
Microchip Technology - ATMEGA48-20AU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 4KB (2K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega48-20au

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega48-20au-4385430
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


ATmega48/88/168
4.4 Status Register
The Status Register contains information about the result of the most recently executed arith-
metic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

The AVR Status Register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

• Bit 5 – H: Half Carry Flag 
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

Bit 7 6 5 4 3 2 1 0

I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
9
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• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

4.5 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 4-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4-2. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 4-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
10
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5.3.2 The EEPROM Address Register – EEARH and EEARL

• Bits 15..9 – Res: Reserved Bits
These bits are reserved bits in the ATmega48/88/168 and will always read as zero.

• Bits 8..0 – EEAR8..0: EEPROM Address
The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address in the
256/512/512 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0
and 255/511/511. The initial value of EEAR is undefined. A proper value must be written before
the EEPROM may be accessed.

EEAR8 is an unused bit in ATmega48 and must always be written to zero.

5.3.3 The EEPROM Data Register – EEDR

• Bits 7..0 – EEDR7.0: EEPROM Data
For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

5.3.4 The EEPROM Control Register – EECR

• Bits 7..6 – Res: Reserved Bits
These bits are reserved bits in the ATmega48/88/168 and will always read as zero.

• Bits 5, 4 – EEPM1 and EEPM0: EEPROM Programming Mode Bits
The EEPROM Programming mode bit setting defines which programming action that will be trig-
gered when writing EEPE. It is possible to program data in one atomic operation (erase the old
value and program the new value) or to split the Erase and Write operations in two different
operations. The Programming times for the different modes are shown in Table 5-1. While EEPE

Bit 15 14 13 12 11 10 9 8

– – – – – – – EEAR8 EEARH

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – EEPM1 EEPM0 EERIE EEMPE EEPE EERE EECR

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 X X 0 0 X 0
19
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When the write access time has elapsed, the EEPE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEPE has been set,
the CPU is halted for two cycles before the next instruction is executed.

• Bit 0 – EERE: EEPROM Read Enable
The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 5-2 lists the typical pro-
gramming time for EEPROM access from the CPU.

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling interrupts glo-
bally) so that no interrupts will occur during execution of these functions. The examples also
assume that no Flash Boot Loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

Table 5-2. EEPROM Programming Time

Symbol Number of Calibrated RC Oscillator Cycles Typ Programming Time

EEPROM write 
(from CPU)

26,368 3.3 ms
21
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8.2.1 Watchdog Timer Control Register - WDTCSR

• Bit 7 - WDIF: Watchdog Interrupt Flag
This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is config-
ured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit in
SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.

• Bit 6 - WDIE: Watchdog Interrupt Enable
When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt is
enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Interrupt
Mode, and the corresponding interrupt is executed if time-out in the Watchdog Timer occurs.

If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in
the Watchdog Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE
and WDIF automatically by hardware (the Watchdog goes to System Reset Mode). This is use-
ful for keeping the Watchdog Timer security while using the interrupt. To stay in Interrupt and
System Reset Mode, WDIE must be set after each interrupt. This should however not be done
within the interrupt service routine itself, as this might compromise the safety-function of the
Watchdog System Reset mode. If the interrupt is not executed before the next time-out, a Sys-
tem Reset will be applied.

• Bit 4 - WDCE: Watchdog Change Enable
This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit,
and/or change the prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

• Bit 3 - WDE: Watchdog System Reset Enable
WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is
set. To clear WDE, WDRF must be cleared first. This feature ensures multiple resets during con-
ditions causing failure, and a safe start-up after the failure.

Bit 7 6 5 4 3 2 1 0

WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 WDTCSR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X 0 0 0

Table 8-5. Watchdog Timer Configuration

WDTON WDE WDIE Mode Action on Time-out

0 0 0 Stopped None

0 0 1 Interrupt Mode Interrupt

0 1 0 System Reset Mode Reset

0 1 1
Interrupt and System Reset 
Mode

Interrupt, then go to System 
Reset Mode

1 x x System Reset Mode Reset
52
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13.7 Compare Match Output Unit
The Compare Output mode (COM1x1:0) bits have two functions. The Waveform Generator uses
the COM1x1:0 bits for defining the Output Compare (OC1x) state at the next compare match.
Secondly the COM1x1:0 bits control the OC1x pin output source. Figure 13-5 shows a simplified
schematic of the logic affected by the COM1x1:0 bit setting. The I/O Registers, I/O bits, and I/O
pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers
(DDR and PORT) that are affected by the COM1x1:0 bits are shown. When referring to the
OC1x state, the reference is for the internal OC1x Register, not the OC1x pin. If a system reset
occur, the OC1x Register is reset to “0”.

Figure 13-5. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform
Generator if either of the COM1x1:0 bits are set. However, the OC1x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. Refer to Table 13-1, Table 13-2 and Table 13-3 for
details.

The design of the Output Compare pin logic allows initialization of the OC1x state before the out-
put is enabled. Note that some COM1x1:0 bit settings are reserved for certain modes of
operation. See Section “13.10” on page 128.

The COM1x1:0 bits have no effect on the Input Capture unit.

13.7.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM1x1:0 = 0 tells the Waveform Generator that no action on the
OC1x Register is to be performed on the next compare match. For compare output actions in the
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Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and 
location of these bits are compatible with previous versions of the timer.

13.10.2 Timer/Counter1 Control Register B – TCCR1B

• Bit 7 – ICNC1: Input Capture Noise Canceler
Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is
activated, the input from the Input Capture pin (ICP1) is filtered. The filter function requires four
successive equal valued samples of the ICP1 pin for changing its output. The Input Capture is
therefore delayed by four Oscillator cycles when the noise canceler is enabled.

• Bit 6 – ICES1: Input Capture Edge Select
This bit selects which edge on the Input Capture pin (ICP1) that is used to trigger a capture
event. When the ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICES1 bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICES1 setting, the counter value is copied into the
Input Capture Register (ICR1). The event will also set the Input Capture Flag (ICF1), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

Table 13-4. Waveform Generation Mode Bit Description(1)

Mode WGM13
WGM12
(CTC1)

WGM11
(PWM11)

WGM10
(PWM10)

Timer/Counter Mode of 
Operation TOP

Update of 
OCR1x at

TOV1 Flag 
Set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF TOP TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF TOP TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF TOP TOP

8 1 0 0 0
PWM, Phase and Frequency 
Correct

ICR1 BOTTOM BOTTOM

9 1 0 0 1
PWM, Phase and Frequency 
Correct

OCR1A BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM

12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICR1 TOP TOP

15 1 1 1 1 Fast PWM OCR1A TOP TOP

Bit 7 6 5 4 3 2 1 0

ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
130
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• Bit 3 – OCR2AUB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set.
When OCR2A has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value.

• Bit 2 – OCR2BUB: Output Compare Register2 Update Busy
When Timer/Counter2 operates asynchronously and OCR2B is written, this bit becomes set.
When OCR2B has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR2B is ready to be updated with a new value.

• Bit 1 – TCR2AUB: Timer/Counter Control Register2 Update Busy
When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set.
When TCCR2A has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new
value.

• Bit 0 – TCR2BUB: Timer/Counter Control Register2 Update Busy
When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit becomes set.
When TCCR2B has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2B is ready to be updated with a new
value.

If a write is performed to any of the five Timer/Counter2 Registers while its update busy flag is
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B are different.
When reading TCNT2, the actual timer value is read. When reading OCR2A, OCR2B, TCCR2A
and TCCR2B the value in the temporary storage register is read.
157
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Figure 17-7. Stop Bit Sampling and Next Start Bit Sampling

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop
bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set. 

A new high to low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. For Normal Speed mode, the first low level sample can be at
point marked (A) in Figure 17-7. For Double Speed mode the first low level must be delayed to
(B). (C) marks a stop bit of full length. The early start bit detection influences the operational
range of the Receiver.

17.7.3 Asynchronous Operational Range
The operational range of the Receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too
slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see
Table 17-2) base frequency, the Receiver will not be able to synchronize the frames to the start
bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed
mode.

SF First sample number used for majority voting. SF = 8 for normal speed and SF = 4
for Double Speed mode.

SM Middle sample number used for majority voting. SM = 9 for normal speed and
SM = 5 for Double Speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. Rfast is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 17-2 and Table 17-3 list the maximum receiver baud rate error that can be tolerated. Note
that Normal Speed mode has higher toleration of baud rate variations.

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1

STOP 1

1 2 3 4 5 6 0/1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

(A) (B) (C)

Rslow
D 1+( )S

S 1– D S⋅ SF+ +
-------------------------------------------= Rfast

D 2+( )S
D 1+( )S SM+

-----------------------------------=
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depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.

Figure 19-3. START, REPEATED START and STOP conditions

19.3.3 Address Packet Format
All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address bits, one
READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read opera-
tion is to be performed, otherwise a write operation should be performed. When a Slave
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL
(ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the Mas-
ter’s request, the SDA line should be left high in the ACK clock cycle. The Master can then
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or
SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the
designer, but the address 0000 000 is reserved for a general call. 

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK
cycle. A general call is used when a Master wishes to transmit the same message to several
slaves in the system. When the general call address followed by a Write bit is transmitted on the
bus, all slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.
The following data packets will then be received by all the slaves that acknowledged the general
call. Note that transmitting the general call address followed by a Read bit is meaningless, as
this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 19-4. Address Packet Format

SDA

SCL

START STOPREPEATED STARTSTOP START

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK
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able. As long as the TWINT Flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

• After the TWI has transmitted a START/REPEATED START condition.

• After the TWI has transmitted SLA+R/W.

• After the TWI has transmitted an address byte.

• After the TWI has lost arbitration.

• After the TWI has been addressed by own slave address or general call.

• After the TWI has received a data byte.

• After a STOP or REPEATED START has been received while still addressed as a Slave.

• When a bus error has occurred due to an illegal START or STOP condition.

19.6 TWI Register Description

19.6.1 TWI Bit Rate Register – TWBR

• Bits 7..0 – TWI Bit Rate Register
TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency
divider which generates the SCL clock frequency in the Master modes. See ”Bit Rate Generator
Unit” on page 211 for calculating bit rates.

19.6.2 TWI Control Register – TWCR

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a
Master access by applying a START condition to the bus, to generate a Receiver acknowledge,
to generate a stop condition, and to control halting of the bus while the data to be written to the
bus are written to the TWDR. It also indicates a write collision if data is attempted written to
TWDR while the register is inaccessible.

• Bit 7 – TWINT: TWI Interrupt Flag
This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is stretched. The TWINT
Flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-
cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag
starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-
tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this
flag.

Bit 7 6 5 4 3 2 1 0

TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE TWCR
Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
213
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Figure 19-10. TWI Address Match Logic, Block Diagram

• Bit 0 – Res: Reserved Bit 
This bit is an unused bit in the ATmega48/88/168, and will always read as zero.

19.7 Using the TWI
The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,
the application software is free to carry on other operations during a TWI byte transfer. Note that
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in
SREG allow the application to decide whether or not assertion of the TWINT Flag should gener-
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT Flag in
order to detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current
state of the TWI bus. The application software can then decide how the TWI should behave in
the next TWI bus cycle by manipulating the TWCR and TWDR Registers.

Figure 19-11 is a simple example of how the application can interface to the TWI hardware. In
this example, a Master wishes to transmit a single data byte to a Slave. This description is quite
abstract, a more detailed explanation follows later in this section. A simple code example imple-
menting the desired behavior is also presented.

Address
Match

Address Bit Comparator 0

Address Bit Comparator 6..1

TWAR0

TWAMR0

Address
Bit 0
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not start any operation as long as the TWINT bit in TWCR is set. Immediately after the 
application has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR 
is updated with a status code indicating that the data packet has successfully been sent. 
The status code will also reflect whether a Slave acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the 
data packet was successfully transmitted, and that the value of the ACK bit was as 
expected. If TWSR indicates otherwise, the application software might take some special 
action, like calling an error routine. Assuming that the status code is as expected, the 
application must write a specific value to TWCR, instructing the TWI hardware to transmit 
a STOP condition. Which value to write is described later on. However, it is important that 
the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI 
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after 
the application has cleared TWINT, the TWI will initiate transmission of the STOP condi-
tion. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.
These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the TWINT Flag is 
set. The SCL line is pulled low until TWINT is cleared.

• When the TWINT Flag is set, the user must update all TWI Registers with the value relevant for 
the next TWI bus cycle. As an example, TWDR must be loaded with the value to be transmitted 
in the next bus cycle.

• After all TWI Register updates and other pending application software tasks have been 
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a one 
to TWINT clears the flag. The TWI will then commence executing whatever operation was 
specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made, for example by using include-files.
219
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The upper seven bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgement of the device’s own slave address or the general call address. TWSTA
and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered. After
its own slave address and the write bit have been received, the TWINT Flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 19-6.
The Slave Transmitter mode may also be entered if arbitration is lost while the TWI is in the
Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the trans-
fer. State 0xC0 or state 0xC8 will be entered, depending on whether the Master Receiver
transmits a NACK or ACK after the final byte. The TWI is switched to the not addressed Slave
mode, and will ignore the Master if it continues the transfer. Thus the Master Receiver receives
all “1” as serial data. State 0xC8 is entered if the Master demands additional data bytes (by
transmitting ACK), even though the Slave has transmitted the last byte (TWEA zero and expect-
ing NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the 2-wire
Serial Bus is still monitored and address recognition may resume at any time by setting TWEA.
This implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire Serial
Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and
the TWI will hold the SCL clock will low during the wake up and until the TWINT Flag is cleared
(by writing it to one). Further data transmission will be carried out as normal, with the AVR clocks
running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may
be held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last byte present
on the bus when waking up from these sleep modes.

value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 0 1 0 0 0 1 0 X
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Table 19-6. Status Codes for Slave Transmitter Mode
Status Code
(TWSR)
Prescaler
Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface Hard-
ware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR
STA STO TWIN

T
TWE

A

0xA8 Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB0 Arbitration lost in SLA+R/W as
Master; own SLA+R has been 
received; ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB8 Data byte in TWDR has been 
transmitted; ACK has been 
received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be re-
ceived

0xC0 Data byte in TWDR has been 
transmitted; NOT ACK has been 
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

0xC8 Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free
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21.5.1 Analog Input Circuitry
The analog input circuitry for single ended channels is illustrated in Figure 21-8. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for either
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised
to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.

Figure 21-8. Analog Input Circuitry

21.5.2 Analog Noise Canceling Techniques
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. If conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over the 
analog ground plane, and keep them well away from high-speed switching digital 
tracks.

b. The AVCC pin on the device should be connected to the digital VCC supply voltage via 
an LC network as shown in Figure 21-9.

c. Use the ADC noise canceler function to reduce induced noise from the CPU.

d. If any ADC [3..0] port pins are used as digital outputs, it is essential that these do not 
switch while a conversion is in progress. However, using the 2-wire Interface (ADC4 

ADCn

IIH

1..100 kΩ
CS/H= 14 pF

VCC/2

IIL
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22. debugWIRE On-chip Debug System

22.1 Features
• Complete Program Flow Control
• Emulates All On-chip Functions, Both Digital and Analog, except RESET Pin
• Real-time Operation
• Symbolic Debugging Support (Both at C and Assembler Source Level, or for Other HLLs)
• Unlimited Number of Program Break Points (Using Software Break Points)
• Non-intrusive Operation
• Electrical Characteristics Identical to Real Device
• Automatic Configuration System
• High-Speed Operation
• Programming of Non-volatile Memories

22.2 Overview
The debugWIRE On-chip debug system uses a One-wire, bi-directional interface to control the
program flow, execute AVR instructions in the CPU and to program the different non-volatile
memories. 

22.3 Physical Interface
When the debugWIRE Enable (DWEN) Fuse is programmed and Lock bits are unprogrammed,
the debugWIRE system within the target device is activated. The RESET port pin is configured
as a wire-AND (open-drain) bi-directional I/O pin with pull-up enabled and becomes the commu-
nication gateway between target and emulator. 

Figure 22-1. The debugWIRE Setup

Figure 22-1 shows the schematic of a target MCU, with debugWIRE enabled, and the emulator
connector. The system clock is not affected by debugWIRE and will always be the clock source
selected by the CKSEL Fuses. 

dW

GND

dW(RESET)

VCC

1.8 - 5.5V
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; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcallDo_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SELFPRGEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
263
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Figure 25-1. Parallel Programming

Note: VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 4.5 - 5.5V

Table 25-10. Pin Name Mapping 

Signal Name in 
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is 
ready for new command

OE PD2 I Output Enable (Active low)

WR PD3 I Write Pulse (Active low)

BS1 PD4 I
Byte Select 1 (“0” selects Low byte, “1” selects 
High byte)

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 I
Program memory and EEPROM Data Page 
Load

BS2 PC2 I
Byte Select 2 (“0” selects Low byte, “1” selects 
2’nd High byte)

DATA {PC[1:0]: PB[5:0]} I/O Bi-directional Data bus (Output when OE is low)

Table 25-11. Pin Values Used to Enter Programming Mode

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

VCC

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

 PC[1:0]:PB[5:0] DATA

RESET

PD7

+12 V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PC2

WR

BS2

AVCC

+4.5 - 5.5V

+4.5 - 5.5V
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Figure 27-45. Aref Current vs. VCC (ADC at 1 MHz)

Figure 27-46. Analog Comparator Current vs. VCC
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