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resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

The various special features of Port D are elaborated in ”Alternate Functions of Port D” on page
78.

2.3.7 AVCC

AVCC is the supply voltage pin for the A/D Converter, PC3..0, and ADC7..6. It should be exter-
nally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected
to VCC through a low-pass filter. Note that PC6..4 use digital supply voltage, VCC.

2.3.8 AREF
AREF is the analog reference pin for the A/D Converter.

2.3.9 ADC7..6 (TQFP and QFN/MLF Package Only)
In the TQFP and QFN/MLF package, ADC7..6 serve as analog inputs to the A/D converter.
These pins are powered from the analog supply and serve as 10-bit ADC channels.

3. About Code Examples 
This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.
6
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ATmega48/88/168
4.5.1 The X-register, Y-register, and Z-register
The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 4-3.

Figure 4-3. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

4.6 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x0100, preferably RAMEND. The Stack Pointer is decremented by one when data
is pushed onto the Stack with the PUSH instruction, and it is decremented by two when the
return address is pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is
incremented by one when data is popped from the Stack with the POP instruction, and it is incre-
mented by two when data is popped from the Stack with return from subroutine RET or return
from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Bit 15 14 13 12 11 10 9 8

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND
11
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Figure 5-1. Program Memory Map, ATmega48

Figure 5-2. Program Memory Map, ATmega88 and ATmega168
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0x0000
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ATmega48/88/168
5.3.2 The EEPROM Address Register – EEARH and EEARL

• Bits 15..9 – Res: Reserved Bits
These bits are reserved bits in the ATmega48/88/168 and will always read as zero.

• Bits 8..0 – EEAR8..0: EEPROM Address
The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address in the
256/512/512 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0
and 255/511/511. The initial value of EEAR is undefined. A proper value must be written before
the EEPROM may be accessed.

EEAR8 is an unused bit in ATmega48 and must always be written to zero.

5.3.3 The EEPROM Data Register – EEDR

• Bits 7..0 – EEDR7.0: EEPROM Data
For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

5.3.4 The EEPROM Control Register – EECR

• Bits 7..6 – Res: Reserved Bits
These bits are reserved bits in the ATmega48/88/168 and will always read as zero.

• Bits 5, 4 – EEPM1 and EEPM0: EEPROM Programming Mode Bits
The EEPROM Programming mode bit setting defines which programming action that will be trig-
gered when writing EEPE. It is possible to program data in one atomic operation (erase the old
value and program the new value) or to split the Erase and Write operations in two different
operations. The Programming times for the different modes are shown in Table 5-1. While EEPE

Bit 15 14 13 12 11 10 9 8

– – – – – – – EEAR8 EEARH

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – EEPM1 EEPM0 EERIE EEMPE EEPE EERE EECR

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 X X 0 0 X 0
19
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ATmega48/88/168
7. Power Management and Sleep Modes
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one and a
SLEEP instruction must be executed. The SM2, SM1, and SM0 bits in the SMCR Register select
which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-save, or Standby) will be
activated by the SLEEP instruction. See Table 7-1 for a summary. If an enabled interrupt occurs
while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in
addition to the start-up time, executes the interrupt routine, and resumes execution from the
instruction following SLEEP. The contents of the Register File and SRAM are unaltered when
the device wakes up from sleep. If a reset occurs during sleep mode, the MCU wakes up and
executes from the Reset Vector. 

Figure 6-1 on page 25 presents the different clock systems in the ATmega48/88/168, and their
distribution. The figure is helpful in selecting an appropriate sleep mode.

7.0.1 Sleep Mode Control Register – SMCR
The Sleep Mode Control Register contains control bits for power management.

• Bits 7..4 Res: Reserved Bits
These bits are unused bits in the ATmega48/88/168, and will always read as zero.

• Bits 3..1 – SM2..0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 7-1.

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

• Bit 0 – SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s

Bit 7 6 5 4 3 2 1 0

– – – – SM2 SM1 SM0 SE SMCR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 7-1. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 Reserved
37
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ATmega48/88/168
;

0x0033RESET: ldi r16, high(RAMEND); Main program start

0x0034 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0035 ldi r16, low(RAMEND)

0x0036 out SPL,r16

0x0037 sei ; Enable interrupts

0x0038 <instr>  xxx

  ...  ...    ...  ... 

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and
general program setup for the Reset and Interrupt Vector Addresses in ATmega168 is:

Address Labels Code Comments

0x0000 RESET: ldi r16,high(RAMEND); Main program start

0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0002 ldi r16,low(RAMEND)

0x0003 out SPL,r16
0x0004 sei ; Enable interrupts

0x0005 <instr>  xxx

;

.org 0xC02

0x1C02 jmp EXT_INT0 ; IRQ0 Handler

0x1C04 jmp EXT_INT1 ; IRQ1 Handler

... ... ... ; 

0x1C32 jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2K bytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses in ATmega168
is:

Address Labels Code Comments

.org 0x0002

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp EXT_INT1 ; IRQ1 Handler

... ... ... ; 

0x0032 jmp SPM_RDY ; Store Program Memory Ready Handler

;

.org 0x1C00
0x1C00 RESET: ldi r16,high(RAMEND); Main program start

0x1C01 out SPH,r16 ; Set Stack Pointer to top of RAM

0x1C02 ldi r16,low(RAMEND)

0x1C03 out SPL,r16
0x1C04 sei ; Enable interrupts

0x1C05 <instr>  xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the IVSEL
bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general
program setup for the Reset and Interrupt Vector Addresses in ATmega168 is:
61
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11.1.1 External Interrupt Control Register A – EICRA
The External Interrupt Control Register A contains control bits for interrupt sense control.

• Bit 7..4 – Res: Reserved Bits
These bits are unused bits in the ATmega48/88/168, and will always read as zero.

• Bit 3, 2 – ISC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0
The External Interrupt 1 is activated by the external pin INT1 if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INT1 pin that activate the
interrupt are defined in Table 11-1. The value on the INT1 pin is sampled before detecting
edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level
interrupt is selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt.

• Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0
The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INT0 pin that activate the
interrupt are defined in Table 11-2. The value on the INT0 pin is sampled before detecting
edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level
interrupt is selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt.

Bit 7 6 5 4 3 2 1 0

– – – – ISC11 ISC10 ISC01 ISC00 EICRA

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 11-1. Interrupt 1 Sense Control

ISC11 ISC10 Description

0 0 The low level of INT1 generates an interrupt request.

0 1 Any logical change on INT1 generates an interrupt request.

1 0 The falling edge of INT1 generates an interrupt request.

1 1 The rising edge of INT1 generates an interrupt request.

Table 11-2. Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.

0 1 Any logical change on INT0 generates an interrupt request.

1 0 The falling edge of INT0 generates an interrupt request.

1 1 The rising edge of INT0 generates an interrupt request.
84
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ATmega48/88/168
• Bit 0 – TOV0: Timer/Counter0 Overflow Flag
The bit TOV0 is set when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by
writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Interrupt
Enable), and TOV0 are set, the Timer/Counter0 Overflow interrupt is executed.

The setting of this flag is dependent of the WGM02:0 bit setting. Refer to Table 12-8, ”Waveform
Generation Mode Bit Description” on page 101.
105
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13. 16-bit Timer/Counter1 with PWM
The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement. The main features are:

• True 16-bit Design (i.e., Allows 16-bit PWM)
• Two independent Output Compare Units
• Double Buffered Output Compare Registers
• One Input Capture Unit
• Input Capture Noise Canceler
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• External Event Counter
• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

13.1 Overview
Most register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, and a lower case “x” replaces the Output Compare unit
channel. However, when using the register or bit defines in a program, the precise form must be
used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on. 

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 13-1. For the actual
placement of I/O pins, refer to ”Pinout ATmega48/88/168” on page 2. CPU accessible I/O Regis-
ters, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit
locations are listed in the ”16-bit Timer/Counter Register Description” on page 128.

The PRTIM1 bit in ”Power Reduction Register - PRR” on page 40 must be written to zero to
enable Timer/Counter1 module.
106
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Note: 1. See ”About Code Examples” on page 6.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” 
instructions must be replaced with instructions that allow access to extended I/O. Typically 
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

The following code examples show how to do an atomic write of the TCNT1 Register contents.
Writing any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Example(1)

TIM16_ReadTCNT1:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNT1( void )
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNT1 into i */
i = TCNT1;
/* Restore global interrupt flag */

SREG = sreg;

return i;

}

110
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ATmega48/88/168
cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICF1 Flag is not required (if an interrupt handler is used).

13.6 Output Compare Units
The 16-bit comparator continuously compares TCNT1 with the Output Compare Register
(OCR1x). If TCNT equals OCR1x the comparator signals a match. A match will set the Output
Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x = 1), the Output Com-
pare Flag generates an Output Compare interrupt. The OCF1x Flag is automatically cleared
when the interrupt is executed. Alternatively the OCF1x Flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the Waveform Generation mode
(WGM13:0) bits and Compare Output mode (COM1x1:0) bits. The TOP and BOTTOM signals
are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation (See Section “13.8” on page 118.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e.,
counter resolution). In addition to the counter resolution, the TOP value defines the period time
for waveforms generated by the Waveform Generator.

Figure 13-4 shows a block diagram of the Output Compare unit. The small “n” in the register and
bit names indicates the device number (n = 1 for Timer/Counter 1), and the “x” indicates Output
Compare unit (A/B). The elements of the block diagram that are not directly a part of the Output
Compare unit are gray shaded.

Figure 13-4. Output Compare Unit, Block Diagram

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCR1x Com-
pare Register to either TOP or BOTTOM of the counting sequence. The synchronization

OCFnx (Int.Req.)

= (16-bit Comparator )

OCRnx  Buffer (16-bit Register)

OCRnxH Buf. (8-bit)

OCnx

TEMP (8-bit)

DATA BUS (8-bit)

OCRnxL Buf. (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

COMnx1:0WGMn3:0

OCRnx (16-bit Register)

OCRnxH (8-bit) OCRnxL (8-bit)

Waveform Generator
TOP

BOTTOM
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ATmega48/88/168
to be written anytime. When the OCR1A I/O location is written the value written will be put into
the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is done
at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.
Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM1x1:0 to three (see Table  on page 128). The actual OC1x
value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at
the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COM1x1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC1A to toggle its logical level on each compare match (COM1A1:0 = 1). This applies only
if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will have
a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). This feature is
similar to the OC1A toggle in CTC mode, except the double buffer feature of the Output Com-
pare unit is enabled in the fast PWM mode.

13.8.4 Phase Correct PWM Mode
The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is
cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the
compare match while downcounting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined
by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to

fOCnxPWM
fclk_I/O

N 1 TOP+( )⋅
-----------------------------------=
121
2545E–AVR–02/05



ATmega48/88/168
14. Timer/Counter0 and Timer/Counter1 Prescalers
”8-bit Timer/Counter0 with PWM” on page 88 and ”16-bit Timer/Counter1 with PWM” on page
106 share the same prescaler module, but the Timer/Counters can have different prescaler set-
tings. The description below applies to both Timer/Counter1 and Timer/Counter0.

14.0.1 Internal Clock Source
The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used as a
clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or
fCLK_I/O/1024.

14.0.2 Prescaler Reset
The prescaler is free running, i.e., operates independently of the Clock Select logic of the
Timer/Counter, and it is shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is
not affected by the Timer/Counter’s clock select, the state of the prescaler will have implications
for situations where a prescaled clock is used. One example of prescaling artifacts occurs when
the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock
cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system
clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is
connected to.

14.0.3 External Clock Source
An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock
(clkT1/clkT0). The T1/T0 pin is sampled once every system clock cycle by the pin synchronization
logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 14-1
shows a functional equivalent block diagram of the T1/T0 synchronization and edge detector
logic. The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch
is transparent in the high period of the internal system clock.

The edge detector generates one clkT1/clkT0 pulse for each positive (CSn2:0 = 7) or negative
(CSn2:0 = 6) edge it detects.

Figure 14-1. T1/T0 Pin Sampling

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the T1/T0 pin to the counter is updated.

Tn_sync
(To Clock
Select Logic)

Edge DetectorSynchronization
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D QTn
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nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames. When
the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the
frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a
master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular slave MCU has been addressed, it will receive the following data
frames as normal, while the other slave MCUs will ignore the received frames until another
address frame is received.

17.8.1 Using MPCMn
For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn = 7). The
ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame
(TXB = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit character
frame format. 

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in
UCSRnA is set).

2. The Master MCU sends an address frame, and all slaves receive and read this frame. In 
the Slave MCUs, the RXCn Flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If so, 
it clears the MPCMn bit in UCSRnA, otherwise it waits for the next address byte and 
keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is received. 
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU sets 
the MPCMn bit and waits for a new address frame from master. The process then 
repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes full-
duplex operation difficult since the Transmitter and Receiver uses the same character size set-
ting. If 5- to 8-bit character frames are used, the Transmitter must be set to use two stop bit
(USBSn = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit. The
MPCMn bit shares the same I/O location as the TXCn Flag and this might accidentally be
cleared when using SBI or CBI instructions.
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• Bit 0 - UCPOLn: Clock Polarity
The UCPOLn bit sets the polarity of the XCKn clock. The combination of the UCPOLn and
UCPHAn bit settings determine the timing of the data transfer. Refer to the SPI Data Modes and
Timing section page 4 for details.

18.6.5 USART MSPIM Baud Rate Registers - UBRRnL and UBRRnH
The function and bit description of the baud rate registers in MSPI mode is identical to normal
USART operation. See “USART Baud Rate Registers – UBRRnL and UBRRnH” on page 191.

18.7 AVR USART MSPIM vs. AVR SPI
The USART in MSPIM mode is fully compatible with the AVR SPI regarding:

• Master mode timing diagram.

• The UCPOLn bit functionality is identical to the SPI CPOL bit.

• The UCPHAn bit functionality is identical to the SPI CPHA bit. 

• The UDORDn bit functionality is identical to the SPI DORD bit.

However, since the USART in MSPIM mode reuses the USART resources, the use of the
USART in MSPIM mode is somewhat different compared to the SPI. In addition to differences of
the control register bits, and that only master operation is supported by the USART in MSPIM
mode, the following features differ between the two modules:

• The USART in MSPIM mode includes (double) buffering of the transmitter. The SPI has no 
buffer.

• The USART in MSPIM mode receiver includes an additional buffer level.

• The SPI WCOL (Write Collision) bit is not included in USART in MSPIM mode.

• The SPI double speed mode (SPI2X) bit is not included. However, the same effect is achieved 
by setting UBRRn accordingly.

• Interrupt timing is not compatible.

• Pin control differs due to the master only operation of the USART in MSPIM mode.

A comparison of the USART in MSPIM mode and the SPI pins is shown in Table 18-4 on page
204.

Table 18-4. Comparison of USART in MSPIM mode and SPI pins.

USART_MSPIM  SPI  Comment

TxDn  MOSI  Master Out only

RxDn  MISO  Master In only

XCKn  SCK  (Functionally identical)

(N/A)  SS
 Not supported by USART in 
MSPIM
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19.3.4 Data Packet Format
All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and
an acknowledge bit. During a data transfer, the Master generates the clock and the START and
STOP conditions, while the Receiver is responsible for acknowledging the reception. An
Acknowledge (ACK) is signalled by the Receiver pulling the SDA line low during the ninth SCL
cycle. If the Receiver leaves the SDA line high, a NACK is signalled. When the Receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
Transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first. 

Figure 19-5. Data Packet Format

19.3.5 Combining Address and Data Packets into a Transmission
A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement
handshaking between the Master and the Slave. The Slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the
Slave, or the Slave needs extra time for processing between the data transmissions. The Slave
extending the SCL low period will not affect the SCL high period, which is determined by the
Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.

Figure 19-6 shows a typical data transmission. Note that several data bytes can be transmitted
between the SLA+R/W and the STOP condition, depending on the software protocol imple-
mented by the application software.

Figure 19-6. Typical Data Transmission
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;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24), 
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:
; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SELFPRGEN)
rcallDo_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcallDo_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SELFPRGEN)
rcallDo_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SELFPRGEN)
rcallDo_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcallDo_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
rjmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop
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shown below. Refer to Table 25-6 on page 282 for detailed description and mapping of the Fuse
High byte.

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM instruction
is executed within three cycles after the BLBSET and SELFPRGEN bits are set in the SPMCSR,
the value of the Extended Fuse byte (EFB) will be loaded in the destination register as shown
below. Refer to Table 25-4 on page 281 for detailed description and mapping of the Extended
Fuse byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

24.7.10 Preventing Flash Corruption
During periods of low VCC, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied. 

A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock 
bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage. 
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low VCC reset protection circuit can be 
used. If a reset occurs while a write operation is in progress, the write operation will be 
completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting 
the SPMCSR Register and thus the Flash from unintentional writes.

24.7.11 Programming Time for Flash when Using SPM
The calibrated RC Oscillator is used to time Flash accesses. Table 24-5 shows the typical pro-
gramming time for Flash accesses from the CPU.

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd – – – – EFB3 EFB2 EFB1 EFB0

Table 24-5. SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and 
write Lock bits by SPM)

3.7 ms 4.5 ms
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Note: a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data 
in, x = don’t care

25.9.2 SPI Serial Programming Characteristics
For characteristics of the SPI module see “SPI Timing Characteristics” on page 304.

Load EEPROM Memory 
Page (page access)

1100 0001 0000 0000 0000 00bb iiii iiii Load data i to EEPROM memory page 
buffer. After data is loaded, program 
EEPROM page.

Write EEPROM Memory 
Page (page access)

1100 0010 00xx xxaa bbbb bb00 xxxx xxxx
Write EEPROM page at address a:b.

Read Lock bits
0101 1000 0000 0000 xxxx xxxx xxoo oooo Read Lock bits. “0” = programmed, “1” 

= unprogrammed. See Table 25-1 on 
page 280 for details.

Write Lock bits
1010 1100 111x xxxx xxxx xxxx 11ii iiii Write Lock bits. Set bits = “0” to 

program Lock bits. See Table 25-1 on 
page 280 for details.

Read Signature Byte 0011 0000 000x xxxx xxxx xxbb oooo oooo Read Signature Byte o at address b.

Write Fuse bits
1010 1100 1010 0000 xxxx xxxx iiii iiii Set bits = “0” to program, “1” to 

unprogram. See Table XXX on page 
XXX for details.

Write Fuse High bits
1010 1100 1010 1000 xxxx xxxx iiii iiii Set bits = “0” to program, “1” to 

unprogram. See Table 21-1 on page 
244 for details.

Write Extended Fuse Bits
1010 1100 1010 0100 xxxx xxxx xxxx xxii Set bits = “0” to program, “1” to 

unprogram. See Table 25-4 on page 
281 for details.

Read Fuse bits
0101 0000 0000 0000 xxxx xxxx oooo oooo Read Fuse bits. “0” = programmed, “1” 

= unprogrammed. See Table XXX on 
page XXX for details.

Read Fuse High bits
0101 1000 0000 1000 xxxx xxxx oooo oooo Read Fuse High bits. “0” = pro-

grammed, “1” = unprogrammed. See 
Table 21-1 on page 244 for details.

Read Extended Fuse Bits
0101 0000 0000 1000 xxxx xxxx oooo oooo Read Extended Fuse bits. “0” = pro-

grammed, “1” = unprogrammed. See 
Table 25-4 on page 281 for details.

Read Calibration Byte 0011 1000 000x xxxx 0000 0000 oooo oooo Read Calibration Byte

Poll RDY/BSY
1111 0000 0000 0000 xxxx xxxx xxxx xxxo If o = “1”, a programming operation is 

still busy. Wait until this bit returns to 
“0” before applying another command.

Table 25-17. Serial Programming Instruction Set (Continued)

Instruction

Instruction Format

OperationByte 1 Byte 2 Byte 3 Byte4
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(0x7D) Reserved – – – – – – – –

(0x7C) ADMUX REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 250

(0x7B) ADCSRB – ACME – – – ADTS2 ADTS1 ADTS0 253

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 251

(0x79) ADCH ADC Data Register High byte 253

(0x78) ADCL ADC Data Register Low byte 253

(0x77) Reserved – – – – – – – –

(0x76) Reserved – – – – – – – –

(0x75) Reserved – – – – – – – –

(0x74) Reserved – – – – – – – –

(0x73) Reserved – – – – – – – –

(0x72) Reserved – – – – – – – –

(0x71) Reserved – – – – – – – –

(0x70) TIMSK2 – – – – – OCIE2B OCIE2A TOIE2 154

(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 133

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0 104

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 87

(0x6C) PCMSK1 – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 87

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 87

(0x6A) Reserved – – – – – – – –

(0x69) EICRA – – – – ISC11 ISC10 ISC01 ISC00 84

(0x68) PCICR – – – – – PCIE2 PCIE1 PCIE0

(0x67) Reserved – – – – – – – –

(0x66) OSCCAL Oscillator Calibration Register 32

(0x65) Reserved – – – – – – – –

(0x64) PRR PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0 PRADC 40

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – –

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 35

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 52

0x3F (0x5F) SREG I T H S V N Z C 9

0x3E (0x5E) SPH – – – – – (SP10) 5. SP9 SP8 11

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 11

0x3C (0x5C) Reserved – – – – – – – –

0x3B (0x5B) Reserved – – – – – – – –

0x3A (0x5A) Reserved – – – – – – – –

0x39 (0x59) Reserved – – – – – – – –

0x38 (0x58) Reserved – – – – – – – –

0x37 (0x57) SPMCSR SPMIE (RWWSB)5. – (RWWSRE)5. BLBSET PGWRT PGERS SELFPRGEN 269

0x36 (0x56) Reserved – – – – – – – –

0x35 (0x55) MCUCR – – – PUD – – IVSEL IVCE

0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF

0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 37

0x32 (0x52) Reserved – – – – – – – –

0x31 (0x51) Reserved – – – – – – – –

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 236

0x2F (0x4F) Reserved – – – – – – – –

0x2E (0x4E) SPDR  SPI Data Register 166

0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X 166

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 164

0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 24

0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 24

0x29 (0x49) Reserved – – – – – – – –

0x28 (0x48) OCR0B  Timer/Counter0 Output Compare Register B

0x27 (0x47) OCR0A  Timer/Counter0 Output Compare Register A

0x26 (0x46) TCNT0  Timer/Counter0 (8-bit)

0x25 (0x45) TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00

0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00

0x23 (0x43) GTCCR TSM – – – – – PSRASY PSRSYNC 137/158 

0x22 (0x42) EEARH (EEPROM Address Register High Byte) 5. 19

0x21 (0x41) EEARL EEPROM Address Register Low Byte 19

0x20 (0x40) EEDR EEPROM Data Register 19

0x1F (0x3F) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE 19

0x1E (0x3E) GPIOR0 General Purpose I/O Register 0 24

0x1D (0x3D) EIMSK – – – – – – INT1 INT0 85

0x1C (0x3C) EIFR – – – – – – INTF1 INTF0 85

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
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