
Microchip Technology - ATMEGA168-20PU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 6x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Through Hole

Package / Case 28-DIP (0.300", 7.62mm)

Supplier Device Package 28-PDIP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega168-20pu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega168-20pu-4387994
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega48/88/168
7. Power Management and Sleep Modes
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one and a
SLEEP instruction must be executed. The SM2, SM1, and SM0 bits in the SMCR Register select
which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-save, or Standby) will be
activated by the SLEEP instruction. See Table 7-1 for a summary. If an enabled interrupt occurs
while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in
addition to the start-up time, executes the interrupt routine, and resumes execution from the
instruction following SLEEP. The contents of the Register File and SRAM are unaltered when
the device wakes up from sleep. If a reset occurs during sleep mode, the MCU wakes up and
executes from the Reset Vector.

Figure 6-1 on page 25 presents the different clock systems in the ATmega48/88/168, and their
distribution. The figure is helpful in selecting an appropriate sleep mode.

7.0.1 Sleep Mode Control Register – SMCR
The Sleep Mode Control Register contains control bits for power management.

• Bits 7..4 Res: Reserved Bits
These bits are unused bits in the ATmega48/88/168, and will always read as zero.

• Bits 3..1 – SM2..0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 7-1.

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

• Bit 0 – SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s

Bit 7 6 5 4 3 2 1 0

– – – – SM2 SM1 SM0 SE SMCR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 7-1. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 Reserved
37
2545E–AVR–02/05

ATmega48/88/168
If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up from
either Timer Overflow or Output Compare event from Timer/Counter2 if the corresponding
Timer/Counter2 interrupt enable bits are set in TIMSK2, and the Global Interrupt Enable bit in
SREG is set.

If Timer/Counter2 is not running, Power-down mode is recommended instead of Power-save
mode.

The Timer/Counter2 can be clocked both synchronously and asynchronously in Power-save
mode. If Timer/Counter2 is not using the asynchronous clock, the Timer/Counter Oscillator is
stopped during sleep. If Timer/Counter2 is not using the synchronous clock, the clock source is
stopped during sleep. Note that even if the synchronous clock is running in Power-save, this
clock is only available for Timer/Counter2.

7.5 Standby Mode
When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in six clock cycles.

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If Timer/Counter2 is running in asynchronous mode.
3. For INT1 and INT0, only level interrupt.

7.6 Power Reduction Register
The Power Reduction Register, PRR, provides a method to stop the clock to individual peripher-
als to reduce power consumption. The current state of the peripheral is frozen and the I/O
registers can not be read or written. Resources used by the peripheral when stopping the clock
will remain occupied, hence the peripheral should in most cases be disabled before stopping the
clock. Waking up a module, which is done by clearing the bit in PRR, puts the module in the
same state as before shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall
power consumption. See ”Power-Down Supply Current” on page 315 for examples. In all other
sleep modes, the clock is already stopped.

Table 7-2. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources

Sleep Mode

cl
k C

P
U

cl
k F

LA
S

H

cl
k I

O

cl
k A

D
C

cl
k A

S
Y

M
ai

n
C

lo
ck

S

ou
rc

e
E

na
bl

ed

T
im

er
 O

sc
ill

at
or

E
na

bl
ed

IN
T

1,
 IN

T
0

an
d

P
in

 C
ha

ng
e

T
W

I A
dd

re
ss

M

at
ch

T
im

er
2

S
P

M
/E

E
P

R
O

M
R

ea
dy

A
D

C

W
D

T

O
th

er
/O

Idle X X X X X(2) X X X X X X X

ADC Noise
Reduction

X X X X(2) X(3) X X X X X

Power-down X(3) X X

Power-save X X X(3) X X X

Standby(1) X X(3) X X
39
2545E–AVR–02/05

9.2 Interrupt Vectors in ATmega88

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at
reset, see ”Boot Loader Support – Read-While-Write Self-Programming, ATmega88 and
ATmega168” on page 264.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot
Flash Section. The address of each Interrupt Vector will then be the address in this table
added to the start address of the Boot Flash Section.

Table 9-3 shows reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt
Vectors are not used, and regular program code can be placed at these locations. This is also
the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the
Boot section or vice versa.

Table 9-2. Reset and Interrupt Vectors in ATmega88

Vector No.
Program

Address(2) Source Interrupt Definition

1 0x000(1) RESET External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset

2 0x001 INT0 External Interrupt Request 0

3 0x002 INT1 External Interrupt Request 1

4 0x003 PCINT0 Pin Change Interrupt Request 0

5 0x004 PCINT1 Pin Change Interrupt Request 1

6 0x005 PCINT2 Pin Change Interrupt Request 2

7 0x006 WDT Watchdog Time-out Interrupt

8 0x007 TIMER2 COMPA Timer/Counter2 Compare Match A

9 0x008 TIMER2 COMPB Timer/Counter2 Compare Match B

10 0x009 TIMER2 OVF Timer/Counter2 Overflow

11 0x00A TIMER1 CAPT Timer/Counter1 Capture Event

12 0x00B TIMER1 COMPA Timer/Counter1 Compare Match A

13 0x00C TIMER1 COMPB Timer/Coutner1 Compare Match B

14 0x00D TIMER1 OVF Timer/Counter1 Overflow

15 0x00E TIMER0 COMPA Timer/Counter0 Compare Match A

16 0x00F TIMER0 COMPB Timer/Counter0 Compare Match B

17 0x010 TIMER0 OVF Timer/Counter0 Overflow

18 0x011 SPI, STC SPI Serial Transfer Complete

19 0x012 USART, RX USART Rx Complete

20 0x013 USART, UDRE USART, Data Register Empty

21 0x014 USART, TX USART, Tx Complete

22 0x015 ADC ADC Conversion Complete

23 0x016 EE READY EEPROM Ready

24 0x017 ANALOG COMP Analog Comparator

25 0x018 TWI 2-wire Serial Interface

26 0x019 SPM READY Store Program Memory Ready
56
2545E–AVR–02/05

ATmega48/88/168

The setup of the OC0x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC0x value is to use the Force Output Com-
pare (FOC0x) strobe bits in Normal mode. The OC0x Registers keep their values even when
changing between Waveform Generation modes.

Be aware that the COM0x1:0 bits are not double buffered together with the compare value.
Changing the COM0x1:0 bits will take effect immediately.

12.5 Compare Match Output Unit
The Compare Output mode (COM0x1:0) bits have two functions. The Waveform Generator uses
the COM0x1:0 bits for defining the Output Compare (OC0x) state at the next compare match.
Also, the COM0x1:0 bits control the OC0x pin output source. Figure 12-4 shows a simplified
schematic of the logic affected by the COM0x1:0 bit setting. The I/O Registers, I/O bits, and I/O
pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR
and PORT) that are affected by the COM0x1:0 bits are shown. When referring to the OC0x
state, the reference is for the internal OC0x Register, not the OC0x pin. If a system reset occur,
the OC0x Register is reset to “0”.

Figure 12-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC0x) from the Waveform
Generator if either of the COM0x1:0 bits are set. However, the OC0x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC0x pin (DDR_OC0x) must be set as output before the OC0x value is visi-
ble on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC0x state before the out-
put is enabled. Note that some COM0x1:0 bit settings are reserved for certain modes of
operation. See Section “12.8” on page 99.

12.5.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM0x1:0 bits differently in Normal, CTC, and PWM modes.
For all modes, setting the COM0x1:0 = 0 tells the Waveform Generator that no action on the
OC0x Register is to be performed on the next compare match. For compare output actions in the

PORT

DDR

D Q

D Q

OCnx
PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
AT

A
 B

U
S

FOCn

clkI/O
92
2545E–AVR–02/05

ATmega48/88/168

ATmega48/88/168
Table 12-7 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase cor-
rect PWM mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 96 for more details.

• Bits 3, 2 – Res: Reserved Bits
These bits are reserved bits in the ATmega48/88/168 and will always read as zero.

• Bits 1:0 – WGM01:0: Waveform Generation Mode
Combined with the WGM02 bit found in the TCCR0B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 12-8. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of
Pulse Width Modulation (PWM) modes (see ”Modes of Operation” on page 93).

Notes: 1. MAX = 0xFF
2. BOTTOM = 0x00

Table 12-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on Compare Match when up-counting. Set OC0B on
Compare Match when down-counting.

1 1
Set OC0B on Compare Match when up-counting. Clear OC0B on
Compare Match when down-counting.

Table 12-8. Waveform Generation Mode Bit Description

Mode WGM02 WGM01 WGM00

Timer/Counter
Mode of
Operation TOP

Update of
OCRx at

TOV Flag
Set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1
PWM, Phase
Correct

0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF TOP MAX

4 1 0 0 Reserved – – –

5 1 0 1
PWM, Phase
Correct

OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA TOP TOP
101
2545E–AVR–02/05

prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte
temporary register (TEMP). However, it is a good practice to read the low byte first as when
accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The high byte (OCR1xH) has to be
written first. When the high byte I/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the low byte (OCR1xL) is written to the lower eight bits,
the high byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Compare
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to ”Accessing 16-bit Registers”
on page 108.

13.6.1 Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC1x) bit. Forcing compare match will not set the
OCF1x Flag or reload/clear the timer, but the OC1x pin will be updated as if a real compare
match had occurred (the COM11:0 bits settings define whether the OC1x pin is set, cleared or
toggled).

13.6.2 Compare Match Blocking by TCNT1 Write
All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the
same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

13.6.3 Using the Output Compare Unit
Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT1 when using any of the Output Compare
channels, independent of whether the Timer/Counter is running or not. If the value written to
TCNT1 equals the OCR1x value, the compare match will be missed, resulting in incorrect wave-
form generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP
values. The compare match for the TOP will be ignored and the counter will continue to 0xFFFF.
Similarly, do not write the TCNT1 value equal to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC1x value is to use the Force Output Com-
pare (FOC1x) strobe bits in Normal mode. The OC1x Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value.
Changing the COM1x1:0 bits will take effect immediately.
116
2545E–AVR–02/05

ATmega48/88/168

ATmega48/88/168
A frame starts with the start bit followed by the least significant data bit. Then the next data bits,
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can
be directly followed by a new frame, or the communication line can be set to an idle (high) state.
Figure 17-4 illustrates the possible combinations of the frame formats. Bits inside brackets are
optional.

Figure 17-4. Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxDn or TxDn). An IDLE line
must be

high.

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn bits in
UCSRnB and UCSRnC. The Receiver and Transmitter use the same setting. Note that changing
the setting of any of these bits will corrupt all ongoing communication for both the Receiver and
Transmitter.

The USART Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The
USART Parity mode (UPMn1:0) bits enable and set the type of parity bit. The selection between
one or two stop bits is done by the USART Stop Bit Select (USBSn) bit. The Receiver ignores
the second stop bit. An FE (Frame Error) will therefore only be detected in the cases where the
first stop bit is zero.

17.3.1 Parity Bit Calculation
The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the
result of the exclusive or is inverted. The relation between the parity bit and data bits is as
follows:

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME

Peven dn 1– … d3 d2 d1 d0 0
Podd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
dn 1– … d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕

=
=

173
2545E–AVR–02/05

ATmega48/88/168
Figure 17-5. Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the
start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in
the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and sam-
ples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on the
figure), to decide if a valid start bit is received. If two or more of these three samples have logical
high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts
looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-
ery logic is synchronized and the data recovery can begin. The synchronization process is
repeated for each start bit.

17.7.2 Asynchronous Data Recovery
When the receiver clock is synchronized to the start bit, the data recovery can begin. The data
recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight
states for each bit in Double Speed mode. Figure 17-6 shows the sampling of the data bits and
the parity bit. Each of the samples is given a number that is equal to the state of the recovery
unit.

Figure 17-6. Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of the logic
value to the three samples in the center of the received bit. The center samples are emphasized
on the figure by having the sample number inside boxes. The majority voting process is done as
follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.
If two or all three samples have low levels, the received bit is registered to be a logic 0. This
majority voting process acts as a low pass filter for the incoming signal on the RxDn pin. The
recovery process is then repeated until a complete frame is received. Including the first stop bit.
Note that the Receiver only uses the first stop bit of a frame.

Figure 17-7 shows the sampling of the stop bit and the earliest possible beginning of the start bit
of the next frame.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

STARTIDLE

00

BIT 0

3

1 2 3 4 5 6 7 8 1 20

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

BIT n

1 2 3 4 5 6 7 8 1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)
183
2545E–AVR–02/05

ATmega48/88/168
• Bit 5 – UDRIEn: USART Data Register Empty Interrupt Enable n
Writing this bit to one enables interrupt on the UDREn Flag. A Data Register Empty interrupt will
be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDREn bit in UCSRnA is set.

• Bit 4 – RXENn: Receiver Enable n
Writing this bit to one enables the USART Receiver. The Receiver will override normal port oper-
ation for the RxDn pin when enabled. Disabling the Receiver will flush the receive buffer
invalidating the FEn, DORn, and UPEn Flags.

• Bit 3 – TXENn: Transmitter Enable n
Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port
operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to
zero) will not become effective until ongoing and pending transmissions are completed, i.e.,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-
mitted. When disabled, the Transmitter will no longer override the TxDn port.

• Bit 2 – UCSZn2: Character Size n
The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRnC sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 1 – RXB8n: Receive Data Bit 8 n
RXB8n is the ninth data bit of the received character when operating with serial frames with nine
data bits. Must be read before reading the low bits from UDRn.

• Bit 0 – TXB8n: Transmit Data Bit 8 n
TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. Must be written before writing the low bits to UDRn.

17.9.4 USART Control and Status Register n C – UCSRnC

• Bits 7:6 – UMSELn1:0 USART Mode Select
These bits select the mode of operation of the USARTn as shown in Table 17-4.

Note: 1. See ”USART in SPI Mode” on page 196 for full description of the Master SPI Mode (MSPIM)
operation

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 UPMn1 UPMn0 USBSn UCSZn1 UCSZn0 UCPOLn UCSRnC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 17-4. UMSELn Bits Settings

UMSELn1 UMSELn0 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 (Reserved)

1 1 Master SPI (MSPIM)(1)
189
2545E–AVR–02/05

After initialization the USART is ready for doing data transfers. A data transfer is initiated by writ-
ing to the UDRn I/O location. This is the case for both sending and receiving data since the
transmitter controls the transfer clock. The data written to UDRn is moved from the transmit
buffer to the shift register when the shift register is ready to send a new frame.

Note: To keep the input buffer in sync with the number of data bytes transmitted, the UDRn register must
be read once for each byte transmitted. The input buffer operation is identical to normal USART
mode, i.e. if an overflow occurs the character last received will be lost, not the first data in the
buffer. This means that if four bytes are transferred, byte 1 first, then byte 2, 3, and 4, and the
UDRn is not read before all transfers are completed, then byte 3 to be received will be lost, and not
byte 1.

The following code examples show a simple USART in MSPIM mode transfer function based on
polling of the Data Register Empty (UDREn) Flag and the Receive Complete (RXCn) Flag. The
USART has to be initialized before the function can be used. For the assembly code, the data to
be sent is assumed to be stored in Register R16 and the data received will be available in the
same register (R16) after the function returns.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,
before loading it with new data to be transmitted. The function then waits for data to be present
in the receive buffer by checking the RXCn Flag, before reading the buffer and returning the
value.
200
2545E–AVR–02/05

ATmega48/88/168

ATmega48/88/168
21.4.1 ADC Input Channels
When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the conversion to complete before changing the channel selection.

In Free Running mode, always select the channel before starting the first conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the first conversion to complete, and then change the channel
selection. Since the next conversion has already started automatically, the next result will reflect
the previous channel selection. Subsequent conversions will reflect the new channel selection.

21.4.2 ADC Voltage Reference
The reference voltage for the ADC (VREF) indicates the conversion range for the ADC. Single
ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as
either AVCC, internal 1.1V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 1.1V reference is gener-
ated from the internal bandgap reference (VBG) through an internal amplifier. In either case, the
external AREF pin is directly connected to the ADC, and the reference voltage can be made
more immune to noise by connecting a capacitor between the AREF pin and ground. VREF can
also be measured at the AREF pin with a high impedant voltmeter. Note that VREF is a high
impedant source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other
reference voltage options in the application, as they will be shorted to the external voltage. If no
external voltage is applied to the AREF pin, the user may switch between AVCC and 1.1V as ref-
erence selection. The first ADC conversion result after switching reference voltage source may
be inaccurate, and the user is advised to discard this result.

21.5 ADC Noise Canceler
The ADC features a noise canceler that enables conversion during sleep mode to reduce noise
induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC
Noise Reduction and Idle mode. To make use of this feature, the following procedure should be
used:

a. Make sure that the ADC is enabled and is not busy converting. Single Conversion
mode must be selected and the ADC conversion complete interrupt must be enabled.

b. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
once the CPU has been halted.

c. If no other interrupts occur before the ADC conversion completes, the ADC interrupt
will wake up the CPU and execute the ADC Conversion Complete interrupt routine. If
another interrupt wakes up the CPU before the ADC conversion is complete, that
interrupt will be executed, and an ADC Conversion Complete interrupt request will be
generated when the ADC conversion completes. The CPU will remain in active mode
until a new sleep command is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption.
245
2545E–AVR–02/05

ATmega48/88/168
Note: 1. Z15:Z14: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See ”Addressing the Flash During Self-Programming” on page 270 for details about the use of
Z-pointer during Self-Programming.

Table 24-11. Explanation of Different Variables used in Figure 24-3 and the Mapping to the Z-
pointer, ATmega168

Variable
Corresponding

Z-value(1) Description

PCMSB 12
Most significant bit in the Program Counter. (The
Program Counter is 12 bits PC[11:0])

PAGEMSB 5
Most significant bit which is used to address
the words within one page (64 words in a page
requires 6 bits PC [5:0])

ZPCMSB Z13
Bit in Z-register that is mapped to PCMSB. Because
Z0 is not used, the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6
Bit in Z-register that is mapped to PAGEMSB.
Because Z0 is not used, the ZPAGEMSB equals
PAGEMSB + 1.

PCPAGE PC[12:6] Z13:Z7
Program counter page address: Page select, for
page erase and page write

PCWORD PC[5:0] Z6:Z1
Program counter word address: Word select, for
filling temporary buffer (must be zero during page
write operation)
279
2545E–AVR–02/05

25.4 Calibration Byte
The ATmega48/88/168 has a byte calibration value for the internal RC Oscillator. This byte
resides in the high byte of address 0x000 in the signature address space. During reset, this byte
is automatically written into the OSCCAL Register to ensure correct frequency of the calibrated
RC Oscillator.

25.5 Page Size

25.6 Parallel Programming Parameters, Pin Mapping, and Commands
This section describes how to parallel program and verify Flash Program memory, EEPROM
Data memory, Memory Lock bits, and Fuse bits in the ATmega48/88/168. Pulses are assumed
to be at least 250 ns unless otherwise noted.

25.6.1 Signal Names
In this section, some pins of the ATmega48/88/168 are referenced by signal names describing
their functionality during parallel programming, see Figure 25-1 and Table 25-10. Pins not
described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse.
The bit coding is shown in Table 25-12.

When pulsing WR or OE, the command loaded determines the action executed. The different
Commands are shown in Table 25-13.

Table 25-8. No. of Words in a Page and No. of Pages in the Flash

Device Flash Size Page Size PCWORD
No. of
Pages PCPAGE PCMSB

ATmega48
2K words
(4K bytes)

32 words PC[4:0] 64 PC[10:5] 10

ATmega88
4K words
(8K bytes)

32 words PC[4:0] 128 PC[11:5] 11

ATmega168
8K words
(16K bytes)

64 words PC[5:0] 128 PC[12:6] 12

Table 25-9. No. of Words in a Page and No. of Pages in the EEPROM

Device
EEPROM

Size
Page
Size PCWORD

No. of
Pages PCPAGE EEAMSB

ATmega48 256 bytes 4 bytes EEA[1:0] 64 EEA[7:2] 7

ATmega88 512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8

ATmega168 512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8
284
2545E–AVR–02/05

ATmega48/88/168

5. E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS1 to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY
goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 25-4 for
signal waveforms).

Figure 25-4. Programming the EEPROM Waveforms

25.7.6 Reading the Flash
The algorithm for reading the Flash memory is as follows (refer to ”Programming the Flash” on
page 287 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.

5. Set BS1 to “1”. The Flash word high byte can now be read at DATA.

6. Set OE to “1”.

25.7.7 Reading the EEPROM
The algorithm for reading the EEPROM memory is as follows (refer to ”Programming the Flash”
on page 287 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE to “1”.

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K

290
2545E–AVR–02/05

ATmega48/88/168

ATmega48/88/168
Notes: 1. tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits
commands.

2. tWLRH_CE is valid for the Chip Erase command.

25.8 Serial Downloading
Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while
RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (out-
put). After RESET is set low, the Programming Enable instruction needs to be executed first
before program/erase operations can be executed. NOTE, in Table 25-15 on page 296, the pin
mapping for SPI programming is listed. Not all parts use the SPI pins dedicated for the internal
SPI interface.

Figure 25-10. Serial Programming and Verify(1)

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to the
XTAL1 pin.

2. VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 1.8 - 5.5V

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming
operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase
instruction. The Chip Erase operation turns the content of every memory location in both the
Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods
for the serial clock (SCK) input are defined as follows:

Low: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

High: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns

Table 25-14. Parallel Programming Characteristics, VCC = 5V ± 10% (Continued)

Symbol Parameter Min Typ Max Units

VCC

GND

XTAL1

SCK

MISO

MOSI

RESET

+1.8 - 5.5V

AVCC

+1.8 - 5.5V(2)
295
2545E–AVR–02/05

Figure 26-2. Maximum Frequency vs. VCC, ATmega48V/88V/168V

Figure 26-3. Maximum Frequency vs. VCC, ATmega48/88/168

26.6 2-wire Serial Interface Characteristics
Table 26-2 describes the requirements for devices connected to the 2-wire Serial Bus. The ATmega48/88/168 2-wire Serial
Interface meets or exceeds these requirements under the noted conditions.

Timing symbols refer to Figure 26-4.

10 MHz

4 MHz

1.8V 2.7V 5.5V

Safe Operating Area

20 MHz

10 MHz

2.7V 4.5V 5.5V

Safe Operating Area

Table 26-2. 2-wire Serial Bus Requirements

Symbol Parameter Condition Min Max Units

VIL Input Low-voltage -0.5 0.3 VCC V

VIH Input High-voltage 0.7 VCC VCC + 0.5 V

Vhys
(1) Hysteresis of Schmitt Trigger Inputs 0.05 VCC

(2) – V

VOL
(1) Output Low-voltage 3 mA sink current 0 0.4 V

tr
(1) Rise Time for both SDA and SCL 20 + 0.1Cb

(3)(2) 300 ns

tof
(1) Output Fall Time from VIHmin to VILmax 10 pF < Cb < 400 pF(3) 20 + 0.1Cb

(3)(2) 250 ns

tSP
(1) Spikes Suppressed by Input Filter 0 50(2) ns

Ii Input Current each I/O Pin 0.1VCC < Vi < 0.9VCC -10 10 µA
302
2545E–AVR–02/05

ATmega48/88/168

It is possible to calculate the typical current consumption based on the numbers from Table 2 for
other VCC and frequency settings than listed in Table 1.

27.3.0.1 Example 1
Calculate the expected current consumption in idle mode with USART0, TIMER1, and TWI
enabled at VCC = 3.0V and F = 1MHz. From Table 2, third column, we see that we need to add
18% for the USART0, 26% for the TWI, and 11% for the TIMER1 module. Reading from Figure
3, we find that the idle current consumption is ~0,075mA at VCC = 3.0V and F = 1MHz. The total
current consumption in idle mode with USART0, TIMER1, and TWI enabled, gives:

27.3.0.2 Example 2
Same conditions as in example 1, but in active mode instead. From Table 2, second column we
see that we need to add 3.3% for the USART0, 4.8% for the TWI, and 2.0% for the TIMER1
module. Reading from Figure 1, we find that the active current consumption is ~0,42mA at VCC =
3.0V and F = 1MHz. The total current consumption in idle mode with USART0, TIMER1, and
TWI enabled, gives:

27.3.0.3 Example 3
All I/O modules should be enabled. Calculate the expected current consumption in active mode
at VCC = 3.6V and F = 10MHz. We find the active current consumption without the I/O modules
to be ~ 4.0mA (from Figure 2). Then, by using the numbers from Table 2 - second column, we
find the total current consumption:

Table 27-2. Additional Current Consumption (percentage) in Active and Idle mode

PRR bit

Additional Current consumption
compared to Active with external
clock
(see Figure 27-1 and Figure 27-2)

Additional Current consumption
compared to Idle with external clock
(see Figure 27-7 and Figure 27-8)

PRUSART0 3.3% 18%

PRTWI 4.8% 26%

PRTIM2 4.7% 25%

PRTIM1 2.0% 11%

PRTIM0 1.6% 8.5%

PRSPI 6.1% 33%

PRADC 4.9% 26%

ICCtotal 0.075mA 1 0.18 0.26 0.11+ + +()• 0.116mA≈ ≈

ICCtotal 0.42mA 1 0.033 0.048 0.02+ + +()• 0.46mA≈ ≈

ICCtotal 4.0mA 1 0.033 0.048 0.047 0.02 0.016 0.061 0.049+ + + + + + +()• 5.1mA≈ ≈
314
2545E–AVR–02/05

ATmega48/88/168

Figure 27-27. I/O Pin Sink Current vs. Output Voltage (VCC = 1.8V)

27.9 Pin Thresholds and Hysteresis

Figure 27-28. I/O Pin Input Threshold Voltage vs. VCC (VIH, I/O Pin Read As '1')

I/O PIN SINK CURRENT vs. OUTPUT VOLTAGE
VCC = 1.8V

85 °C

25 °C

-40 °C

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOL (V)

I O
L

(m
A

)

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC

VIH, IO PIN READ AS '1'

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
sh

o
ld

 (
V

)

322
2545E–AVR–02/05

ATmega48/88/168

352
2545E–AVR–02/05

ATmega48/88/168

17.10Examples of Baud Rate Setting ..191

18 USART in SPI Mode ... 196

18.1Overview ...196

18.2Clock Generation ...196

18.3SPI Data Modes and Timing ...197

18.4Frame Formats ..198

18.5Data Transfer ..199

18.6USART MSPIM Register Description ..201

18.7AVR USART MSPIM vs. AVR SPI ..204

19 2-wire Serial Interface .. 205

19.1Features ..205

19.22-wire Serial Interface Bus Definition ..205

19.3Data Transfer and Frame Format ..206

19.4Multi-master Bus Systems, Arbitration and Synchronization209

19.5Overview of the TWI Module ...211

19.6TWI Register Description ..213

19.7Using the TWI ..217

19.8Transmission Modes ...221

19.9Multi-master Systems and Arbitration ..234

20 Analog Comparator ... 235

20.1Analog Comparator Multiplexed Input ...237

21 Analog-to-Digital Converter .. 239

21.1Features ..239

21.2Starting a Conversion ..241

21.3Prescaling and Conversion Timing ..242

21.4Changing Channel or Reference Selection ...244

21.5ADC Noise Canceler ...245

21.6ADC Conversion Result ..250

22 debugWIRE On-chip Debug System .. 255

22.1Features ..255

22.2Overview ...255

22.3Physical Interface ..255

22.4Software Break Points ...256

22.5Limitations of debugWIRE ...256
iv
2545E–AVR–02/05

