

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	16MHz
Connectivity	LINbusSCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	15
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VQFN Exposed Pad
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st7flite39f2u6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

_

	9.5	ACTIVE-HALT MODE	42
	9.6	AUTO WAKE UP FROM HALT MODE	43
10	I/O P0	ORTS	47
	10.1	INTRODUCTION	47
	10.2	FUNCTIONAL DESCRIPTION	47
	10.3	I/O PORT IMPLEMENTATION	50
		UNUSED I/O PINS	
	10.5	LOW POWER MODES	50
		INTERRUPTS	
11		HIP PERIPHERALS	
		WATCHDOG TIMER (WDG)	
		DUAL 12-BIT AUTORELOAD TIMER 3 (AT3)	
		LITE TIMER 2 (LT2)	
		SERIAL PERIPHERAL INTERFACE (SPI)	
		LINSCI SERIAL COMMUNICATION INTERFACE (LIN MASTER/SLAVE)	
		10-BIT A/D CONVERTER (ADC)	
12			
		ST7 ADDRESSING MODES	
		INSTRUCTION GROUPS	
13			
		PARAMETER CONDITIONS	
		ABSOLUTE MAXIMUM RATINGS	
	13.3	OPERATING CONDITIONS	
	13.4	SUPPLY CURRENT CHARACTERISTICS	
	13.5	CLOCK AND TIMING CHARACTERISTICS	
	13.6	MEMORY CHARACTERISTICS	
		EMC (ELECTROMAGNETIC COMPATIBILITY) CHARACTERISTICS	
	13.8	I/O PORT PIN CHARACTERISTICS	148
		CONTROL PIN CHARACTERISTICS	
	13.10	COMMUNICATION INTERFACE CHARACTERISTICS	155
	13.11	10-BIT ADC CHARACTERISTICS	157
14	PACK		159
		PACKAGE MECHANICAL DATA	159
	14.2	THERMAL CHARACTERISTICS 160	
15	DEVIC	CE CONFIGURATION	161
	15.1	FLASH OPTION BYTES	161
	15.2	DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE	163
	15.3	DEVELOPMENT TOOLS	165
	15.4	ST7 APPLICATION NOTES	166
16		WN LIMITATIONS	
	16.1	CLEARING ACTIVE INTERRUPTS OUTSIDE INTERRUPT ROUTINE	169

PIN DESCRIPTION (Cont'd)

Legend / Abbreviations for Table 2:

Туре:	I = input, O = output, S = supply
In/Output level:	C_T = CMOS 0.3V _{DD} /0.7V _{DD} with input trigger
Output level:	HS = 20mA high sink (on N-buffer only)

Port and control configuration:

- Input: float = floating, wpu = weak pull-up, int = interrupt, ana = analog

- Output: OD = open drain, PP = push-pull

The RESET configuration of each pin is shown in bold which is valid as long as the device is in reset state.

				Le	evel	Port / Contr		rol					
0	P20	Pin Name	þe		Ħ	Inj		out		Out	put	Main Function	Alternate Function
QFN20	SO20/DIP20	Fin Name	Type	Input	Output	float	ndw	int	ana	OD	РР	(after reset)	
19	1	V _{SS} ¹⁾	S									Ground	
20	2	V _{DD} ¹⁾	S									Main pow	er supply
1	3	RESET	I/O	C_T			Х			Х		Top priori	ty non maskable interrupt (active low)
2	4	PB0/AIN0/SS	I/O	(С т	x			x	x	x	Port B0	ADC Analog Input 0 or SPI Slave Select (active low) Caution: No negative current injection allowed on this pin. For details, refer to section 13.2.2 on page 132
3	5	PB1/AIN1/SCK	I/O	(Ът	x	ei3		x	x	x	Port B1	ADC Analog Input 1 or SPI Serial Clock Caution: No negative current injection allowed on this pin. For details, refer to section 13.2.2 on page 132
4	6	PB2/AIN2/ MISO	I/O	0	C _T	x			х	х	х	Port B2	ADC Analog Input 2 or SPI Master In/ Slave Out Data
5	7	PB3/AIN3/ MOSI	I/O	0	CT		e	i2	х	х	х	Port B3	ADC Analog Input 3 or SPI Master Out / Slave In Data
6	8	PB4/AIN4/ CLKIN**	I/O	(C _T	x	х		х	х	х	Port B4	ADC Analog Input 4 or External clock input
7	9	PB5/AIN5	I/O	0	C _T	Х	0			Port B5	ADC Analog Input 5		
8	10	PB6/AIN6/RDI	I/O	(C _T	X e		ei2		Х	Х	Port B6	ADC Analog Input 6 or LINSCI Input
9	11	PA7/TDO	I/O	C_T	HS	X	Х			Х	Х	Port A7	LINSCI Output

Table 2. Device Pin Description

<u>(</u>ح)

RESET SEQUENCE MANAGER (Cont'd)

The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteristics section.

7.5.3 External Power-On RESET

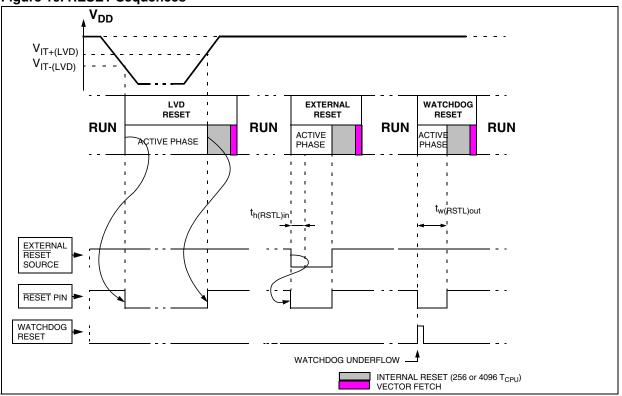
If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until V_{DD} is over the minimum level specified for the selected f_{OSC} frequency.

A proper reset signal for a slow rising V_{DD} supply can generally be provided by an external RC network connected to the RESET pin.

7.5.4 Internal Low Voltage Detector (LVD) RESET

Two different RESET sequences caused by the internal LVD circuitry can be distinguished:

- Power-On RESET
- Voltage Drop RESET


The device $\overline{\text{RESET}}$ pin acts as an output that is pulled low when $V_{DD}{<}V_{IT{+}}$ (rising edge) or $V_{DD}{<}V_{IT{-}}$ (falling edge) as shown in Figure 16.

The LVD filters spikes on V_{DD} larger than $t_{g(VDD)}$ to avoid parasitic resets.

7.5.5 Internal Watchdog RESET

The RESET sequence generated by a internal Watchdog counter overflow is shown in Figure 16.

Starting from the Watchdog counter underflow, the device RESET pin acts as an output that is pulled low during at least $t_{w(RSTL)out}$.

Figure 16. RESET Sequences

57/

INTERRUPTS (Cont'd)

EXTERNAL INTERRUPT CONTROL REGISTER (EICR)

Read/Write

Reset Value: 0000 0000 (00h)

1	

5/

'							Ū
IS31	IS30	IS21	IS20	IS11	IS10	IS01	IS00

Bit 7:6 = **IS3[1:0]** *ei3 sensitivity*

These bits define the interrupt sensitivity for ei3 (Port B0) according to Table 7.

Bit 5:4 = IS2[1:0] ei2 sensitivity

These bits define the interrupt sensitivity for ei2 (Port B3) according to Table 7.

Bit 3:2 = IS1[1:0] *ei1 sensitivity* These bits define the interrupt sensitivity for ei1 (Port A7) according to Table 7.

Bit 1:0 = ISO[1:0] ei0 sensitivity

These bits define the interrupt sensitivity for ei0 (Port A0) according to Table 7.

Note: These 8 bits can be written only when the I bit in the CC register is set.

Table 7. Interrupt Sensitivity Bits

ISx1	ISx0	External Interrupt Sensitivity
0	0	Falling edge & low level
0	1	Rising edge only
1	0	Falling edge only
1	1	Rising and falling edge

EXTERNAL INTERRUPT SELECTION REGISTER (EISR)

Read/Write

Λ

Reset Value: 0000 0000 (00h)

7							0	
ei31	ei30	ei21	ei20	ei11	ei10	ei01	ei00	

Bit 7:6 = **ei3[1:0]** *ei3 pin selection*

These bits are written by software. They select the Port B I/O pin used for the ei3 external interrupt according to the table below.

External Interrupt I/O pin selection

ei31	ei30	I/O Pin
0	0	No interrupt *
0	1	PB0
1	0	PB1
1	1	PB2

* Reset State

Bit 5:4 = ei2[1:0] ei2 pin selection

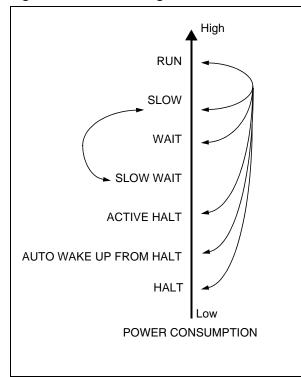
These bits are written by software. They select the Port B I/O pin used for the ei2 external interrupt according to the table below.

External Interrupt I/O pin selection

ei21	ei20	I/O Pin
0	0	No interrupt *
0	1	PB3
1	0	PB5
1	1	PB6

* Reset State

9 POWER SAVING MODES


9.1 INTRODUCTION

To give a large measure of flexibility to the application in terms of power consumption, five main power saving modes are implemented in the ST7 (see Figure 21):

- Slow
- Wait (and Slow-Wait)
- Active Halt
- Auto Wake up From Halt (AWUFH)
- Halt

After a RESET the normal operating mode is selected by default (RUN mode). This mode drives the device (CPU and embedded peripherals) by means of a master clock which is based on the main oscillator frequency divided or multiplied by 2 (f_{OSC2}).

From RUN mode, the different power saving modes may be selected by setting the relevant register bits or by calling the specific ST7 software instruction whose action depends on the oscillator status.

Figure 21. Power Saving Mode Transitions

9.2 SLOW MODE

This mode has two targets:

- To reduce power consumption by decreasing the internal clock in the device,
- To adapt the internal clock frequency (f_{CPU}) to the available supply voltage.

SLOW mode is controlled by the SMS bit in the MCCSR register which enables or disables Slow mode.

In this mode, the oscillator frequency is divided by 32. The CPU and peripherals are clocked at thislower frequency.

Note: SLOW-WAIT mode is activated when entering WAIT mode while the device is already in SLOW mode.

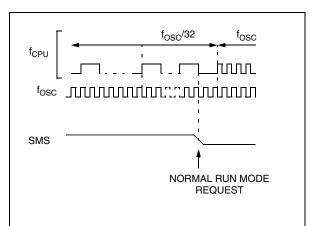
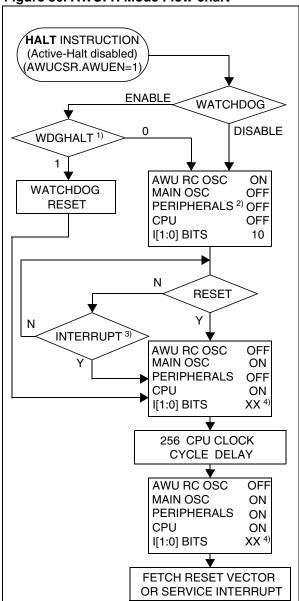



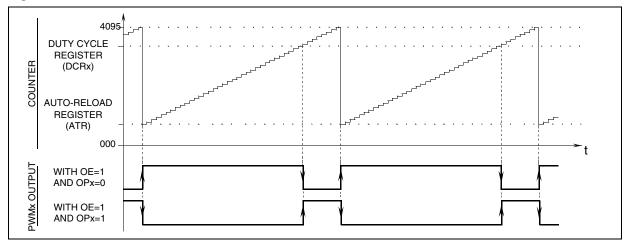
Figure 22. SLOW Mode Clock Transition

POWER SAVING MODES (Cont'd)

57

Figure 30. AWUFH Mode Flow-chart

Notes:


1. WDGHALT is an option bit. See option byte section for more details.

2. Peripheral clocked with an external clock source can still be active.

3. Only an AWUFH interrupt and some specific interrupts can exit the MCU from HALT mode (such as external interrupt). Refer to Table 6, "Interrupt Mapping," on page 36 for more details.

4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped.

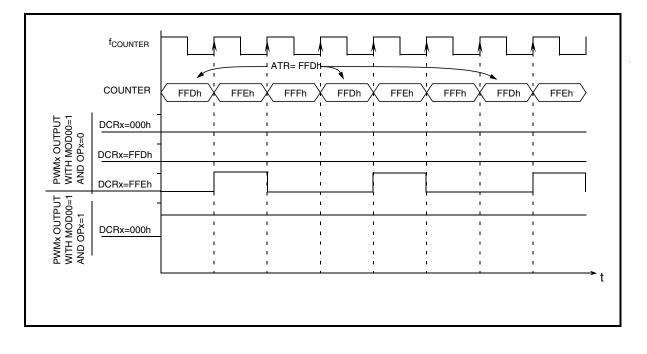

DUAL 12-BIT AUTORELOAD TIMER 3 (Cont'd)

Figure 37. PWM Function

<u>(</u>ح)

DUAL 12-BIT AUTORELOAD TIMER 3 (Cont'd) 11.2.5 Interrupts

Interrupt Event ¹⁾	Event Flag	Enable Control Bit	Exit from WAIT	Exit from HALT	Exit from ACTIVE -HALT
Overflow Event	OVF1	OVIE1	Yes	No	Yes ²⁾
AT3 IC Event	ICF	ICIE	Yes	No	No
CMP Event	CMPFx	CMPIE	Yes	No	No

Note 1: The CMP and AT3 IC events are connected to the same interrupt vector.

The OVF event is mapped on a separate vector (see Interrupts chapter).

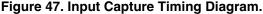
They generate an interrupt if the enable bit is set in

the ATCSR register and the interrupt mask in the CC register is reset (RIM instruction).

Note 2: Only if CK0=1 and CK1=0 ($f_{COUNTER} = f_{LTIMER}$)

LITE TIMER (Cont'd)

11.3.3 Functional Description


11.3.3.1 Timebase Counter 1

The 8-bit value of Counter 1 cannot be read or written by software. After an MCU reset, it starts incrementing from 0 at a frequency of $f_{OSC}/32$. An overflow event occurs when the counter rolls over from F9h to 00h. If $f_{OSC} = 8$ MHz, then the time period between two counter overflow events is 1 ms. This period can be doubled by setting the TB bit in the LTCSR1 register.

When Counter 1 overflows, the TB1F bit is set by hardware and an interrupt request is generated if the TB1IE bit is set. The TB1F bit is cleared by software reading the LTCSR1 register.

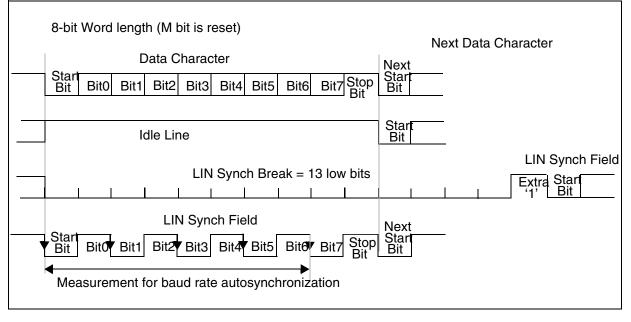
11.3.3.2 Timebase Counter 2

Counter 2 is an 8-bit autoreload upcounter. It can be read by accessing the LTCNTR register. After an MCU reset, it increments at a frequency of $f_{OSC}/32$ starting from the value stored in the LTARR register. A counter overflow event occurs when the counter rolls over from FFh to the

LTARR reload value. Software can write a new value at anytime in the LTARR register, this value will be automatically loaded in the counter when the next overflow occurs.

When Counter 2 overflows, the TB2F bit in the LTCSR2 register is set by hardware and an interrupt request is generated if the TB2IE bit is set. The TB2F bit is cleared by software reading the LTCSR2 register.

11.3.3.3 Input Capture


The 8-bit input capture register is used to latch the free-running upcounter (Counter 1) 1 after a rising or falling edge is detected on the LTIC pin. When an input capture occurs, the ICF bit is set and the LTICR register contains the value of Counter 1. An interrupt is generated if the ICIE bit is set. The ICF bit is cleared by reading the LTICR register.

The LTICR is a read-only register and always contains the data from the last input capture. Input capture is inhibited if the ICF bit is set.

LINSCITM SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont'd)

Figure 58. LIN Characters

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont'd)

11.5.9.4 LIN Error Detection

LIN Header Error Flag

The LIN Header Error Flag indicates that an invalid LIN Header has been detected.

When a LIN Header Error occurs:

- The LHE flag is set
- An interrupt is generated if the RIE bit is set and the I[1:0] bits are cleared in the CCR register.

If autosynchronization is enabled (LASE bit = 1), this can mean that the LIN Synch Field is corrupted, and that the SCI is in a blocked state (LSF bit is set). The only way to recover is to reset the LSF bit and then to clear the LHE bit.

 The LHE bit is reset by an access to the SCISR register followed by a read of the SCIDR register.

LHE/OVR Error Conditions

When Auto Resynchronization is disabled (LASE bit = 0), the LHE flag detects:

- That the received LIN Synch Field is not equal to 55h.
- That an overrun occurred (as in standard SCI mode)
- Furthermore, if LHDM is set it also detects that a LIN Header Reception Timeout occurred (only if LHDM is set).

When the LIN auto-resynchronization is enabled (LASE bit = 1), the LHE flag detects:

- That the deviation error on the Synch Field is outside the LIN specification which allows up to +/-15.5% of period deviation between the slave and master oscillators.
- A LIN Header Reception Timeout occurred.
 If T_{HEADER} > T_{HEADER_MAX} then the LHE flag is set. Refer to Figure 60. (only if LHDM is set to 1)
- An overflow during the Synch Field Measurement, which leads to an overflow of the divider registers. If LHE is set due to this error then the SCI goes into a blocked state (LSF bit is set).
- That an overrun occurred on Fields other than the Synch Field (as in standard SCI mode)

Deviation Error on the Synch Field

The deviation error is checking by comparing the current baud rate (relative to the slave oscillator) with the received LIN Synch Field (relative to the master oscillator). Two checks are performed in parallel:

 The first check is based on a measurement between the first falling edge and the last falling edge of the Synch Field. Let us refer to this period deviation as D:

If the LHE flag is set, it means that:

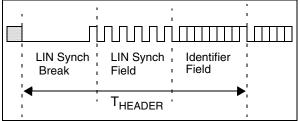
D > 15.625%

If LHE flag is not set, it means that:

D < 16.40625%

If $15.625\% \le D < 16.40625\%$, then the flag can be either set or reset depending on the dephasing between the signal on the RDI line and the CPU clock.

 The second check is based on the measurement of each bit time between both edges of the Synch Field: this checks that each of these bit times is large enough compared to the bit time of the current baud rate.


When LHE is set due to this error then the SCI goes into a blocked state (LSF bit is set).

LIN Header Time-out Error

When the LIN Identifier Field Detection Method is used (by configuring LHDM to 1) or when LIN auto-resynchronization is enabled (LASE bit = 1), the LINSCI automatically monitors the T_{HEADER_MAX} condition given by the LIN protocol.

If the entire Header (up to and including the STOP bit of the LIN Identifier Field) is not received within the maximum time limit of 57 bit times then a LIN Header Error is signalled and the LHE bit is set in the SCISR register.

Figure 60. LIN Header Reception Timeout

The time-out counter is enabled at each break detection. It is stopped in the following conditions:

- A LIN Identifier Field has been received

- An LHE error occurred (other than a timeout error).

- A software reset of LSF bit (transition from high to low) occurred during the analysis of the LIN Synch Field or

If LHE bit is set due to this error during the LIN Synchr Field (if LASE bit = 1) then the SCI goes into a blocked state (LSF bit is set).

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Master/Slave) (Cont'd)

Addr. (Hex.)	Register Name	7	6	5	4	3	2	1	0
40	SCISR	TDRE	TC	RDRF	IDLE	OR/LHE	NF	FE	PE
40	Reset Value	1	1	0	0	0	0	0	0
41	SCIDR	DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0
41	Reset Value	-	-	-	-	-	-	-	-
	SCIBRR	SCP1	SCP0	SCT2	SCT1	SCT0	SCR2	SCR1	SCR0
42	LPR (LIN Slave Mode)	LPR7	LPR6	LPR5	LPR4	LPR3	LPR2	LPR1	LPR0
	Reset Value	0	0	0	0	0	0	0	0
43	SCICR1	R8	Т8	SCID	М	WAKE	PCE	PS	PIE
43	Reset Value	х	0	0	0	0	0	0	0
44	SCICR2	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
44	Reset Value	0	0	0	0	0	0	0	0
45	SCICR3	NP	LINE	LSLV	LASE	LHDM	LHIE	LHDF	LSF
45	Reset Value	0	0	0	0	0	0	0	0
46	SCIERPR LHLR (LIN Slave Mode)	ERPR7 LHL7	ERPR6 LHL6	ERPR5 LHL5	ERPR4 LHL4	ERPR3 LHL3	ERPR2 LHL2	ERPR1 LHL1	ERPR0 LHL0
U	Reset Value	0	0	0	0	0	0	0	0
	SCITPR	ETPR7	ETPR6	ETPR5	ETPR4	ETPR3	ETPR2	ETPR1	ETPR0
47	LPFR (LIN Slave Mode)	LDUM	0	0	0	LPFR3	LPFR2	LPFR1	LPFR0
	Reset Value	0	0	0	0	0	0	0	0

Table 21. LINSCI1 Register Map and Reset Values

10-BIT A/D CONVERTER (ADC) (Cont'd)

11.6.3.2 Digital A/D Conversion Result

The conversion is monotonic, meaning that the result never decreases if the analog input does not and never increases if the analog input does not.

If the input voltage (V_{AIN}) is greater than V_{DDA} (high-level voltage reference) then the conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without overflow indication).

If the input voltage (V_{AIN}) is lower than V_{SSA} (low-level voltage reference) then the conversion result in the ADCDRH and ADCDRL registers is 00 00h.

The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH and AD-CDRL registers. The accuracy of the conversion is described in the Electrical Characteristics Section.

 R_{AIN} is the maximum recommended impedance for an analog input signal. If the impedance is too high, this will result in a loss of accuracy due to leakage and sampling not being completed in the alloted time.

11.6.3.3 A/D Conversion

The analog input ports must be configured as input, no pull-up, no interrupt. Refer to the «I/O ports» chapter. Using these pins as analog inputs does not affect the ability of the port to be read as a logic input.

In the ADCCSR register:

- Select the CS[2:0] bits to assign the analog channel to convert.

ADC Conversion mode

In the ADCCSR register:

Set the ADON bit to enable the A/D converter and to start the conversion. From this time on, the ADC performs a continuous conversion of the selected channel.

When a conversion is complete:

- The EOC bit is set by hardware.
- The result is in the ADCDR registers.

A read to the ADCDRH or a write to any bit of the ADCCSR register resets the EOC bit.

To read the 10 bits, perform the following steps:

- 1. Poll EOC bit
- 2. Read ADCDRL
- 3. Read ADCDRH. This clears EOC automatically.
- To read only 8 bits, perform the following steps:
- 1. Poll EOC bit
- 2. Read ADCDRH. This clears EOC automatically.

11.6.3.4 Changing the conversion channel

The application can change channels during conversion.

When software modifies the CH[2:0] bits in the ADCCSR register, the current conversion is stopped, the EOC bit is cleared, and the A/D converter starts converting the newly selected channel.

11.6.4 Low Power Modes

The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced power consumption when no conversion is needed and between single shot conversions.

Mode	Description
WAIT	No effect on A/D Converter
	A/D Converter disabled.
HALT	After wakeup from Halt mode, the A/D Converter requires a stabilization time t _{STAB} (see Electrical Characteristics) before accurate conversions can be performed.

11.6.5 Interrupts

None.

12 INSTRUCTION SET

12.1 ST7 ADDRESSING MODES

The ST7 Core features 17 different addressing modes which can be classified in seven main groups:

Addressing Mode	Example
Inherent	nop
Immediate	ld A,#\$55
Direct	ld A,\$55
Indexed	ld A,(\$55,X)
Indirect	ld A,([\$55],X)
Relative	jrne loop
Bit operation	bset byte,#5

Table 23. ST7 Addressing Mode Overview

The ST7 Instruction set is designed to minimize the number of bytes required per instruction: To do so, most of the addressing modes may be subdivided in two submodes called long and short:

- Long addressing mode is more powerful because it can use the full 64 Kbyte address space, however it uses more bytes and more CPU cycles.
- Short addressing mode is less powerful because it can generally only access page zero (0000h -00FFh range), but the instruction size is more compact, and faster. All memory to memory instructions use short addressing modes only (CLR, CPL, NEG, BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP)

The ST7 Assembler optimizes the use of long and short addressing modes.

Mode		Syntax	Destination/ Source	Pointer Address (Hex.)	Pointer Size (Hex.)	Length (Bytes)
		nop				+ 0
		ld A,#\$55				+ 1
Direct		ld A,\$10	00FF			+ 1
Direct		ld A,\$1000	0000FFFF			+ 2
Direct	Indexed	ld A,(X)	00FF			+ 0 (with X register) + 1 (with Y register)
Direct	Indexed	ld A,(\$10,X)	001FE			+ 1
Direct	Indexed	ld A,(\$1000,X)	0000FFFF			+ 2
Indirect		ld A,[\$10]	00FF	00FF	byte	+ 2
Indirect		ld A,[\$10.w]	0000FFFF	00FF	word	+ 2
Indirect	Indexed	ld A,([\$10],X)	001FE	00FF	byte	+ 2
Indirect	Indexed	ld A,([\$10.w],X)	0000FFFF	00FF	word	+ 2
Direct		jrne loop	PC-128/PC+127 ¹⁾			+ 1
Indirect		jrne [\$10]	PC-128/PC+127 ¹⁾	00FF	byte	+ 2
Direct		bset \$10,#7	00FF			+ 1
Indirect		bset [\$10],#7	00FF	00FF	byte	+ 2
Direct	Relative	btjt \$10,#7,skip	00FF			+ 2
Indirect	Relative	btjt [\$10],#7,skip	00FF	00FF	byte	+ 3
	Direct Direct Direct Direct Direct Indirect Indirect Indirect Direct Indirect Direct Direct	DirectDirectDirectDirectIndexedDirectIndirectIndirectIndirectIndirectIndirectIndirectIndirectIndirectIndirectIndirectIndirectIndirectIndirectIndirectIndirectIndirectIndirectDirectIndirectDirectDirectDirectRelative	nopId A,#\$55DirectId A,\$10DirectId A,\$100DirectId A,\$1000DirectIndexedId A,\$1000DirectIndexedId A,\$1000DirectIndexedId A,\$1000DirectIndexedId A,\$1000,X)DirectIndexedId A,\$1000,X)IndirectId A,\$1000,X)IndirectId A,\$1000,X)IndirectId A,\$1000,X)IndirectId A,\$1000,X)IndirectIndexedId A,\$1000,X)IndirectIndexedId A,\$1000,X)IndirectIndexedId A,\$1000,X)Directjrne [\$10,X)Directbset \$10,#7Indirectbset \$10,#7,\$kipDirectRelativebtjt \$10,#7,\$kip	Mode Syntax Source nop Id A,#\$55 Id A,#\$55 Direct Id A,\$10 00FF Direct Id A,\$100 0000FFF Direct Id A,\$100 0000FFF Direct Indexed Id A,\$1000 0000FFF Direct Indexed Id A,(\$10,X) 00FF Direct Indexed Id A,(\$1000,X) 0000FFFF Direct Indexed Id A,(\$1000,X) 0000FFFF Indirect Indexed Id A,[\$10] 00FF Indirect Indexed Id A,[\$10.w] 0000FFFF Indirect Indexed Id A,[\$10.w] 0000FFFF Indirect Indexed Id A,[\$10.w] 0000FFFF Indirect Indexed Id A,([\$10.w],X) 0000FFFF Direct Indexed Id A,([\$10.w],X) 0000FFFF Direct indexed Id A,([\$10.w],X) 0000FFFF Direct indexed Id A,([\$10.w],X) 0000FFFF Direct	Mode Syntax Destination/ Source Address (Hex.) nop nop 1d A,#\$55 - Direct Id A,#\$55 - - Direct Id A,\$10 00FF - Direct Id A,\$100 0000FFF - Direct Indexed Id A,(\$1000) 000FF - Direct Indexed Id A,(\$10,X) 00FF - Direct Indexed Id A,(\$1000,X) 0000FFF - Direct Indexed Id A,(\$1000,X) 0000FFF - Direct Indexed Id A,(\$1000,X) 0000FFF - Indirect Indexed Id A,(\$1000,X) 0000FFF 00FF Indirect Indexed Id A,(\$100,X) 0000FFF 00FF Indirect Indexed Id A,(\$10,X) 0000FFF 00FF Indirect Indexed Id A,(\$10,X) 0000FFF 00FF Direct Indexed Id A,(\$10,X) 0000FFF 00FF	Mode Syntax Destination/ Source Address (Hex.) Size (Hex.) nop nop

Note:

57

1. At the time the instruction is executed, the Program Counter (PC) points to the instruction following JRxx.

13 ELECTRICAL CHARACTERISTICS

13.1 PARAMETER CONDITIONS

Unless otherwise specified, all voltages are referred to $V_{\mbox{\scriptsize SS}}.$

13.1.1 Minimum and Maximum values

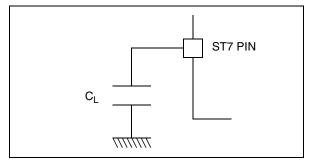
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A=25^{\circ}C$ and $T_A=T_Amax$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

13.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A=25\,^\circ\text{C}, \ V_{DD}=5V$ (for the $4.5V{\le}V_{DD}{\le}5.5V$ voltage range) and $V_{DD}{=}3.3V$ (for the $3V{\le}V_{DD}{\le}4V$ voltage range). They are given only as design guidelines and are not tested.

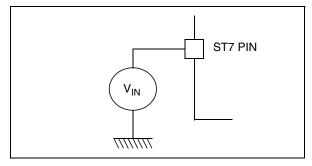
13.1.3 Typical curves


57/

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

13.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 67.

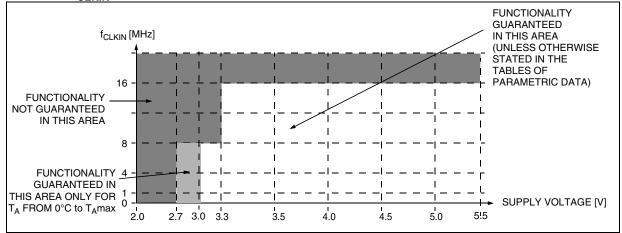

Figure 67. Pin loading conditions

13.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 68.

Figure 68. Pin input voltage

13.3 OPERATING CONDITIONS


57

13.3.1 General Operating Conditions: Suffix 6 Devices

 $T_A = -40$ to $+125^{\circ}C$ unless otherwise specified.

Symbol	Parameter Conditions		Min	Max	Unit	
	$f_{OSC} = 8$ MHz. max., $T_A = 0$ to $125^{\circ}C$		5.5			
V_{DD}	Supply voltage	$f_{OSC} = 8$ MHz. max., $T_A = -40$ to $125^{\circ}C$	3.0	5.5	V	
		f _{OSC} = 16 MHz. max.	3.3	5.5		
4	External clock frequency on	V _{DD} ≥3.3V	up to 16		MHz	
TCLKIN	CLKIN pin	V _{DD} ≥3.0V	up to 8			

Figure 69. f_{CLKIN} Maximum Operating Frequency Versus V_{DD} Supply Voltage

13.4 SUPPLY CURRENT CHARACTERISTICS

The following current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To get the total de-

13.4.1 Supply Current

 $T_A = -40$ to $+125^{\circ}C$ unless otherwise specified

Symbol	Parameter		Conditions	Тур	Max	Unit
			f _{CPU} =8MHz ¹⁾ , -40°C≤T _A ≤+85°C	6	9	
	Supply current in RUN mode		f _{CPU} =8MHz ¹⁾ , -40°C≤T _A ≤+125°C	0	10	
			f _{CPU} =4MHz , -40°C≤T _A ≤+85°C	2.6	5.6	
			f _{CPU} =4MHz , -40°C≤T _A ≤+125°C	2.0	5.0	
			f _{CPU} =1MHz , -40°C≤T _A ≤+85°C	0.8	2.5	
			f _{CPU} =1MHz , -40°C≤T _A ≤+125°C	0.0	2.5	mA
	Supply current in WAIT mode		f _{CPU} =8MHz ²⁾ , -40°C≤T _A ≤+85°C	2.4	4	
	Supply surrent in WAIT mode	>	f _{CPU} =8MHz ²⁾ , -40°C≤T _A ≤+125°C	2.7	4.5	
	Supply current in SLOW mode	V _{DD} =5.5V	f _{CPU} =250kHz ³⁾ , -40°C≤T _A ≤+85°C	0.7	1.1	
		=DO	f _{CPU} =250kHz ³⁾ , -40°C≤T _A ≤+125°C		1.5	
	Supply current in SLOW WAIT mode	>	f _{CPU} =250kHz ⁴), -40°C≤T _A ≤+85°C	0.6	1	
			f _{CPU} =250kHz ⁴⁾ , -40°C≤T _A ≤+125°C		1.4	
	Supply current in HALT mode ⁵⁾		-40°C≤T _A ≤+85°C	0.5	10	μΑ
			-40°C≤T _A ≤+125°C		20	
	Supply current in AWUFH mode ⁶⁾⁷⁾		-40°C≤T _A ≤+85°C	20	50	-
			-40°C≤T _A ≤+125°C		300	
I _{DD}	Supply current in ACTIVE HALT mode		-40°C≤T _A ≤+85°C	0.7	1	mA
66			-40°C≤T _A ≤+125°C			
	Supply current in RUN mode		f _{CPU} =8MHz ¹⁾ , -40°C≤T _A ≤+85°C	4.0	7	1 .7 .2
			f _{CPU} =8MHz ¹⁾ , -40°C≤T _A ≤+125°C	4.0	11	
			f _{CPU} =4MHz	1.7	4.7	
			f _{CPU} =1MHz	0.5	2.2	
	Supply current in WAIT mode		$f_{CPU}=8MHz^{2}, -40^{\circ}C \le T_{A} \le +85^{\circ}C$	1.5	3.1	mA
			$f_{CPU}=8MHz^{(2)}, -40^{\circ}C \le T_A \le +125^{\circ}C$	1.5	4.5	
	Supply current in SLOW mode		$f_{CPU}=250 \text{kHz}^{-3}$, -40°C≤T _A ≤+85°C	0.2	0.6	
		V _{DD} =3.3V	$f_{CPU}=250$ kHz ³⁾ , -40°C≤T _A ≤+125°C	0.2	1.5 0.5	-
Su	Supply current in SLOW WAIT mode	۷۵۵	$f_{CPU}=250 \text{kHz}^{4}$, -40°C≤T _A ≤+85°C	0.1 0.1	0.5 1.4	_
		-	$f_{CPU}=250 \text{kHz}^{4}, -40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	0.1	1.4	
	Supply current in HALT mode ⁵⁾		-40°C≤T _A ≤+85°C -40°C≤T _A ≤+125°C	0.1	10	-
			$-40^{\circ}C \le T_{A} \le +125^{\circ}C$ $-40^{\circ}C \le T_{A} \le +85^{\circ}C$	9.6	10	μA
l	Supply current in AWUFH mode ⁶⁾⁷⁾		-40°C≤T _A ≤+85°C -40°C≤T _A ≤+125°C	9.6 9.6	300	-
l	Supply current in ACTIVE HALT mode		$-40^{\circ}C \le T_A \le +125^{\circ}C$ $-40^{\circ}C \le T_A \le +85^{\circ}C$	9.6 0.5	500	
1			-40°C≤T _A ≤+85°C -40°C≤T _A ≤+125°C	0.5	100	mA
			-40 021A2+1230	0.5	100	

vice consumption, the two current values must be

added (except for HALT mode for which the clock

is stopped).

Notes:

1. CPU running with memory access, all I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load), all peripherals in reset state; clock input (CLKIN) driven by external square wave, LVD disabled.

2. All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load), all peripherals in reset state; clock input (CLKIN)

14 PACKAGE CHARACTERISTICS

14.1 PACKAGE MECHANICAL DATA

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard

JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 105. 20-Lead Very thin Fine pitch Quad Flat No-Lead Package

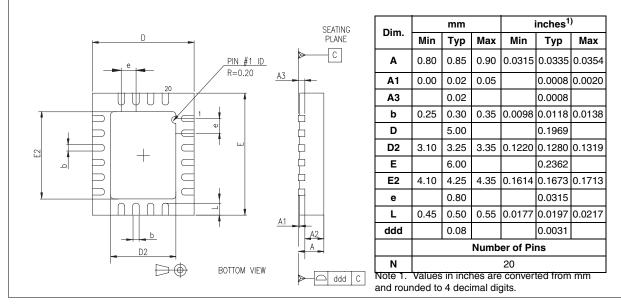
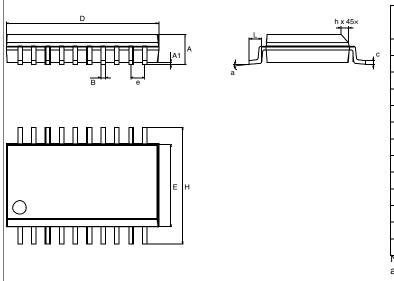



Figure 106. 20-Pin Plastic Small Outline Package, 300-mil Width

57/

Dim.	mm			inches ¹⁾			
Dim.	Min	Тур	Max	Min	Тур	Max	
Α	2.35		2.65	0.0925		0.1043	
A1	0.10		0.30	0.0039		0.0118	
В	0.33		0.51	0.0130		0.0201	
С	0.23		0.32	0.0091		0.0126	
D	12.60		13.00	0.4961		0.5118	
Е	7.40		7.60	0.2913		0.2992	
е		1.27			0.0500		
Н	10.00		10.65	0.3937		0.4193	
h	0.25		0.75	0.0098		0.0295	
α	0°		8°	0°		8°	
L	0.40		1.27	0.0157		0.0500	
	Number of Pins						
Ν							
Note 1. Values in inches are converted from mm							

15 DEVICE CONFIGURATION

Each device is available for production in user programmable versions (FLASH) as well as in factory coded versions (ROM/FASTROM).

ST7PLITE3 devices are Factory Advanced Service Technique ROM (FASTROM) versions: they are factory programmed FLASH devices.

15.1 FLASH OPTION BYTES

The two option bytes allow the hardware configuration of the microcontroller to be selected.

OPTION BYTE 0

OPT7 = AWUCK Auto Wake Up Clock Selection

0: 32-KHz Oscillator (VLP) selected as AWU clock

1: AWU RC Oscillator selected as AWU clock.

Note: If this bit is reset, internal RC oscillator must be selected (Option OSC=0).

OPT6:4 = OSCRANGE[2:0] Oscillator Range

When the internal RC oscillator is not selected (Option OSC=1), these option bits select the range of the resonator oscillator current source or the external clock source.

			OSCRANGE			
			2	1	0	
	LP	1~2MHz	0	0	0	
Typ. frequency range with	MP	2~4MHz	0	0	1	
	MS	4~8MHz	0	1	0	
Resonator	HS	8~16MHz	0	1	1	
	VLP	32.768kHz	1	0	0	
External Clock on OSC1			1	0	1	
Re	1	1	0			
External Clock on PB4			1	1	1	

Notes:

5/

1. OSCRANGE[2:0] has no effect when AWUCK option is set to 0. In this case, the VLP oscillator range is automatically selected as AWU clock.

2. When the internal RC oscillator is selected, the OSCRANGE option bits must be kept at their default value to select the 256 clock cycle delay (see section 7.5 on page 27)

ST7FLITE3 devices are shipped to customers with a default program memory content (FFh), while FASTROM factory coded parts contain the code supplied by the customer. This implies that FLASH devices have to be configured by the customer using the Option Bytes.

OPT 3:2 = SEC[1:0] Sector 0 size definition
These option bits indicate the size of sector 0 ac-
cording to the following table.

Sector 0 Size	SEC1	SEC0
0.5k	0	0
1k	0	1
2	1	0
4k	1	1

OPT1 = FMP_R Read-out protection

Readout protection, when selected provides a protection against program memory content extraction and against write access to Flash memory. Erasing the option bytes when the FMP_R option is selected will cause the whole memory to be erased first and the device can be reprogrammed. Refer to the ST7 Flash Programming Reference Manual and section 4.5 on page 14 for more details

0: Read-out protection off

1: Read-out protection on

OPT 0 = **FMP_W** FLASH write protection

This option indicates if the FLASH program memory is write protected.

Warning: When this option is selected, the program memory (and the option bit itself) can never be erased or programmed again.

0: Write protection off

1: Write protection on

The option bytes have no address in the memory map and can be accessed only in programming mode (for example using a standard ST7 programming tool). The default content of the FLASH is fixed to FFh.

161/173

15.3 DEVELOPMENT TOOLS

Development tools for the ST7 microcontrollers include a complete range of hardware systems and software tools from STMicroelectronics and thirdparty tool suppliers. The range of tools includes solutions to help you evaluate microcontroller peripherals, develop and debug your application, and program your microcontrollers.

15.3.1 Starter kits

ST offers complete, affordable **starter kits**. Starter kits are complete, affordable hardware/software tool packages that include features and samples to help you quickly start developing your application.

15.3.2 Development and Debugging Tools

Application development for ST7 is supported by fully optimizing **C Compilers** and the **ST7 Assembler-Linker** toolchain, which are all seamlessly integrated in the ST7 integrated development environments in order to facilitate the debugging and fine-tuning of your application. The Cosmic C Compiler is available in a free version that outputs up to 16 Kbytes of code.

The range of hardware tools includes full-featured **ST7-EMU3 series emulators**, cost effective **ST7-DVP3 series emulators** and the low-cost **RLink** in-circuit debugger/programmer. These tools are supported by the **ST7 Toolset** from STMicroelectronics, which includes the STVD7 integrated development environment (IDE) with high-level lan-

guage debugger, editor, project manager and integrated programming interface.

15.3.3 Programming Tools

During the development cycle, the **ST7-DVP3** and **ST7-EMU3 series emulators** and the **RLink** provide in-circuit programming capability for programming the Flash microcontroller on your application board.

ST also provides dedicated a low-cost dedicated in-circuit programmer, the **ST7-STICK**, as well as **ST7 Socket Boards** which provide all the sockets required for programming any of the devices in a specific ST7 sub-family on a platform that can be used with any tool with in-circuit programming capability for ST7.

For production programming of ST7 devices, ST's third-party tool partners also provide a complete range of gang and automated programming solutions, which are ready to integrate into your production environment.

15.3.4 Order Codes for Development and Programming Tools

Table 26 below lists the ordering codes for the ST7LITE3 development and programming tools. For additional ordering codes for spare parts and accessories, refer to the online product selector at www.st.com.

15.3.5 Order codes for ST7LITE3 development tools

Table 26. Development tool order codes for the ST7LITE3 family

	In-circuit Debugg	er, RLink Series ¹⁾	Emul	ator	Programming Tool	
Supported Products	Starter Kit without Demo Board			DVP Series EMU Series		ST Socket Boards and EPBs
ST7FLITE30 ST7FLITE35 ST7FLITE39	STX-RLINK ²⁾	STFLITE- SK/RAIS ²⁾	ST7MDT10- DVP3 ⁴⁾	ST7MDT10- EMU3	STX-RLINK ST7-STICK ³⁾⁵⁾	ST7SB10- 123 ³⁾

Notes:

1. Available from ST or from Raisonance, www.raisonance.com

2. USB connection to PC

3. Add suffix /EU, /UK or /US for the power supply for your region

4. Includes connection kit for DIP16/SO16 only. See "How to order an EMU or DVP" in ST product and tool selection guide for connection kit ordering information

5. Parallel port connection to PC