
Atmel - ATMEGA48-20PI Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 4KB (2K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 6x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Through Hole

Package / Case 28-DIP (0.300", 7.62mm)

Supplier Device Package 28-PDIP

Purchase URL https://www.e-xfl.com/product-detail/atmel/atmega48-20pi

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega48-20pi-4381465
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega48/88/168
Note: 1. The Boot Reset Address is shown in Table 24-6 on page 276. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in
ATmega88 is:

Address Labels Code Comments

0x000 rjmp RESET ; Reset Handler

0x001 rjmp EXT_INT0 ; IRQ0 Handler

0x002 rjmp EXT_INT1 ; IRQ1 Handler

0x003 rjmp PCINT0 ; PCINT0 Handler

0x004 rjmp PCINT1 ; PCINT1 Handler

0x005 rjmp PCINT2 ; PCINT2 Handler

0x006 rjmp WDT ; Watchdog Timer Handler

0x007 rjmp TIM2_COMPA ; Timer2 Compare A Handler

0X008 rjmp TIM2_COMPB ; Timer2 Compare B Handler

0x009 rjmp TIM2_OVF ; Timer2 Overflow Handler

0x00A rjmp TIM1_CAPT ; Timer1 Capture Handler

0x00B rjmp TIM1_COMPA ; Timer1 Compare A Handler

0x00C rjmp TIM1_COMPB ; Timer1 Compare B Handler

0x00D rjmp TIM1_OVF ; Timer1 Overflow Handler

0x00E rjmp TIM0_COMPA ; Timer0 Compare A Handler

0x00F rjmp TIM0_COMPB ; Timer0 Compare B Handler

0x010 rjmp TIM0_OVF ; Timer0 Overflow Handler

0x011 rjmp SPI_STC ; SPI Transfer Complete Handler

0x012 rjmp USART_RXC ; USART, RX Complete Handler

0x013 rjmp USART_UDRE ; USART, UDR Empty Handler

0x014 rjmp USART_TXC ; USART, TX Complete Handler

0x015 rjmp ADC ; ADC Conversion Complete Handler

0x016 rjmp EE_RDY ; EEPROM Ready Handler

0x017 rjmp ANA_COMP ; Analog Comparator Handler

0x018 rjmp TWI ; 2-wire Serial Interface Handler

0x019 rjmp SPM_RDY ; Store Program Memory Ready Handler

;

0x01ARESET: ldi r16, high(RAMEND); Main program start

0x01B out SPH,r16 ; Set Stack Pointer to top of RAM

0x01C ldi r16, low(RAMEND)

0x01D out SPL,r16
0x01E sei ; Enable interrupts

0x01F <instr> xxx

Table 9-3. Reset and Interrupt Vectors Placement in ATmega88(1)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x000 0x001

1 1 0x000 Boot Reset Address + 0x001

0 0 Boot Reset Address 0x001

0 1 Boot Reset Address Boot Reset Address + 0x001
57
2545E–AVR–02/05

ATmega48/88/168
When the SPI is enabled as a Master, the data direction of this pin is controlled by DDB2. When
the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB2 bit.

OC1B, Output Compare Match output: The PB2 pin can serve as an external output for the
Timer/Counter1 Compare Match B. The PB2 pin has to be configured as an output (DDB2 set
(one)) to serve this function. The OC1B pin is also the output pin for the PWM mode timer
function.

PCINT2: Pin Change Interrupt source 2. The PB2 pin can serve as an external interrupt source.

• OC1A/PCINT1 – Port B, Bit 1
OC1A, Output Compare Match output: The PB1 pin can serve as an external output for the
Timer/Counter1 Compare Match A. The PB1 pin has to be configured as an output (DDB1 set
(one)) to serve this function. The OC1A pin is also the output pin for the PWM mode timer
function.

PCINT1: Pin Change Interrupt source 1. The PB1 pin can serve as an external interrupt source.

• ICP1/CLKO/PCINT0 – Port B, Bit 0
ICP1, Input Capture Pin: The PB0 pin can act as an Input Capture Pin for Timer/Counter1.

CLKO, Divided System Clock: The divided system clock can be output on the PB0 pin. The
divided system clock will be output if the CKOUT Fuse is programmed, regardless of the
PORTB0 and DDB0 settings. It will also be output during reset.

PCINT0: Pin Change Interrupt source 0. The PB0 pin can serve as an external interrupt source.

Table 10-4 and Table 10-5 relate the alternate functions of Port B to the overriding signals
shown in Figure 10-5 on page 69. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the
MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.
73
2545E–AVR–02/05

Figure 12-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 12-10 shows the setting of OCF0B in all modes and OCF0A in all modes except CTC
mode and PWM mode, where OCR0A is TOP.

Figure 12-10. Timer/Counter Timing Diagram, Setting of OCF0x, with Prescaler (fclk_I/O/8)

Figure 12-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode and fast
PWM mode where OCR0A is TOP.

Figure 12-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
98
2545E–AVR–02/05

ATmega48/88/168

ATmega48/88/168
Figure 13-1. 16-bit Timer/Counter Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2, Table 10-3 on page 71 and Table 10-9 on page 78 for
Timer/Counter1 pin placement and description.

13.1.1 Registers
The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Regis-
ter (ICR1) are all 16-bit registers. Special procedures must be followed when accessing the 16-
bit registers. These procedures are described in the section ”Accessing 16-bit Registers” on
page 108. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have no
CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all
visible in the Timer Interrupt Flag Register (TIFR1). All interrupts are individually masked with
the Timer Interrupt Mask Register (TIMSK1). TIFR1 and TIMSK1 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T1 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT1).

The double buffered Output Compare Registers (OCR1A/B) are compared with the
Timer/Counter value at all time. The result of the compare can be used by the Waveform Gener-
ator to generate a PWM or variable frequency output on the Output Compare pin (OC1A/B). See

Clock Select

Timer/Counter
D

AT
A

 B
U

S

OCRnA

OCRnB

ICRn

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

Noise
Canceler

ICPn

=

Fixed
TOP

Values

Edge
Detector

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

ICFn (Int.Req.)

TCCRnA TCCRnB

(From Analog
Comparator Ouput)

Tn
Edge

Detector

(From Prescaler)

clkTn
107
2545E–AVR–02/05

prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte
temporary register (TEMP). However, it is a good practice to read the low byte first as when
accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The high byte (OCR1xH) has to be
written first. When the high byte I/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the low byte (OCR1xL) is written to the lower eight bits,
the high byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Compare
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to ”Accessing 16-bit Registers”
on page 108.

13.6.1 Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC1x) bit. Forcing compare match will not set the
OCF1x Flag or reload/clear the timer, but the OC1x pin will be updated as if a real compare
match had occurred (the COM11:0 bits settings define whether the OC1x pin is set, cleared or
toggled).

13.6.2 Compare Match Blocking by TCNT1 Write
All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the
same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

13.6.3 Using the Output Compare Unit
Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT1 when using any of the Output Compare
channels, independent of whether the Timer/Counter is running or not. If the value written to
TCNT1 equals the OCR1x value, the compare match will be missed, resulting in incorrect wave-
form generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP
values. The compare match for the TOP will be ignored and the counter will continue to 0xFFFF.
Similarly, do not write the TCNT1 value equal to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC1x value is to use the Force Output Com-
pare (FOC1x) strobe bits in Normal mode. The OC1x Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value.
Changing the COM1x1:0 bits will take effect immediately.
116
2545E–AVR–02/05

ATmega48/88/168

Table 15-4 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to phase cor-
rect PWM mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 146 for more details.

• Bits 5:4 – COM2B1:0: Compare Match Output B Mode
These bits control the Output Compare pin (OC2B) behavior. If one or both of the COM2B1:0
bits are set, the OC2B output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2B pin
must be set in order to enable the output driver.

When OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the
WGM22:0 bit setting. Table 15-5 shows the COM2B1:0 bit functionality when the WGM22:0 bits
are set to a normal or CTC mode (non-PWM).

Table 15-6 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 146 for more details.

Table 15-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1
WGM22 = 0: Normal Port Operation, OC2A Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.

1 0
Clear OC2A on Compare Match when up-counting. Set OC2A on
Compare Match when down-counting.

1 1
Set OC2A on Compare Match when up-counting. Clear OC2A on
Compare Match when down-counting.

Table 15-5. Compare Output Mode, non-PWM Mode

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Toggle OC2B on Compare Match

1 0 Clear OC2B on Compare Match

1 1 Set OC2B on Compare Match

Table 15-6. Compare Output Mode, Fast PWM Mode(1)

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Reserved

1 0 Clear OC2B on Compare Match, set OC2B at TOP

1 1 Set OC2B on Compare Match, clear OC2B at TOP
150
2545E–AVR–02/05

ATmega48/88/168

ATmega48/88/168
Table 17-1 contains equations for calculating the baud rate (in bits per second) and for calculat-
ing the UBRRn value for each mode of operation using an internally generated clock source.

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps)

fOSC System Oscillator clock frequency

UBRRn Contents of the UBRRnH and UBRRnL Registers, (0-4095)

Some examples of UBRRn values for some system clock frequencies are found in Table 17-9
(see page 192).

17.2.2 Double Speed Operation (U2Xn)
The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has
effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note however that the Receiver will in this
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock
recovery, and therefore a more accurate baud rate setting and system clock are required when
this mode is used. For the Transmitter, there are no downsides.

Table 17-1. Equations for Calculating Baud Rate Register Setting

Operating Mode
Equation for Calculating Baud

Rate(1)
Equation for Calculating

UBRRn Value

Asynchronous Normal mode
(U2Xn = 0)

Asynchronous Double Speed
mode (U2Xn = 1)

Synchronous Master mode

BAUD
fOSC

16 UBRRn 1+()
--=

UBRRn
fOSC

16BAUD
------------------------ 1–=

BAUD
fOSC

8 UBRRn 1+()
---------------------------------------=

UBRRn
fOSC

8BAUD
-------------------- 1–=

BAUD
fOSC

2 UBRRn 1+()
---------------------------------------=

UBRRn
fOSC

2BAUD
-------------------- 1–=
171
2545E–AVR–02/05

18. USART in SPI Mode
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) can be
set to a master SPI compliant mode of operation. The Master SPI Mode (MSPIM) has the follow-
ing features:

• Full Duplex, Three-wire Synchronous Data Transfer
• Master Operation
• Supports all four SPI Modes of Operation (Mode 0, 1, 2, and 3)
• LSB First or MSB First Data Transfer (Configurable Data Order)
• Queued Operation (Double Buffered)
• High Resolution Baud Rate Generator
• High Speed Operation (fXCKmax = fCK/2)
• Flexible Interrupt Generation

18.1 Overview
Setting both UMSELn1:0 bits to one enables the USART in MSPIM logic. In this mode of opera-
tion the SPI master control logic takes direct control over the USART resources. These
resources include the transmitter and receiver shift register and buffers, and the baud rate gen-
erator. The parity generator and checker, the data and clock recovery logic, and the RX and TX
control logic is disabled. The USART RX and TX control logic is replaced by a common SPI
transfer control logic. However, the pin control logic and interrupt generation logic is identical in
both modes of operation.

The I/O register locations are the same in both modes. However, some of the functionality of the
control registers changes when using MSPIM.

18.2 Clock Generation
The Clock Generation logic generates the base clock for the Transmitter and Receiver. For
USART MSPIM mode of operation only internal clock generation (i.e. master operation) is sup-
ported. The Data Direction Register for the XCKn pin (DDR_XCKn) must therefore be set to one
(i.e. as output) for the USART in MSPIM to operate correctly. Preferably the DDR_XCKn should
be set up before the USART in MSPIM is enabled (i.e. TXENn and RXENn bit set to one).

The internal clock generation used in MSPIM mode is identical to the USART synchronous mas-
ter mode. The baud rate or UBRRn setting can therefore be calculated using the same
equations, see Table 18-1:
196
2545E–AVR–02/05

ATmega48/88/168

19.3.4 Data Packet Format
All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and
an acknowledge bit. During a data transfer, the Master generates the clock and the START and
STOP conditions, while the Receiver is responsible for acknowledging the reception. An
Acknowledge (ACK) is signalled by the Receiver pulling the SDA line low during the ninth SCL
cycle. If the Receiver leaves the SDA line high, a NACK is signalled. When the Receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
Transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

Figure 19-5. Data Packet Format

19.3.5 Combining Address and Data Packets into a Transmission
A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement
handshaking between the Master and the Slave. The Slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the
Slave, or the Slave needs extra time for processing between the data transmissions. The Slave
extending the SCL low period will not affect the SCL high period, which is determined by the
Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.

Figure 19-6 shows a typical data transmission. Note that several data bytes can be transmitted
between the SLA+R/W and the STOP condition, depending on the software protocol imple-
mented by the application software.

Figure 19-6. Typical Data Transmission

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

SLA+R/W Data Byte
STOP, REPEATED

START or Next
Data Byte

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP
208
2545E–AVR–02/05

ATmega48/88/168

ATmega48/88/168
19.4 Multi-master Bus Systems, Arbitration and Synchronization
The TWI protocol allows bus systems with several masters. Special concerns have been taken
in order to ensure that transmissions will proceed as normal, even if two or more masters initiate
a transmission at the same time. Two problems arise in multi-master systems:

• An algorithm must be implemented allowing only one of the masters to complete the
transmission. All other masters should cease transmission when they discover that they have
lost the selection process. This selection process is called arbitration. When a contending
master discovers that it has lost the arbitration process, it should immediately switch to Slave
mode to check whether it is being addressed by the winning master. The fact that multiple
masters have started transmission at the same time should not be detectable to the slaves, i.e.
the data being transferred on the bus must not be corrupted.

• Different masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all masters, in order to let the transmission proceed in a
lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from
all masters will be wired-ANDed, yielding a combined clock with a high period equal to the one
from the Master with the shortest high period. The low period of the combined clock is equal to
the low period of the Master with the longest low period. Note that all masters listen to the SCL
line, effectively starting to count their SCL high and low time-out periods when the combined
SCL line goes high or low, respectively.

Figure 19-7. SCL Synchronization Between Multiple Masters

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting
data. If the value read from the SDA line does not match the value the Master had output, it has
lost the arbitration. Note that a Master can only lose arbitration when it outputs a high SDA value
while another Master outputs a low value. The losing Master should immediately go to Slave
mode, checking if it is being addressed by the winning Master. The SDA line should be left high,
but losing masters are allowed to generate a clock signal until the end of the current data or
address packet. Arbitration will continue until only one Master remains, and this may take many

TA low TA high

SCL from
Master A

SCL from
Master B

SCL Bus
Line

TBlow TBhigh

Masters Start
Counting Low Period

Masters Start
Counting High Period
209
2545E–AVR–02/05

that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock
period. The SCL frequency is generated according to the following equation:

• TWBR = Value of the TWI Bit Rate Register.

• PrescalerValue = Value of the prescaler, see Table 19-2 on page 215.

Note: TWBR should be 10 or higher if the TWI operates in Master mode. If TWBR is lower than 10, the
Master may produce an incorrect output on SDA and SCL for the reminder of the byte. The prob-
lem occurs when operating the TWI in Master mode, sending Start + SLA + R/W to a Slave (a
Slave does not need to be connected to the bus for the condition to happen).

19.5.3 Bus Interface Unit
This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted,
or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also
contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK Regis-
ter is not directly accessible by the application software. However, when receiving, it can be set
or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode, the
value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED
START, and STOP conditions. The START/STOP controller is able to detect START and STOP
conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up
if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continu-
ously monitors the transmission trying to determine if arbitration is in process. If the TWI has lost
an arbitration, the Control Unit is informed. Correct action can then be taken and appropriate
status codes generated.

19.5.4 Address Match Unit
The Address Match unit checks if received address bytes match the seven-bit address in the
TWI Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the
TWAR is written to one, all incoming address bits will also be compared against the General Call
address. Upon an address match, the Control Unit is informed, allowing correct action to be
taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR.
The Address Match unit is able to compare addresses even when the AVR MCU is in sleep
mode, enabling the MCU to wake up if addressed by a Master. If another interrupt (e.g., INT0)
occurs during TWI Power-down address match and wakes up the CPU, the TWI aborts opera-
tion and return to it’s idle state. If this cause any problems, ensure that TWI Address Match is the
only enabled interrupt when entering Power-down.

19.5.5 Control Unit
The Control unit monitors the TWI bus and generates responses corresponding to settings in the
TWI Control Register (TWCR). When an event requiring the attention of the application occurs
on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-
tus Register (TWSR) is updated with a status code identifying the event. The TWSR only
contains relevant status information when the TWI Interrupt Flag is asserted. At all other times,
the TWSR contains a special status code indicating that no relevant status information is avail-

SCL frequency CPU Clock frequency
16 2(TWBR) PrescalerValue()⋅+
---=
212
2545E–AVR–02/05

ATmega48/88/168

Figure 20-1. Analog Comparator Block Diagram(2)

Notes: 1. See Table 20-2 on page 238.
2. Refer to Figure 1-1 on page 2 and Table 10-9 on page 78 for Analog Comparator pin

placement.

20.0.1 ADC Control and Status Register B – ADCSRB

• Bit 6 – ACME: Analog Comparator Multiplexer Enable
When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the
ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written
logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed
description of this bit, see ”Analog Comparator Multiplexed Input” on page 237.

20.0.2 Analog Comparator Control and Status Register – ACSR

• Bit 7 – ACD: Analog Comparator Disable
When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is
changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select
When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog
Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog Compar-
ator. See Section “8.1” on page 48.

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

(1)

Bit 7 6 5 4 3 2 1 0

– ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0
236
2545E–AVR–02/05

ATmega48/88/168

When designing a system where debugWIRE will be used, the following observations must be
made for correct operation:

• Pull-up resistors on the dW/(RESET) line must not be smaller than 10kΩ. The pull-up resistor
is not required for debugWIRE functionality.

• Connecting the RESET pin directly to VCC will not work.

• Capacitors connected to the RESET pin must be disconnected when using debugWire.

• All external reset sources must be disconnected.

22.4 Software Break Points
debugWIRE supports Program memory Break Points by the AVR Break instruction. Setting a
Break Point in AVR Studio® will insert a BREAK instruction in the Program memory. The instruc-
tion replaced by the BREAK instruction will be stored. When program execution is continued, the
stored instruction will be executed before continuing from the Program memory. A break can be
inserted manually by putting the BREAK instruction in the program.

The Flash must be re-programmed each time a Break Point is changed. This is automatically
handled by AVR Studio through the debugWIRE interface. The use of Break Points will therefore
reduce the Flash Data retention. Devices used for debugging purposes should not be shipped to
end customers.

22.5 Limitations of debugWIRE
The debugWIRE communication pin (dW) is physically located on the same pin as External
Reset (RESET). An External Reset source is therefore not supported when the debugWIRE is
enabled.

The debugWIRE system accurately emulates all I/O functions when running at full speed, i.e.,
when the program in the CPU is running. When the CPU is stopped, care must be taken while
accessing some of the I/O Registers via the debugger (AVR Studio).

A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep
modes. This will increase the power consumption while in sleep. Thus, the DWEN Fuse should
be disabled when debugWire is not used.

22.6 debugWIRE Related Register in I/O Memory
The following section describes the registers used with the debugWire.

22.6.1 debugWire Data Register – DWDR

The DWDR Register provides a communication channel from the running program in the MCU
to the debugger. This register is only accessible by the debugWIRE and can therefore not be
used as a general purpose register in the normal operations.

23. Self-Programming the Flash, ATmega48
In ATmega48, there is no Read-While-Write support, and no separate Boot Loader Section. The
SPM instruction can be executed from the entire Flash.

Bit 7 6 5 4 3 2 1 0

DWDR[7:0] DWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
256
2545E–AVR–02/05

ATmega48/88/168

Note: 1. “1” means unprogrammed, “0” means programmed

Note: 1. “1” means unprogrammed, “0” means programmed

24.5 Entering the Boot Loader Program
Entering the Boot Loader takes place by a jump or call from the application program. This may
be initiated by a trigger such as a command received via USART, or SPI interface. Alternatively,
the Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the Boot Flash
start address after a reset. In this case, the Boot Loader is started after a reset. After the applica-
tion code is loaded, the program can start executing the application code. Note that the fuses
cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is pro-
grammed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only be
changed through the serial or parallel programming interface.

Table 24-2. Boot Lock Bit0 Protection Modes (Application Section)(1)

BLB0 Mode BLB02 BLB01 Protection

1 1 1
No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read
from the Application section. If Interrupt Vectors are placed in
the Boot Loader section, interrupts are disabled while executing
from the Application section.

4 0 1

LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

Table 24-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

BLB1 Mode BLB12 BLB11 Protection

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read
from the Boot Loader section. If Interrupt Vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

Table 24-4. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 24-6 on page 276)
268
2545E–AVR–02/05

ATmega48/88/168

ATmega48/88/168
Figure 24-3. Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 24-3 are listed in Table 24-8 on page 277.

24.7 Self-Programming the Flash
The program memory is updated in a page by page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page
buffer is filled one word at a time using SPM and the buffer can be filled either before the Page
Erase command or between a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase

• Fill temporary page buffer

• Perform a Page Erase

• Perform a Page Write

Alternative 2, fill the buffer after Page Erase

• Perform a Page Erase

• Fill temporary page buffer

• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example
in the temporary page buffer) before the erase, and then be rewritten. When using alternative 1,
the Boot Loader provides an effective Read-Modify-Write feature which allows the user software
to first read the page, do the necessary changes, and then write back the modified data. If alter-
native 2 is used, it is not possible to read the old data while loading since the page is already
erased. The temporary page buffer can be accessed in a random sequence. It is essential that
the page address used in both the Page Erase and Page Write operation is addressing the same
page. See ”Simple Assembly Code Example for a Boot Loader” on page 275 for an assembly
code example.

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER
271
2545E–AVR–02/05

25.4 Calibration Byte
The ATmega48/88/168 has a byte calibration value for the internal RC Oscillator. This byte
resides in the high byte of address 0x000 in the signature address space. During reset, this byte
is automatically written into the OSCCAL Register to ensure correct frequency of the calibrated
RC Oscillator.

25.5 Page Size

25.6 Parallel Programming Parameters, Pin Mapping, and Commands
This section describes how to parallel program and verify Flash Program memory, EEPROM
Data memory, Memory Lock bits, and Fuse bits in the ATmega48/88/168. Pulses are assumed
to be at least 250 ns unless otherwise noted.

25.6.1 Signal Names
In this section, some pins of the ATmega48/88/168 are referenced by signal names describing
their functionality during parallel programming, see Figure 25-1 and Table 25-10. Pins not
described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse.
The bit coding is shown in Table 25-12.

When pulsing WR or OE, the command loaded determines the action executed. The different
Commands are shown in Table 25-13.

Table 25-8. No. of Words in a Page and No. of Pages in the Flash

Device Flash Size Page Size PCWORD
No. of
Pages PCPAGE PCMSB

ATmega48
2K words
(4K bytes)

32 words PC[4:0] 64 PC[10:5] 10

ATmega88
4K words
(8K bytes)

32 words PC[4:0] 128 PC[11:5] 11

ATmega168
8K words
(16K bytes)

64 words PC[5:0] 128 PC[12:6] 12

Table 25-9. No. of Words in a Page and No. of Pages in the EEPROM

Device
EEPROM

Size
Page
Size PCWORD

No. of
Pages PCPAGE EEAMSB

ATmega48 256 bytes 4 bytes EEA[1:0] 64 EEA[7:2] 7

ATmega88 512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8

ATmega168 512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8
284
2545E–AVR–02/05

ATmega48/88/168

ATmega48/88/168
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. All DC Characteristics contained in this datasheet are based on simulation and characterization of other AVR microcontrol-
lers manufactured in the same process technology. These values are preliminary values representing design targets, and
will be updated after characterization of actual silicon

6. Values with “Power Reduction Register - PRR” disabled (0x00).

26.3 External Clock Drive Waveforms

Figure 26-1. External Clock Drive Waveforms

26.4 External Clock Drive

Note: All DC Characteristics contained in this datasheet are based on simulation and characterization of
other AVR microcontrollers manufactured in the same process technology. These values are pre-
liminary values representing design targets, and will be updated after characterization of actual
silicon.

26.5 Maximum Speed vs. VCC
Maximum frequency is dependent on VCC. As shown in Figure 26-2 and Figure 26-3, the Maxi-
mum Frequency vs. VCC curve is linear between 1.8V < VCC < 2.7V and between 2.7V < VCC <
4.5V.

VIL1

VIH1

Table 26-1. External Clock Drive

Symbol Parameter

VCC=1.8-5.5V VCC=2.7-5.5V VCC=4.5-5.5V

UnitsMin. Max. Min. Max. Min. Max.

1/tCLCL
Oscillator
Frequency

0 4 0 10 0 20 MHz

tCLCL Clock Period 250 100 50 ns

tCHCX High Time 100 40 20 ns

tCLCX Low Time 100 40 20 ns

tCLCH Rise Time 2.0 1.6 0.5 µs

tCHCL Fall Time 2.0 1.6 0.5 µs

∆tCLCL

Change in period
from one clock
cycle to the next

2 2 2 %
301
2545E–AVR–02/05

ATmega48/88/168
Notes: 1. In ATmega48/88/168, this parameter is characterized and not 100% tested.
2. Required only for fSCL > 100 kHz.
3. Cb = capacitance of one bus line in pF.
4. fCK = CPU clock frequency
5. This requirement applies to all ATmega48/88/168 2-wire Serial Interface operation. Other devices connected to the 2-wire

Serial Bus need only obey the general fSCL requirement.
6. The actual low period generated by the ATmega48/88/168 2-wire Serial Interface is (1/fSCL - 2/fCK), thus fCK must be greater

than 6 MHz for the low time requirement to be strictly met at fSCL = 100 kHz.
7. The actual low period generated by the ATmega48/88/168 2-wire Serial Interface is (1/fSCL - 2/fCK), thus the low time require-

ment will not be strictly met for fSCL > 308 kHz when fCK = 8 MHz. Still, ATmega48/88/168 devices connected to the bus may
communicate at full speed (400 kHz) with other ATmega48/88/168 devices, as well as any other device with a proper tLOW
acceptance margin.

Ci
(1) Capacitance for each I/O Pin – 10 pF

fSCL SCL Clock Frequency fCK
(4) > max(16fSCL, 250kHz)(5) 0 400 kHz

Rp Value of Pull-up resistor

fSCL ≤ 100 kHz

fSCL > 100 kHz

tHD;STA Hold Time (repeated) START Condition
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tLOW Low Period of the SCL Clock
fSCL ≤ 100 kHz(6) 4.7 – µs

fSCL > 100 kHz(7) 1.3 – µs

tHIGH High period of the SCL clock
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tSU;STA Set-up time for a repeated START condition
fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 0.6 – µs

tHD;DAT Data hold time
fSCL ≤ 100 kHz 0 3.45 µs

fSCL > 100 kHz 0 0.9 µs

tSU;DAT Data setup time
fSCL ≤ 100 kHz 250 – ns

fSCL > 100 kHz 100 – ns

tSU;STO Setup time for STOP condition
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tBUF
Bus free time between a STOP and START
condition

fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 1.3 – µs

Table 26-2. 2-wire Serial Bus Requirements (Continued)

Symbol Parameter Condition Min Max Units

VCC 0,4V–

3mA
---------------------------- 1000ns

Cb
----------------- Ω

VCC 0,4V–

3mA
---------------------------- 300ns

Cb
-------------- Ω
303
2545E–AVR–02/05

Figure 27-19. I/O Pin Pull-Up Resistor Current vs. Input Voltage (VCC = 2.7V)

Figure 27-20. Reset Pull-Up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
VCC = 2.7V

85 °C 25 °C

-40 °C

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3

VOP (V)

I O
P
 (

uA
)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
VCC = 5V

0

20

40

60

80

100

120

0 1 2 3 4 5 6

VRESET (V)

I R
E

S
E

T
 (

u
A

)

-40ºC 25ºC

85ºC
318
2545E–AVR–02/05

ATmega48/88/168

30.2 ATmega88

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-
tive).Also Halide free and fully Green.

3. See Figure 26-2 on page 302 and Figure 26-3 on page 302.

Speed (MHz) Power Supply Ordering Code Package(1) Operational Range

10(3) 1.8 - 5.5

ATmega88V-10AI
ATmega88V-10PI

ATmega88V-10MI

ATmega88V-10AU(2)

ATmega88V-10PU(2)

ATmega88V-10MU(2)

32A
28P3

32M1-A

32A

28P3
32M1-A

Industrial

(-40°C to 85°C)

20(3) 2.7 - 5.5

ATmega88-20AI

ATmega88-20PI

ATmega88-20MI
ATmega88-20AU(2)

ATmega88-20PU(2)

ATmega88-20MU(2)

32A

28P3

32M1-A
32A

28P3

32M1-A

Industrial
(-40°C to 85°C)

Package Type

32A 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
342
2545E–AVR–02/05

ATmega48/88/168

