
Microchip Technology - ATMEGA48-20AJ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 4KB (2K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega48-20aj

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega48-20aj-4427434
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega48/88/168
8. System Control and Reset

8.0.1 Resetting the AVR
During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. For the ATmega168, the instruction placed at the Reset Vector must be a
JMP – Absolute Jump – instruction to the reset handling routine. For the ATmega48 and
ATmega88, the instruction placed at the Reset Vector must be an RJMP – Relative Jump –
instruction to the reset handling routine. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these locations. This
is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in
the Boot section or vice versa (ATmega88/168 only). The circuit diagram in Figure 8-1 shows the
reset logic. Table 8-1 defines the electrical parameters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-
ferent selections for the delay period are presented in ”Clock Sources” on page 26.

8.0.2 Reset Sources
The ATmega48/88/168 has four sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer than
the minimum pulse length.

• Watchdog System Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog System Reset mode is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the Brown-out Reset
threshold (VBOT) and the Brown-out Detector is enabled.
43
2545E–AVR–02/05

ATmega48/88/168
;

0x0033RESET: ldi r16, high(RAMEND); Main program start

0x0034 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0035 ldi r16, low(RAMEND)

0x0036 out SPL,r16

0x0037 sei ; Enable interrupts

0x0038 <instr> xxx

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and
general program setup for the Reset and Interrupt Vector Addresses in ATmega168 is:

Address Labels Code Comments

0x0000 RESET: ldi r16,high(RAMEND); Main program start

0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0002 ldi r16,low(RAMEND)

0x0003 out SPL,r16
0x0004 sei ; Enable interrupts

0x0005 <instr> xxx

;

.org 0xC02

0x1C02 jmp EXT_INT0 ; IRQ0 Handler

0x1C04 jmp EXT_INT1 ; IRQ1 Handler

... ;

0x1C32 jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2K bytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses in ATmega168
is:

Address Labels Code Comments

.org 0x0002

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp EXT_INT1 ; IRQ1 Handler

... ;

0x0032 jmp SPM_RDY ; Store Program Memory Ready Handler

;

.org 0x1C00
0x1C00 RESET: ldi r16,high(RAMEND); Main program start

0x1C01 out SPH,r16 ; Set Stack Pointer to top of RAM

0x1C02 ldi r16,low(RAMEND)

0x1C03 out SPL,r16
0x1C04 sei ; Enable interrupts

0x1C05 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the IVSEL
bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general
program setup for the Reset and Interrupt Vector Addresses in ATmega168 is:
61
2545E–AVR–02/05

ATmega48/88/168
• Bit 0 – IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable
interrupts, as explained in the IVSEL description above. See Code Example below.

This bit is not available in ATmega48.

Assembly Code Example

Move_interrupts:

; Enable change of Interrupt Vectors

ldi r16, (1<<IVCE)

out MCUCR, r16

; Move interrupts to Boot Flash section

ldi r16, (1<<IVSEL)

out MCUCR, r16

ret

C Code Example

void Move_interrupts(void)

{

/* Enable change of Interrupt Vectors */

MCUCR = (1<<IVCE);

/* Move interrupts to Boot Flash section */

MCUCR = (1<<IVSEL);

}

63
2545E–AVR–02/05

10.3.4 Alternate Functions of Port D
The Port D pins with alternate functions are shown in Table 10-9.

The alternate pin configuration is as follows:

• AIN1/OC2B/PCINT23 – Port D, Bit 7
AIN1, Analog Comparator Negative Input. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the Analog
Comparator.

PCINT23: Pin Change Interrupt source 23. The PD7 pin can serve as an external interrupt
source.

• AIN0/OC0A/PCINT22 – Port D, Bit 6
AIN0, Analog Comparator Positive Input. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the Analog
Comparator.

OC0A, Output Compare Match output: The PD6 pin can serve as an external output for the
Timer/Counter0 Compare Match A. The PD6 pin has to be configured as an output (DDD6 set
(one)) to serve this function. The OC0A pin is also the output pin for the PWM mode timer
function.

PCINT22: Pin Change Interrupt source 22. The PD6 pin can serve as an external interrupt
source.

Table 10-9. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7
AIN1 (Analog Comparator Negative Input)
PCINT23 (Pin Change Interrupt 23)

PD6
AIN0 (Analog Comparator Positive Input)
OC0A (Timer/Counter0 Output Compare Match A Output)
PCINT22 (Pin Change Interrupt 22)

PD5
T1 (Timer/Counter 1 External Counter Input)
OC0B (Timer/Counter0 Output Compare Match B Output)
PCINT21 (Pin Change Interrupt 21)

PD4
XCK (USART External Clock Input/Output)
T0 (Timer/Counter 0 External Counter Input)
PCINT20 (Pin Change Interrupt 20)

PD3
INT1 (External Interrupt 1 Input)
OC2B (Timer/Counter2 Output Compare Match B Output)
PCINT19 (Pin Change Interrupt 19)

PD2
INT0 (External Interrupt 0 Input)
PCINT18 (Pin Change Interrupt 18)

PD1
TXD (USART Output Pin)
PCINT17 (Pin Change Interrupt 17)

PD0
RXD (USART Input Pin)
PCINT16 (Pin Change Interrupt 16)
78
2545E–AVR–02/05

ATmega48/88/168

12. 8-bit Timer/Counter0 with PWM
Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output
Compare Units, and with PWM support. It allows accurate program execution timing (event man-
agement) and wave generation. The main features are:

• Two Independent Output Compare Units
• Double Buffered Output Compare Registers
• Clear Timer on Compare Match (Auto Reload)
• Glitch Free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• Three Independent Interrupt Sources (TOV0, OCF0A, and OCF0B)

12.1 Overview
A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 12-1. For the actual
placement of I/O pins, refer to ”Pinout ATmega48/88/168” on page 2. CPU accessible I/O Regis-
ters, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit
locations are listed in the ”8-bit Timer/Counter Register Description” on page 99.

The PRTIM0 bit in ”Power Reduction Register - PRR” on page 40 must be written to zero to
enable Timer/Counter0 module.

Figure 12-1. 8-bit Timer/Counter Block Diagram

Clock Select

Timer/Counter

D
AT

A
 B

U
S

OCRnA

OCRnB

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

=

Fixed
TOP

Value

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

TCCRnA TCCRnB

Tn
Edge

Detector

(From Prescaler)

clkTn
88
2545E–AVR–02/05

ATmega48/88/168

15.10 Timer/Counter Prescaler

Figure 15-12. Prescaler for Timer/Counter2

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main
system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously
clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter
(RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can
then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock
source for Timer/Counter2. The Oscillator is optimized for use with a 32.768 kHz crystal. Apply-
ing an external clock source to TOSC1 is not recommended.

For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64,
clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected.
Setting the PSRASY bit in GTCCR resets the prescaler. This allows the user to operate with a
predictable prescaler.

15.10.1 General Timer/Counter Control Register – GTCCR

• Bit 1 – PSRASY: Prescaler Reset Timer/Counter2
When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared
immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous
mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by
hardware if the TSM bit is set. Refer to the description of the ”Bit 7 – TSM: Timer/Counter Syn-
chronization Mode” on page 137 for a description of the Timer/Counter Synchronization mode.

10-BIT T/C PRESCALER

TIMER/COUNTER2 CLOCK SOURCE

clkI/O clkT2S

TOSC1

AS2

CS20
CS21
CS22

cl
k T

2S
/8

cl
k T

2S
/6

4

cl
k T

2S
/1

28

cl
k T

2S
/1

02
4

cl
k T

2S
/2

56

cl
k T

2S
/3

2

0PSRASY

Clear

clkT2

Bit 7 6 5 4 3 2 1 0

TSM – – – – – PSRASY PSRSYNC GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
158
2545E–AVR–02/05

ATmega48/88/168

17.4 USART Initialization
The USART has to be initialized before any communication can take place. The initialization pro-
cess normally consists of setting the baud rate, setting frame format and enabling the
Transmitter or the Receiver depending on the usage. For interrupt driven USART operation, the
Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the
initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no
ongoing transmissions during the period the registers are changed. The TXCn Flag can be used
to check that the Transmitter has completed all transfers, and the RXC Flag can be used to
check that there are no unread data in the receive buffer. Note that the TXCn Flag must be
cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.
174
2545E–AVR–02/05

ATmega48/88/168

contains data to be transmitted that has not yet been moved into the Shift Register. For compat-
ibility with future devices, always write this bit to zero when writing the UCSRnA Register.

When the Data Register Empty Interrupt Enable (UDRIEn) bit in UCSRnB is written to one, the
USART Data Register Empty Interrupt will be executed as long as UDREn is set (provided that
global interrupts are enabled). UDREn is cleared by writing UDRn. When interrupt-driven data
transmission is used, the Data Register Empty interrupt routine must either write new data to
UDRn in order to clear UDREn or disable the Data Register Empty interrupt, otherwise a new
interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) Flag bit is set one when the entire frame in the Transmit Shift
Register has been shifted out and there are no new data currently present in the transmit buffer.
The TXCn Flag bit is automatically cleared when a transmit complete interrupt is executed, or it
can be cleared by writing a one to its bit location. The TXCn Flag is useful in half-duplex commu-
nication interfaces (like the RS-485 standard), where a transmitting application must enter
receive mode and free the communication bus immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USART
Transmit Complete Interrupt will be executed when the TXCn Flag becomes set (provided that
global interrupts are enabled). When the transmit complete interrupt is used, the interrupt han-
dling routine does not have to clear the TXCn Flag, this is done automatically when the interrupt
is executed.

17.5.4 Parity Generator
The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled
(UPMn1 = 1), the transmitter control logic inserts the parity bit between the last data bit and the
first stop bit of the frame that is sent.

17.5.5 Disabling the Transmitter
The disabling of the Transmitter (setting the TXEN to zero) will not become effective until ongo-
ing and pending transmissions are completed, i.e., when the Transmit Shift Register and
Transmit Buffer Register do not contain data to be transmitted. When disabled, the Transmitter
will no longer override the TxDn pin.

17.6 Data Reception – The USART Receiver
The USART Receiver is enabled by writing the Receive Enable (RXENn) bit in the
UCSRnB Register to one. When the Receiver is enabled, the normal pin operation of the RxDn
pin is overridden by the USART and given the function as the Receiver’s serial input. The baud
rate, mode of operation and frame format must be set up once before any serial reception can
be done. If synchronous operation is used, the clock on the XCKn pin will be used as transfer
clock.

17.6.1 Receiving Frames with 5 to 8 Data Bits
The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start
bit will be sampled at the baud rate or XCKn clock, and shifted into the Receive Shift Register
until the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver.
When the first stop bit is received, i.e., a complete serial frame is present in the Receive Shift
Register, the contents of the Shift Register will be moved into the receive buffer. The receive
buffer can then be read by reading the UDRn I/O location.
178
2545E–AVR–02/05

ATmega48/88/168

18. USART in SPI Mode
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) can be
set to a master SPI compliant mode of operation. The Master SPI Mode (MSPIM) has the follow-
ing features:

• Full Duplex, Three-wire Synchronous Data Transfer
• Master Operation
• Supports all four SPI Modes of Operation (Mode 0, 1, 2, and 3)
• LSB First or MSB First Data Transfer (Configurable Data Order)
• Queued Operation (Double Buffered)
• High Resolution Baud Rate Generator
• High Speed Operation (fXCKmax = fCK/2)
• Flexible Interrupt Generation

18.1 Overview
Setting both UMSELn1:0 bits to one enables the USART in MSPIM logic. In this mode of opera-
tion the SPI master control logic takes direct control over the USART resources. These
resources include the transmitter and receiver shift register and buffers, and the baud rate gen-
erator. The parity generator and checker, the data and clock recovery logic, and the RX and TX
control logic is disabled. The USART RX and TX control logic is replaced by a common SPI
transfer control logic. However, the pin control logic and interrupt generation logic is identical in
both modes of operation.

The I/O register locations are the same in both modes. However, some of the functionality of the
control registers changes when using MSPIM.

18.2 Clock Generation
The Clock Generation logic generates the base clock for the Transmitter and Receiver. For
USART MSPIM mode of operation only internal clock generation (i.e. master operation) is sup-
ported. The Data Direction Register for the XCKn pin (DDR_XCKn) must therefore be set to one
(i.e. as output) for the USART in MSPIM to operate correctly. Preferably the DDR_XCKn should
be set up before the USART in MSPIM is enabled (i.e. TXENn and RXENn bit set to one).

The internal clock generation used in MSPIM mode is identical to the USART synchronous mas-
ter mode. The baud rate or UBRRn setting can therefore be calculated using the same
equations, see Table 18-1:
196
2545E–AVR–02/05

ATmega48/88/168

ATmega48/88/168
Figure 19-10. TWI Address Match Logic, Block Diagram

• Bit 0 – Res: Reserved Bit
This bit is an unused bit in the ATmega48/88/168, and will always read as zero.

19.7 Using the TWI
The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,
the application software is free to carry on other operations during a TWI byte transfer. Note that
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in
SREG allow the application to decide whether or not assertion of the TWINT Flag should gener-
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT Flag in
order to detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current
state of the TWI bus. The application software can then decide how the TWI should behave in
the next TWI bus cycle by manipulating the TWCR and TWDR Registers.

Figure 19-11 is a simple example of how the application can interface to the TWI hardware. In
this example, a Master wishes to transmit a single data byte to a Slave. This description is quite
abstract, a more detailed explanation follows later in this section. A simple code example imple-
menting the desired behavior is also presented.

Address
Match

Address Bit Comparator 0

Address Bit Comparator 6..1

TWAR0

TWAMR0

Address
Bit 0
217
2545E–AVR–02/05

ATmega48/88/168
After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables
the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode with-
out losing control of the bus.

Table 19-3. Status codes for Master Transmitter Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR
STA STO TWIN

T
TWE

A
0x08 A START condition has been

transmitted
Load SLA+W 0 0 1 X SLA+W will be transmitted;

ACK or NOT ACK will be received
0x10 A repeated START condition

has been transmitted
Load SLA+W or

Load SLA+R

0

0

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to Master Receiver mode

0x18 SLA+W has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x20 SLA+W has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x28 Data byte has been transmit-
ted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x30 Data byte has been transmit-
ted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x38 Arbitration lost in SLA+W or
data bytes

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not addressed
Slave mode entered
A START condition will be transmitted when the bus
becomes free
223
2545E–AVR–02/05

ATmega48/88/168
Figure 19-15. Formats and States in the Master Receiver Mode

19.8.3 Slave Receiver Mode
In the Slave Receiver mode, a number of data bytes are received from a Master Transmitter
(see Figure 19-16). All the status codes mentioned in this section assume that the prescaler bits
are zero or are masked to zero.

Figure 19-16. Data transfer in Slave Receiver mode

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

S SLA R A DATA A

$08 $40 $50

SLA R

$10

A P

$48

A or A

$38

Other master
continues

$38

Other master
continues

W

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MR

MT

Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus. The
prescaler bits are zero or masked to zero

PDATA A

$58

A

RS

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE
value Device’s Own Slave Address

Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Device 2
MASTER

TRANSMITTER

Device 1
SLAVE

RECEIVER
227
2545E–AVR–02/05

20-2. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the Analog
Comparator.

20.1.1 Digital Input Disable Register 1 – DIDR1

• Bit 7..2 – Res: Reserved Bits
These bits are unused bits in the ATmega48/88/168, and will always read as zero.

• Bit 1, 0 – AIN1D, AIN0D: AIN1, AIN0 Digital Input Disable
When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corre-
sponding PIN Register bit will always read as zero when this bit is set. When an analog signal is
applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should be writ-
ten logic one to reduce power consumption in the digital input buffer.

Table 20-2. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

Bit 7 6 5 4 3 2 1 0

– – – – – – AIN1D AIN0D DIDR1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
238
2545E–AVR–02/05

ATmega48/88/168

ATmega48/88/168
23.1.1 Store Program Memory Control and Status Register – SPMCSR
The Store Program Memory Control and Status Register contains the control bits needed to con-
trol the Program memory operations.

• Bit 7 – SPMIE: SPM Interrupt Enable
When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM
ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SELF-
PRGEN bit in the SPMCSR Register is cleared. The interrupt will not be generated during
EEPROM write or SPM.

• Bit 6 – RWWSB: Read-While-Write Section Busy
This bit is for compatibility with devices supporting Read-While-Write. It will always read as zero
in ATmega48.

• Bit 5 – Res: Reserved Bit
This bit is a reserved bit in the ATmega48/88/168 and will always read as zero.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable
The functionality of this bit in ATmega48 is a subset of the functionality in ATmega88/168. If the
RWWSRE bit is written while filling the temporary page buffer, the temporary page buffer will be
cleared and the data will be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set
The functionality of this bit in ATmega48 is a subset of the functionality in ATmega88/168. An
LPM instruction within three cycles after BLBSET and SELFPRGEN are set in the SPMCSR
Register, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the
destination register. See ”Reading the Fuse and Lock Bits from Software” on page 260 for
details.

• Bit 2 – PGWRT: Page Write
If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four
clock cycles executes Page Write, with the data stored in the temporary buffer. The page
address is taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The
PGWRT bit will auto-clear upon completion of a Page Write, or if no SPM instruction is executed
within four clock cycles. The CPU is halted during the entire Page Write operation.

• Bit 1 – PGERS: Page Erase
If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four
clock cycles executes Page Erase. The page address is taken from the high part of the Z-
pointer. The data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a
Page Erase, or if no SPM instruction is executed within four clock cycles. The CPU is halted dur-
ing the entire Page Write operation.

Bit 7 6 5 4 3 2 1 0

SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SELFPRGEN SPMCSR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
259
2545E–AVR–02/05

ATmega48/88/168
the RWWSB by writing the RWWSRE. See ”Simple Assembly Code Example for a Boot Loader”
on page 275 for an example.

24.7.7 Setting the Boot Loader Lock Bits by SPM
To set the Boot Loader Lock bits, write the desired data to R0, write “X0001001” to SPMCSR
and execute SPM within four clock cycles after writing SPMCSR. The only accessible Lock bits
are the Boot Lock bits that may prevent the Application and Boot Loader section from any soft-
ware update by the MCU.

See Table 24-2 and Table 24-3 for how the different settings of the Boot Loader bits affect the
Flash access.

If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed if an
SPM instruction is executed within four cycles after BLBSET and SELFPRGEN are set in
SPMCSR. The Z-pointer is don’t care during this operation, but for future compatibility it is rec-
ommended to load the Z-pointer with 0x0001 (same as used for reading the lOck bits). For future
compatibility it is also recommended to set bits 7, 6, 1, and 0 in R0 to “1” when writing the Lock
bits. When programming the Lock bits the entire Flash can be read during the operation.

24.7.8 EEPROM Write Prevents Writing to SPMCSR
Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.

24.7.9 Reading the Fuse and Lock Bits from Software
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SELFPRGEN bits in SPMCSR. When an LPM
instruction is executed within three CPU cycles after the BLBSET and SELFPRGEN bits are set
in SPMCSR, the value of the Lock bits will be loaded in the destination register. The BLBSET
and SELFPRGEN bits will auto-clear upon completion of reading the Lock bits or if no LPM
instruction is executed within three CPU cycles or no SPM instruction is executed within four
CPU cycles. When BLBSET and SELFPRGEN are cleared, LPM will work as described in the
Instruction set Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SELFPRGEN bits in SPMCSR. When an LPM instruction is executed within three cycles
after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the Fuse Low byte
(FLB) will be loaded in the destination register as shown below. Refer to Table 25-5 on page 282
for a detailed description and mapping of the Fuse Low byte.

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM instruc-
tion is executed within three cycles after the BLBSET and SELFPRGEN bits are set in the
SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination register as

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 1 1

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0
273
2545E–AVR–02/05

ATmega48/88/168
Note: 1. Z15:Z14: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See ”Addressing the Flash During Self-Programming” on page 270 for details about the use of
Z-pointer during Self-Programming.

Table 24-11. Explanation of Different Variables used in Figure 24-3 and the Mapping to the Z-
pointer, ATmega168

Variable
Corresponding

Z-value(1) Description

PCMSB 12
Most significant bit in the Program Counter. (The
Program Counter is 12 bits PC[11:0])

PAGEMSB 5
Most significant bit which is used to address
the words within one page (64 words in a page
requires 6 bits PC [5:0])

ZPCMSB Z13
Bit in Z-register that is mapped to PCMSB. Because
Z0 is not used, the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6
Bit in Z-register that is mapped to PAGEMSB.
Because Z0 is not used, the ZPAGEMSB equals
PAGEMSB + 1.

PCPAGE PC[12:6] Z13:Z7
Program counter page address: Page select, for
page erase and page write

PCWORD PC[5:0] Z6:Z1
Program counter word address: Word select, for
filling temporary buffer (must be zero during page
write operation)
279
2545E–AVR–02/05

ATmega48/88/168
Note: 1. The default value of SUT1..0 results in maximum start-up time for the default clock source.
See Table 6-9 on page 32 for details.

2. The default setting of CKSEL3..0 results in internal RC Oscillator @ 8 MHz. See Table 6-8 on
page 31 for details.

3. The CKOUT Fuse allows the system clock to be output on PORTB0. See ”Clock Output Buffer”
on page 34 for details.

4. See ”System Clock Prescaler” on page 34 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if
Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

25.2.1 Latching of Fuses
The fuse values are latched when the device enters programming mode and changes of the
fuse values will have no effect until the part leaves Programming mode. This does not apply to
the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on
Power-up in Normal mode.

25.3 Signature Bytes
All Atmel microcontrollers have a three-byte signature code which identifies the device. This
code can be read in both serial and parallel mode, also when the device is locked. The three
bytes reside in a separate address space.

25.3.1 ATmega48 Signature Bytes

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x92 (indicates 4KB Flash memory).

3. 0x002: 0x05 (indicates ATmega48 device when 0x001 is 0x92).

25.3.2 ATmega88 Signature Bytes

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x93 (indicates 8KB Flash memory).

3. 0x002: 0x0A (indicates ATmega88 device when 0x001 is 0x93).

25.3.3 ATmega168 Signature Bytes

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x94 (indicates 16KB Flash memory).

3. 0x002: 0x06 (indicates ATmega168 device when 0x001 is 0x94).

Table 25-7. Fuse Low Byte

Low Fuse Byte Bit No Description Default Value

CKDIV8(4) 7 Divide clock by 8 0 (programmed)

CKOUT(3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select Clock source 0 (programmed)(2)

CKSEL2 2 Select Clock source 0 (programmed)(2)

CKSEL1 1 Select Clock source 1 (unprogrammed)(2)

CKSEL0 0 Select Clock source 0 (programmed)(2)
283
2545E–AVR–02/05

Figure 27-31. Reset Input Threshold Voltage vs. VCC (VIL, Reset Pin Read As '0')

Figure 27-32. Reset Input Pin Hysteresis vs. VCC

RESET INPUT THRESHOLD VOLTAGE vs. VCC

VIL, IO PIN READ AS '0'

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

sh
o
ld

 (
V

)

RESET PIN INPUT HYSTERESIS vs. VCC

 VIL

0

100

200

300

400

500

600

2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
pu

t
H

ys
te

re
si

s
(m

V
)

324
2545E–AVR–02/05

ATmega48/88/168

ATmega48/88/168
Figure 27-37. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC=5V)

Figure 27-38. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC=2.7V)

ANALOG COMPARATOR OFFSET VOLTAGE vs. COMMON MODE VOLTAGE
VCC =5V

-40 C

85 C

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Common Mode Voltage (V)

A
n

a
lo

g
 c

o
m

p
a

ra
to

r
o

ff
se

t
vo

lta
g

e
 (

V
)

ANALOG COMPARATOR OFFSET VOLTAGE vs. COMMON MODE VOLTAGE

VCC=2.7V

-40 C
85 C

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5

Common Mode Voltage (V)

A
na

lo
g

co
m

pa
ra

to
r

of
fs

et
 v

ol
ta

ge

(m
V

)

327
2545E–AVR–02/05

29. Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← 0xFF None 1

MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP(1) k Direct Jump PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

CALL(1) k Direct Subroutine Call PC ← k None 4

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2

BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2
338
2545E–AVR–02/05

ATmega48/88/168

