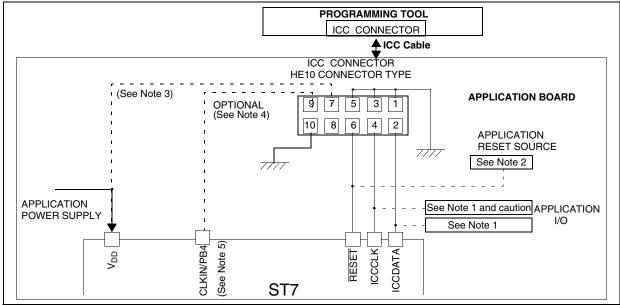
Details

Product Status	Not For New Designs
Core Processor	ST7
Core Size	8-Bit
Speed	16MHz
Connectivity	LINbusSCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	15
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SO
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st7flite39f2m3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FLASH PROGRAM MEMORY (Cont'd)


4.4 ICC INTERFACE

ICP needs a minimum of 4 and up to 6 pins to be connected to the programming tool. These pins are:

- RESET: device reset
- V_{SS}: device power supply ground

Figure 5. Typical ICC Interface

- ICCCLK: ICC output serial clock pin
- ICCDATA: ICC input serial data pin
- CLKIN/PB4: main clock input for external source
- V_{DD}: application board power supply (optional, see Note 3)

Notes:

1. If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the Programming Tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to be implemented if another device forces the signal. Refer to the Programming Tool documentation for recommended resistor values. 2. During the IC<u>P sessi</u>on, the programming tool must control the RESET pin. This can lead to con-

flicts between the programming tool and the application reset circuit if it drives more than 5mA at high level (push pull output or pull-up resistor<1K). A schottky diode can be used to isolate the application RESET circuit in this case. When using a classical RC network with R>1K or a reset management IC with open drain output and pull-up resistor>1K, no additional components are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session.

3. The use of Pin 7 of the ICC connector depends on the Programming Tool architecture. This pin

must be connected when using most ST Programming Tools (it is used to monitor the application power supply). Please refer to the Programming Tool manual.

4. Pin 9 must be connected to the PB4 pin of the ST7 when the clock is not available in the application or if the selected clock option is not programmed in the option byte. ST7 devices with multi-oscillator capability must have OSC2 grounded in this case.

5. With any programming tool, while the ICP option is disabled, the external clock must be provided on PB4.

6. In 38-pulse ICC mode, the internal RC oscillator is forced as a clock source, regardless of the selection in the option byte. For ST7LITE30 devices which do not support the internal RC oscillator, the "option byte disabled" mode must be used (35-pulse ICC mode entry, clock provided by the tool). Caution: During normal operation ICCCLK pin must be pulled- up, internally or externally (external pull-up of 10k mandatory in noisy environentering ment). This avoids ICC mode unexpectedly during a reset. In the application, even if the pin is configured as output, any reset puts it back in input pull-up.

DATA EEPROM (Cont'd)

5.3 MEMORY ACCESS

The Data EEPROM memory read/write access modes are controlled by the E2LAT bit of the EEP-ROM Control/Status register (EECSR). The flowchart in Figure 7 describes these different memory access modes.

Read Operation (E2LAT=0)

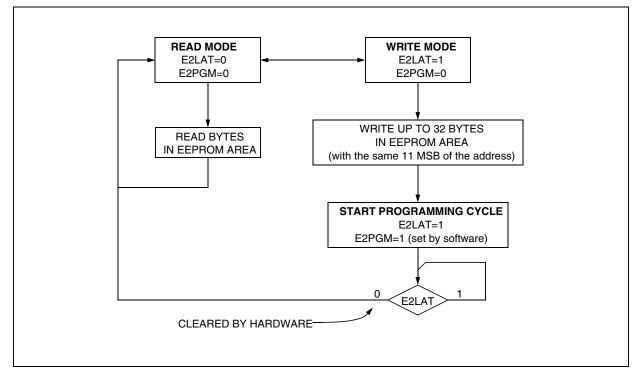
The EEPROM can be read as a normal ROM location when the E2LAT bit of the EECSR register is cleared.

On this device, Data EEPROM can also be used to execute machine code. Take care not to write to the Data EEPROM while executing from it. This would result in an unexpected code being executed.

Write Operation (E2LAT=1)

To access the write mode, the E2LAT bit has to be set by software (the E2PGM bit remains cleared). When a write access to the EEPROM area occurs,

Figure 7. Data EEPROM Programming Flowchart


the value is latched inside the 32 data latches according to its address.

When PGM bit is set by the software, all the previous bytes written in the data latches (up to 32) are programmed in the EEPROM cells. The effective high address (row) is determined by the last EEP-ROM write sequence. To avoid wrong programming, the user must take care that all the bytes written between two programming sequences have the same high address: only the five Least Significant Bits of the address can change.

At the end of the programming cycle, the PGM and LAT bits are cleared simultaneously.

Note: Care should be taken during the programming cycle. Writing to the same memory location will over-program the memory (logical AND between the two write access data result) because the data latches are only cleared at the end of the programming cycle and by the falling edge of the E2LAT bit.

It is not possible to read the latched data. This note is illustrated by the Figure 9.

6 CENTRAL PROCESSING UNIT

6.1 INTRODUCTION

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.

6.2 MAIN FEATURES

- 63 basic instructions
- Fast 8-bit by 8-bit multiply
- 17 main addressing modes
- Two 8-bit index registers
- 16-bit stack pointer
- Low power modes
- Maskable hardware interrupts
- Non-maskable software interrupt

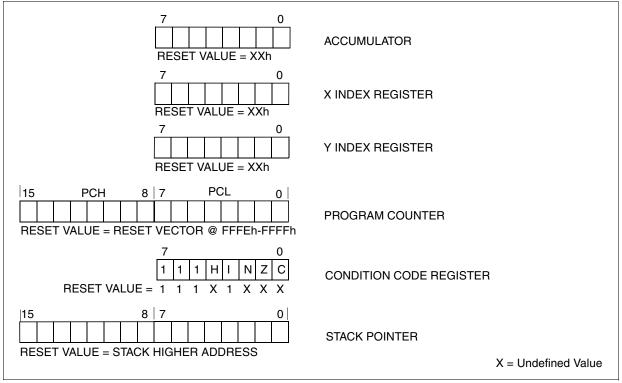
6.3 CPU REGISTERS

The six CPU registers shown in Figure 10 are not present in the memory mapping and are accessed by specific instructions.

Figure 10. CPU Registers

Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.


Index Registers (X and Y)

In indexed addressing modes, these 8-bit registers are used to create either effective addresses or temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)

The Y register is not affected by the interrupt automatic procedures (not pushed to and popped from the stack).

Program Counter (PC)

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).

7.4 MULTI-OSCILLATOR (MO)

The main clock of the ST7 can be generated by four different source types coming from the multioscillator block (1 to 16MHz or 32kHz):

- an external source
- 5 crystal or ceramic resonator oscillators
- an internal high frequency RC oscillator

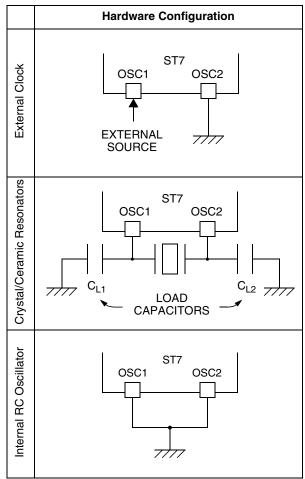
Each oscillator is optimized for a given frequency range in terms of consumption and is selectable through the option byte. The associated hardware configurations are shown in Table 5. Refer to the electrical characteristics section for more details.

External Clock Source

In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin while the OSC2 pin is tied to ground.

Note: when the Multi-Oscillator is not used, PB4 is selected by default as external clock.

Crystal/Ceramic Oscillators


This family of oscillators has the advantage of producing a very accurate rate on the main clock of the ST7. The selection within a list of 4 oscillators with different frequency ranges has to be done by option byte in order to reduce consumption (refer to section 15.1 on page 161 for more details on the frequency ranges). In this mode of the multi-oscillator, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. The loading capacitance values must be adjusted according to the selected oscillator.

These oscillators are not stopped during the RESET phase to avoid losing time in the oscillator start-up phase.

Internal RC Oscillator

In this mode, the tunable 1%RC oscillator is used as main clock source. The two oscillator pins have to be tied to ground. The calibration is done through the RCCR[7:0] and SICSR[6:5] registers.

Table 5. ST7 Clock Sources

INTERRUPTS (Cont'd)

Bit 3:2 = ei1[1:0] *ei1 pin selection* These bits are written by software. They select the Port A I/O pin used for the ei1 external interrupt according to the table below.

External Interrupt I/O pin selection

ei11	ei10	I/O Pin		
0	0	No interrupt*		
0	0 1 PA4			
1	0	PA5		
1	1	PA6		

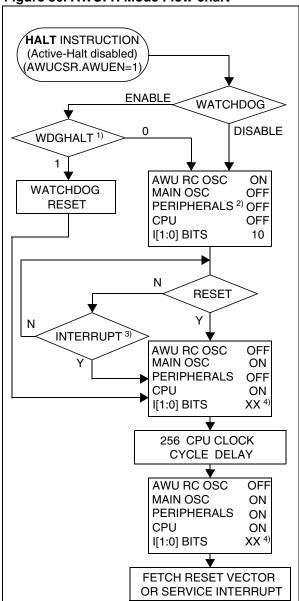
* Reset State

Bit 1:0 = **ei0[1:0]** *ei0 pin selection*

These bits are written by software. They select the

Port A I/O pin used for the ei0 external interrupt according to the table below.

External Interrupt I/O pin selection


ei01	ei00	I/O Pin		
0	0	No Interrupt*		
0	0 1 PA1			
1	0	PA2		
1	1	PA3		

* Reset State

Bits 1:0 = Reserved.

POWER SAVING MODES (Cont'd)

57

Figure 30. AWUFH Mode Flow-chart

Notes:

1. WDGHALT is an option bit. See option byte section for more details.

2. Peripheral clocked with an external clock source can still be active.

3. Only an AWUFH interrupt and some specific interrupts can exit the MCU from HALT mode (such as external interrupt). Refer to Table 6, "Interrupt Mapping," on page 36 for more details.

4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped.

10 I/O PORTS

10.1 INTRODUCTION

The I/O ports allow data transfer. An I/O port can contain up to 8 pins. Each pin can be programmed independently either as a digital input or digital output. In addition, specific pins may have several other functions. These functions can include external interrupt, alternate signal input/output for onchip peripherals or analog input.

10.2 FUNCTIONAL DESCRIPTION

A Data Register (DR) and a Data Direction Register (DDR) are always associated with each port. The Option Register (OR), which allows input/output options, may or may not be implemented. The following description takes into account the OR register. Refer to the Port Configuration table for device specific information.

An I/O pin is programmed using the corresponding bits in the DDR, DR and OR registers: bit x corresponding to pin x of the port.

Figure 31 shows the generic I/O block diagram.

10.2.1 Input Modes

Clearing the DDRx bit selects input mode. In this mode, reading its DR bit returns the digital value from that I/O pin.

If an OR bit is available, different input modes can be configured by software: floating or pull-up. Refer to I/O Port Implementation section for configuration.

Notes:

1. Writing to the DR modifies the latch value but does not change the state of the input pin.

2. Do not use read/modify/write instructions (BSET/BRES) to modify the DR register.

External Interrupt Function

Depending on the device, setting the ORx bit while in input mode can configure an I/O as an input with interrupt. In this configuration, a signal edge or level input on the I/O generates an interrupt request via the corresponding interrupt vector (eix).

Falling or rising edge sensitivity is programmed independently for each interrupt vector. The External Interrupt Control Register (EICR) or the Miscellaneous Register controls this sensitivity, depending on the device.

A device may have up to 7 external interrupts. Several pins may be tied to one external interrupt vector. Refer to Pin Description to see which ports have external interrupts. If several I/O interrupt pins on the same interrupt vector are selected simultaneously, they are logically combined. For this reason if one of the interrupt pins is tied low, it may mask the others.

External interrupts are hardware interrupts. Fetching the corresponding interrupt vector automatically clears the request latch. Modifying the sensitivity bits will clear any pending interrupts.

10.2.2 Output Modes

Setting the DDRx bit selects output mode. Writing to the DR bits applies a digital value to the I/O through the latch. Reading the DR bits returns the previously stored value.

If an OR bit is available, different output modes can be selected by software: push-pull or opendrain. Refer to I/O Port Implementation section for configuration.

DR Value and Output Pin Status

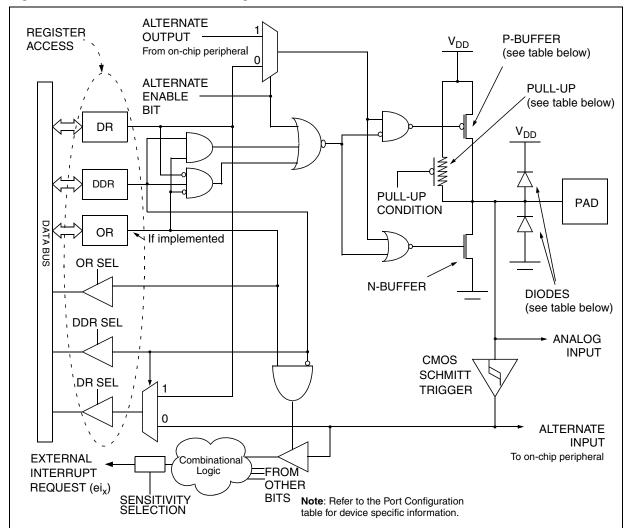
DR	Push-Pull	Open-Drain
0	V _{OL}	V _{OL}
1	V _{OH}	Floating

10.2.3 Alternate Functions

Many ST7s I/Os have one or more alternate functions. These may include output signals from, or input signals to, on-chip peripherals. The Device Pin Description table describes which peripheral signals can be input/output to which ports.

A signal coming from an on-chip peripheral can be output on an I/O. To do this, enable the on-chip peripheral as an output (enable bit in the peripheral's control register). The peripheral configures the I/O as an output and takes priority over standard I/ O programming. The I/O's state is readable by addressing the corresponding I/O data register.

Configuring an I/O as floating enables alternate function input. It is not recommended to configure an I/O as pull-up as this will increase current consumption. Before using an I/O as an alternate input, configure it without interrupt. Otherwise spurious interrupts can occur.


Configure an I/O as input floating for an on-chip peripheral signal which can be input and output.

Caution:

I/Os which can be configured as both an analog and digital alternate function need special attention. The user must control the peripherals so that the signals do not arrive at the same time on the same pin. If an external clock is used, only the clock alternate function should be employed on that I/O pin and not the other alternate function.

57

I/O PORTS (Cont'd)

Figure 31. I/O Port General Block Diagram

Table 9. I/O Port Mode Options

	Configuration Mode		P-Buffer	Diodes		
	Configuration mode	Pull-Up	P-Duller	to V _{DD}	to V _{SS}	
Innut	Floating with/without Interrupt	Off	Off			
Input	Pull-up with/without Interrupt	On		On		
	Push-pull	Off	On	On	On	
Output	Open Drain (logic level)		Off	1		
	True Open Drain	NI	NI	NI (see note 1)		

Legend: NI - not implemented

Off - implemented not activated

On - implemented and activated

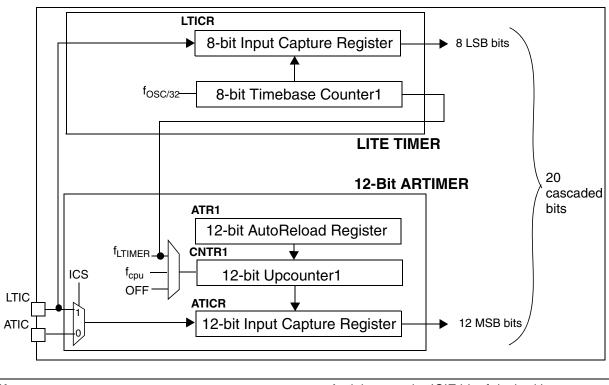
Note 1: The diode to V_{DD} is not implemented in the true open drain pads. A local protection between

the pad and $V_{OL}\xspace$ is implemented to protect the device against positive stress.

Note 2: For further details on port configuration, please refer to Table 11 and Table 12 on page 51.

DUAL 12-BIT AUTORELOAD TIMER 3 (Cont'd)

Long input capture


Pulses that last between 8μ s and 2s can be measured with an accuracy of 4μ s if $f_{OSC} = 8MHz$ in the following conditions:

- The 12-bit AT3 Timer is clocked by the Lite Timer (RTC pulse: CK[1:0] = 01 in the ATCSR register)
- The ICS bit in the ATCSR2 register is set so that the LTIC pin is used to trigger the AT3 Timer capture.

Figure 44. Long Range Input Capture Block Diagram

- The signal to be captured is connected to LTIC pin
- Input Capture registers LTICR, ATICRH and ATICRL are read

This configuration allows to cascade the Lite Timer and the 12-bit AT3 Timer to get a 20-bit input capture value. Refer to Figure 44.

Notes:

1. Since the input capture flags (ICF) for both timers (AT3 Timer and LT Timer) are set when signal transition occurs, software must mask one interrupt by clearing the corresponding ICIE bit before setting the ICS bit.

2. If the ICS bit changes (from 0 to 1 or from 1 to 0), a spurious transition might occur on the input capture signal because of different values on LTIC and ATIC. To avoid this situation, it is recommended to do as follows:

- First, reset both ICIE bits.
- Then set the ICS bit.
- Reset both ICF bits.

- And then set the ICIE bit of desired interrupt.

3. How to compute a pulse length with long input capture feature.

As both timers are used, computing a pulse length is not straight-forward. The procedure is as follows:

 At the first input capture on the rising edge of the pulse, we assume that values in the registers are as follows:

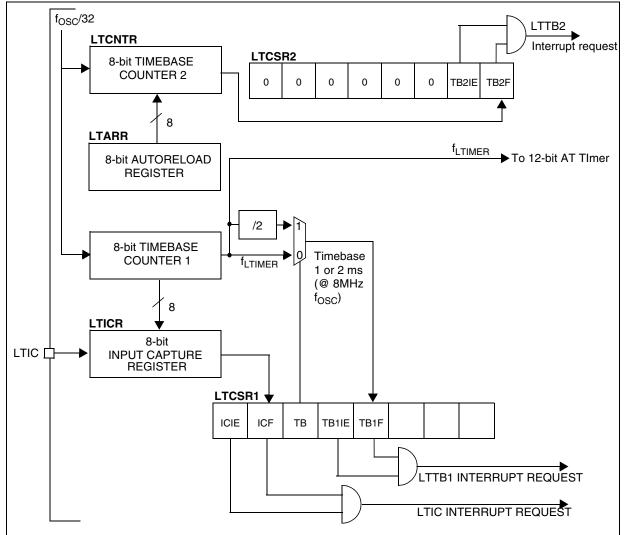
LTICR = LT1 ATICRH = ATH1 ATICRL = ATL1 Hence ATICR1 [11:0] = ATH1 & ATL1

Refer to Figure 45 on page 65.

11.3 LITE TIMER 2 (LT2)

11.3.1 Introduction

The Lite Timer can be used for general-purpose timing functions. It is based on two free-running 8-bit upcounters and an 8-bit input capture register.


11.3.2 Main Features

47/

- Realtime Clock (RTC)
 - One 8-bit upcounter 1 ms or 2 ms timebase period (@ 8 MHz $f_{OSC})$

Figure 46. Lite Timer 2 Block Diagram

- One 8-bit upcounter with autoreload and programmable timebase period from 4µs to 1.024ms in 4µs increments (@ 8 MHz f_{OSC})
- 2 Maskable timebase interrupts
- Input Capture
 - 8-bit input capture register (LTICR)
 - Maskable interrupt with wakeup from Halt Mode capability

SERIAL PERIPHERAL INTERFACE (cont'd)

11.4.3.3 Master Mode Operation

In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and phase are configured by software (refer to the description of the SPICSR register).

Note: The idle state of SCK must correspond to the polarity selected in the SPICSR register (by pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0).

How to operate the SPI in master mode

To operate the SPI in master mode, perform the following steps in order:

- 1. Write to the SPICR register:
 - Select the clock frequency by configuring the SPR[2:0] bits.
 - Select the clock polarity and clock phase by configuring the CPOL and CPHA bits. Figure 52 shows the four possible configurations.
 Note: The slave must have the same CPOL and CPHA settings as the master.
- 2. Write to the SPICSR register:
 - Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin high for the complete byte transmit sequence.
- 3. Write to the SPICR register:
 - Set the MSTR and SPE bits
 <u>Note</u>: MSTR and SPE bits remain set only if SS is high).

Important note: if the SPICSR register is not written first, the SPICR register setting (MSTR bit) may be not taken into account.

The transmit sequence begins when software writes a byte in the SPIDR register.

11.4.3.4 Master Mode Transmit Sequence

When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MOSI pin most significant bit first.

When data transfer is complete:

- The SPIF bit is set by hardware.
- An interrupt request is generated if the SPIE bit is set and the interrupt mask in the CCR register is cleared.

Clearing the SPIF bit is performed by the following software sequence:

- 1. An access to the SPICSR register while the SPIF bit is set
- 2. A read to the SPIDR register

Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

11.4.3.5 Slave Mode Operation

In slave mode, the serial clock is received on the SCK pin from the master device.

To operate the SPI in slave mode:

- 1. Write to the SPICSR register to perform the following actions:
 - Select the clock polarity and clock phase by configuring the CPOL and CPHA bits (see Figure 52).
 Note: The slave must have the same CPOL and CPHA settings as the master.
 - Manage the \overline{SS} pin as described in Section 11.4.3.2 and Figure 50. If CPHA = 1 SS must be held low continuously. If CPHA = 0 \overline{SS} must be held low during byte transmission and pulled up between each byte to let the slave write in the shift register.
- 2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI I/O functions.

11.4.3.6 Slave Mode Transmit Sequence

When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MISO pin most significant bit first.

The transmit sequence begins when the slave device receives the clock signal and the most significant bit of the data on its MOSI pin.

When data transfer is complete:

- The SPIF bit is set by hardware.
- An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR register is cleared.

Clearing the SPIF bit is performed by the following software sequence:

- 1. An access to the SPICSR register while the SPIF bit is set
- 2. A write or a read to the SPIDR register

Notes: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

The SPIF bit can be cleared during a second transmission; however, it must be cleared before the second SPIF bit in order to prevent an Overrun condition (see Section 11.4.5.2).

SERIAL PERIPHERAL INTERFACE (cont'd)

11.4.5 Error Flags

11.4.5.1 Master Mode Fault (MODF)

Master mode fault occurs when the master device's \overline{SS} pin is pulled low.

When a Master mode fault occurs:

- The MODF bit is set and an SPI interrupt request is generated if the SPIE bit is set.
- The SPE bit is reset. This blocks all output from the device and disables the SPI peripheral.
- The MSTR bit is reset, thus forcing the device into slave mode.

Clearing the MODF bit is done through a software sequence:

1. A read access to the SPICSR register while the MODF bit is set.

2. A write to the SPICR register.

Notes: To avoid any conflicts in an application with multiple slaves, the SS pin must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits may be restored to their original state during or after this clearing sequence.

Hardware does not allow the user to set the SPE and MSTR bits while the MODF bit is set except in the MODF bit clearing sequence.

In a slave device, the MODF bit can not be set, but in a multimaster configuration the device can be in slave mode with the MODF bit set.

The MODF bit indicates that there might have been a multimaster conflict and allows software to handle this using an interrupt routine and either perform a reset or return to an application default state.

11.4.5.2 Overrun Condition (OVR)

An overrun condition occurs when the master device has sent a data byte and the slave device has not cleared the SPIF bit issued from the previously transmitted byte.

When an Overrun occurs:

 The OVR bit is set and an interrupt request is generated if the SPIE bit is set.

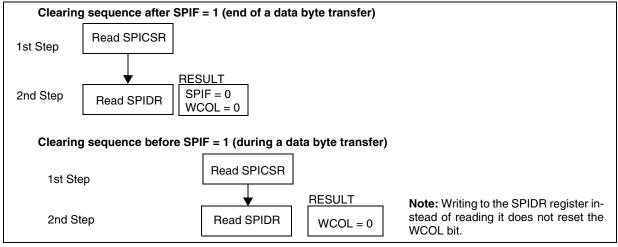
In this case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A read to the SPIDR register returns this byte. All other bytes are lost.

The OVR bit is cleared by reading the SPICSR register.

11.4.5.3 Write Collision Error (WCOL)

A write collision occurs when the software tries to write to the SPIDR register while a data transfer is taking place with an external device. When this happens, the transfer continues uninterrupted and the software write will be unsuccessful.

Write collisions can occur both in master and slave mode. See also Section 11.4.3.2 Slave Select Management.


Note: A "read collision" will never occur since the received data byte is placed in a buffer in which access is always synchronous with the CPU operation.

The WCOL bit in the SPICSR register is set if a write collision occurs.

No SPI interrupt is generated when the WCOL bit is set (the WCOL bit is a status flag only).

Clearing the WCOL bit is done through a software sequence (see Figure 53).

Figure 53. Clearing the WCOL Bit (Write Collision Flag) Software Sequence

SERIAL PERIPHERAL INTERFACE (cont'd)

SPI CONTROL/STATUS REGISTER (SPICSR)

Read/Write (some bits Read Only) Reset Value: 0000 0000 (00h)

7							0
SPIF	WCOL	OVR	MODF	-	SOD	SSM	SSI

Bit 7 = **SPIF** Serial Peripheral Data Transfer Flag (Read only)

This bit is set by hardware when a transfer has been completed. An interrupt is generated if SPIE = 1 in the SPICR register. It is cleared by a software sequence (an access to the SPICSR register followed by a write or a read to the SPIDR register).

- 0: Data transfer is in progress or the flag has been cleared.
- 1: Data transfer between the device and an external device has been completed.

Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

Bit 6 = **WCOL** Write Collision status (Read only)

This bit is set by hardware when a write to the SPIDR register is done during a transmit sequence. It is cleared by a software sequence (see Figure 53).

0: No write collision occurred

1: A write collision has been detected

Bit 5 = **OVR** SPI Overrun error (Read only)

This bit is set by hardware when the byte currently being received in the shift register is ready to be transferred into the SPIDR register while SPIF = 1 (See Section 11.4.5.2). An interrupt is generated if SPIE = 1 in the SPICR register. The OVR bit is cleared by software reading the SPICSR register. 0: No overrun error

1: Overrun error detected

Bit 4 = **MODF** Mode Fault flag (Read only)

This bit is set by hardware when the \overline{SS} pin is pulled low in master mode (see Section 11.4.5.1 Master Mode Fault (MODF)). An SPI interrupt can be generated if SPIE = 1 in the SPICR register. This bit is cleared by a software sequence (An access to the SPICSR register while MODF = 1 followed by a write to the SPICR register).

0: No master mode fault detected

1: A fault in master mode has been detected

Bit 3 = Reserved, must be kept cleared.

Bit 2 = SOD SPI Output Disable

This bit is set and cleared by software. When set, it disables the alternate function of the SPI output (MOSI in master mode / MISO in slave mode) 0: SPI output enabled (if SPE = 1) 1: SPI output disabled

Bit 1 = **SSM** *SS Management*

This bit is set and cleared by software. When set, it disables the alternate function of the SPI SS pin and uses the SSI bit value instead. See Section 11.4.3.2 Slave Select Management.

- 0: Hardware management (SS managed by external pin)
- 1: Software management (internal SS signal controlled by SSI bit. External SS pin free for general-purpose I/O)

Bit 0 = **SSI** *SS* Internal Mode

This bit is set and cleared by software. It <u>acts</u> as a 'chip select' by controlling the level of the SS slave select signal when the SSM bit is set.

0: Slave selected

1: Slave deselected

SPI DATA I/O REGISTER (SPIDR)

Read/Write

Reset Value: Undefined

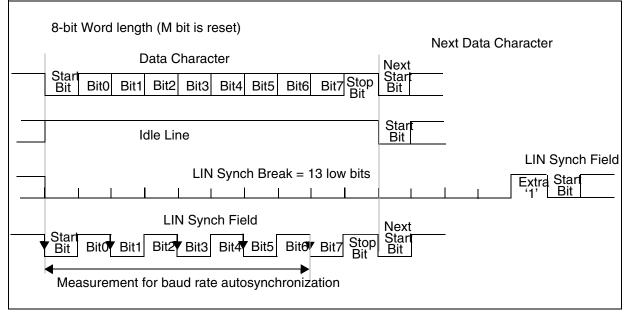
/							0
D7	D6	D5	D4	D3	D2	D1	D0

The SPIDR register is used to transmit and receive data on the serial bus. In a master device, a write to this register will initiate transmission/reception of another byte.

Notes: During the last clock cycle the SPIF bit is set, a copy of the received data byte in the shift register is moved to a buffer. When the user reads the serial peripheral data I/O register, the buffer is actually being read.

While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

Warning: A write to the SPIDR register places data directly into the shift register for transmission.


A read to the SPIDR register returns the value located in the buffer and not the content of the shift register (see Figure 48).

Δ

LINSCITM SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont'd)

Figure 58. LIN Characters

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont'd)

11.5.10 LIN Mode Register Description STATUS REGISTER (SCISR) Read Only

Reset Value: 1100 0000 (C0h)

7							0
TDRE	тс	RDRF	IDLE	LHE	NF	FE	PE

Bits 7:4 = Same function as in SCI mode; please refer to Section 11.5.8 SCI Mode Register Description.

Bit 3 = LHE LIN Header Error.

During LIN Header this bit signals three error types:

- The LIN Synch Field is corrupted and the SCI is blocked in LIN Synch State (LSF bit = 1).
- A timeout occurred during LIN Header reception
- An overrun error was detected on one of the header field (see OR bit description in Section 11.5.8 SCI Mode Register Description).

An interrupt is generated if RIE = 1 in the SCICR2 register. If blocked in the LIN Synch State, the LSF bit must first be reset (to exit LIN Synch Field state and then to be able to clear LHE flag). Then it is cleared by the following software sequence: An access to the SCISR register followed by a read to the SCIDR register.

0: No LIN Header error

1: LIN Header error detected

Note:

5/

Apart from the LIN Header this bit signals an Overrun Error as in SCI mode (see description in Section 11.5.8 SCI Mode Register Description).

Bit 2 = NF Noise flag

In LIN Master mode (LINE bit = 1 and LSLV bit = 0), this bit has the same function as in SCI mode; please refer to Section 11.5.8 SCI Mode Register Description.

In LIN Slave mode (LINE bit = 1 and LSLV bit = 1) this bit has no meaning.

Bit 1 = **FE** Framing error.

In LIN slave mode, this bit is set only when a real

framing error is detected (if the stop bit is dominant (0) and at least one of the other bits is recessive (1). It is not set when a break occurs, the LHDF bit is used instead as a break flag (if the LHDM bit = 0). It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: No Framing error

1: Framing error detected

Bit 0 = **PE** Parity error.

This bit is set by hardware when a LIN parity error occurs (if the PCE bit is set) in receiver mode. It is cleared by a software sequence (a read to the status register followed by an access to the SCIDR data register). An interrupt is generated if PIE = 1 in the SCICR1 register.

0: No LIN parity error

1: LIN Parity error detected

CONTROL REGISTER 1 (SCICR1)

Read/Write

Reset Value: x000 0000 (x0h)

7							0
R8	Т8	SCID	М	WAKE	PCE	PS	PIE

Bits 7:3 = Same function as in SCI mode; please refer to Section 11.5.8 SCI Mode Register Description.

Bit 2 = **PCE** *Parity control enable.*

This bit is set and cleared by software. It selects the hardware parity control for LIN identifier parity check.

0: Parity control disabled

1: Parity control enabled

When a parity error occurs, the PE bit in the SCISR register is set.

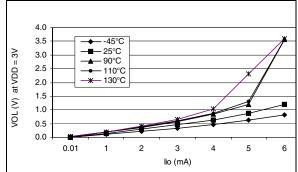
Bit 1 = Reserved

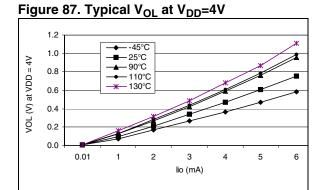
Bit 0 = Same function as in SCI mode; please refer to Section 11.5.8 SCI Mode Register Description.

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Master/Slave) (Cont'd)

Addr. (Hex.)	Register Name	7	6	5	4	3	2	1	0
40	SCISR	TDRE	TC	RDRF	IDLE	OR/LHE	NF	FE	PE
40	Reset Value	1	1	0	0	0	0	0	0
41	SCIDR	DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0
41	Reset Value	-	-	-	-	-	-	-	-
	SCIBRR	SCP1	SCP0	SCT2	SCT1	SCT0	SCR2	SCR1	SCR0
42	LPR (LIN Slave Mode)	LPR7	LPR6	LPR5	LPR4	LPR3	LPR2	LPR1	LPR0
	Reset Value	0	0	0	0	0	0	0	0
43	SCICR1	R8	Т8	SCID	М	WAKE	PCE	PS	PIE
43	Reset Value	х	0	0	0	0	0	0	0
44	SCICR2	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
44	Reset Value	0	0	0	0	0	0	0	0
45	SCICR3	NP	LINE	LSLV	LASE	LHDM	LHIE	LHDF	LSF
45	Reset Value	0	0	0	0	0	0	0	0
46	SCIERPR LHLR (LIN Slave Mode)	ERPR7 LHL7	ERPR6 LHL6	ERPR5 LHL5	ERPR4 LHL4	ERPR3 LHL3	ERPR2 LHL2	ERPR1 LHL1	ERPR0 LHL0
U	Reset Value	0	0	0	0	0	0	0	0
	SCITPR	ETPR7	ETPR6	ETPR5	ETPR4	ETPR3	ETPR2	ETPR1	ETPR0
47	LPFR (LIN Slave Mode)	LDUM	0	0	0	LPFR3	LPFR2	LPFR1	LPFR0
	Reset Value	0	0	0	0	0	0	0	0

Table 21. LINSCI1 Register Map and Reset Values




Table 22. ADC Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0034h	ADCCSR	EOC	SPEED	ADON	0	0	CH2	CH1	CH0
	Reset Value	0	0	0	0	0	0	0	0
0035h	ADCDRH	D9	D8	D7	D6	D5	D4	D3	D2
	Reset Value	0	0	0	0	0	0	0	0
0036h	ADCDRL Reset Value	0 0	0 0	0	0	SLOW 0	0 0	D1 0	D0 0

Figure 86. Typical V_{OL} at V_{DD}=3V

Figure 88. Typical V_{OL} at V_{DD}=5V

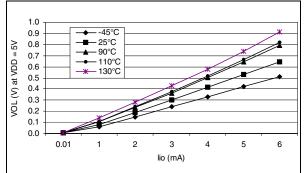
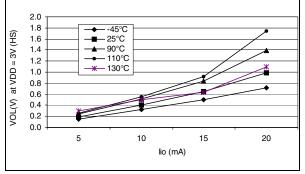
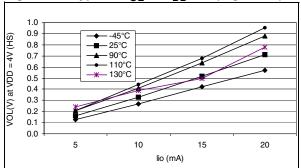




Figure 89. Typical V_{OL} at V_{DD}=3V (high-sink)

57

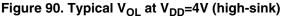


Figure 91. Typical V_{OL} at V_{DD}=5V (high-sink)

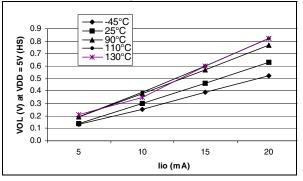


Figure 92. Typical V_{DD}-V_{OH} at V_{DD}=3.0V

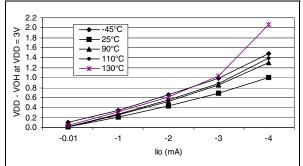
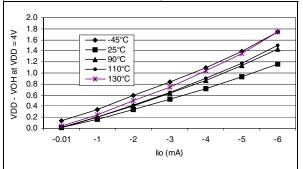



Figure 93. Typical V_{DD}-V_{OH} at V_{DD}=4.0V

14 PACKAGE CHARACTERISTICS

14.1 PACKAGE MECHANICAL DATA

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard

JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 105. 20-Lead Very thin Fine pitch Quad Flat No-Lead Package

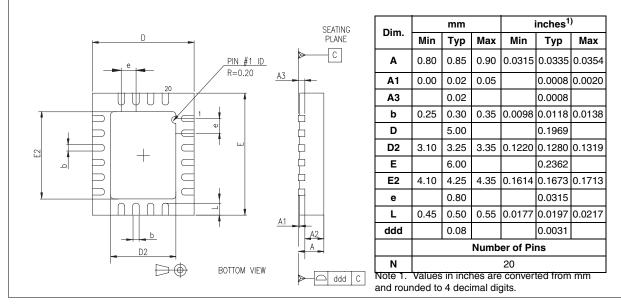
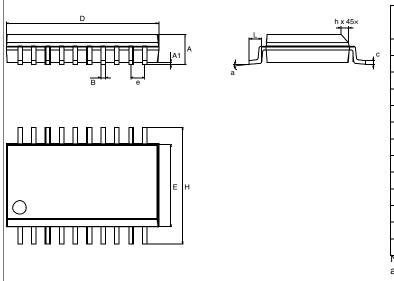



Figure 106. 20-Pin Plastic Small Outline Package, 300-mil Width

57/

Dim.		mm		inches ¹⁾				
Dim.	Min	Тур	Max	Min	Тур	Max		
Α	2.35		2.65	0.0925		0.1043		
A1	0.10		0.30	0.0039		0.0118		
В	0.33		0.51	0.0130		0.0201		
С	0.23		0.32	0.0091		0.0126		
D	12.60		13.00	0.4961		0.5118		
Е	7.40		7.60	0.2913		0.2992		
е		1.27			0.0500			
Н	10.00		10.65	0.3937		0.4193		
h	0.25		0.75	0.0098		0.0295		
α	0°		8°	0°		8°		
L	0.40		1.27	0.0157		0.0500		
			Numb	er of Pi	ns			
Ν				20				
Note 1 and ro	. Value unded			re conve digits.	erted fro	m mm		

15 DEVICE CONFIGURATION

Each device is available for production in user programmable versions (FLASH) as well as in factory coded versions (ROM/FASTROM).

ST7PLITE3 devices are Factory Advanced Service Technique ROM (FASTROM) versions: they are factory programmed FLASH devices.

15.1 FLASH OPTION BYTES

The two option bytes allow the hardware configuration of the microcontroller to be selected.

OPTION BYTE 0

OPT7 = AWUCK Auto Wake Up Clock Selection

0: 32-KHz Oscillator (VLP) selected as AWU clock

1: AWU RC Oscillator selected as AWU clock.

Note: If this bit is reset, internal RC oscillator must be selected (Option OSC=0).

OPT6:4 = OSCRANGE[2:0] Oscillator Range

When the internal RC oscillator is not selected (Option OSC=1), these option bits select the range of the resonator oscillator current source or the external clock source.

			OSCRANGE		
			2	1	0
Typ. frequency range with Resonator	LP	1~2MHz	0	0	0
	MP	2~4MHz	0	0	1
	MS	4~8MHz	0	1	0
	HS	8~16MHz	0	1	1
	VLP	32.768kHz	1	0	0
External Clock on OSC1			1	0	1
Reserved			1	1	0
External Clock on PB4			1	1	1

Notes:

5/

1. OSCRANGE[2:0] has no effect when AWUCK option is set to 0. In this case, the VLP oscillator range is automatically selected as AWU clock.

2. When the internal RC oscillator is selected, the OSCRANGE option bits must be kept at their default value to select the 256 clock cycle delay (see section 7.5 on page 27)

ST7FLITE3 devices are shipped to customers with a default program memory content (FFh), while FASTROM factory coded parts contain the code supplied by the customer. This implies that FLASH devices have to be configured by the customer using the Option Bytes.

OPT 3:2 = SEC[1:0] Sector 0 size definition
These option bits indicate the size of sector 0 ac-
cording to the following table.

Sector 0 Size	SEC1	SEC0
0.5k	0	0
1k	0	1
2	1	0
4k	1	1

OPT1 = FMP_R Read-out protection

Readout protection, when selected provides a protection against program memory content extraction and against write access to Flash memory. Erasing the option bytes when the FMP_R option is selected will cause the whole memory to be erased first and the device can be reprogrammed. Refer to the ST7 Flash Programming Reference Manual and section 4.5 on page 14 for more details

0: Read-out protection off

1: Read-out protection on

OPT 0 = **FMP_W** FLASH write protection

This option indicates if the FLASH program memory is write protected.

Warning: When this option is selected, the program memory (and the option bit itself) can never be erased or programmed again.

0: Write protection off

1: Write protection on

The option bytes have no address in the memory map and can be accessed only in programming mode (for example using a standard ST7 programming tool). The default content of the FLASH is fixed to FFh.

161/173