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ATmega48/88/168
4.5.1 The X-register, Y-register, and Z-register
The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 4-3.

Figure 4-3. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

4.6 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x0100, preferably RAMEND. The Stack Pointer is decremented by one when data
is pushed onto the Stack with the PUSH instruction, and it is decremented by two when the
return address is pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is
incremented by one when data is popped from the Stack with the POP instruction, and it is incre-
mented by two when data is popped from the Stack with return from subroutine RET or return
from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Bit 15 14 13 12 11 10 9 8

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND
11
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4.7 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 4-4 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 4-4. The Parallel Instruction Fetches and Instruction Executions

Figure 4-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 4-5. Single Cycle ALU Operation

4.8 Reset and Interrupt Handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section ”Memory Program-
ming” on page 280 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in ”Interrupts” on page 54. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
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5.4 I/O Memory
The I/O space definition of the ATmega48/88/168 is shown in ”Register Summary” on page 334.

All ATmega48/88/168 I/Os and peripherals are placed in the I/O space. All I/O locations may be
accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32
general purpose working registers and the I/O space. I/O Registers within the address range
0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the
instruction set section for more details. When using the I/O specific commands IN and OUT, the
I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using
LD and ST instructions, 0x20 must be added to these addresses. The ATmega48/88/168 is a
complex microcontroller with more peripheral units than can be supported within the 64 location
reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 -
0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most
other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore
be used on registers containing such Status Flags. The CBI and SBI instructions work with reg-
isters 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

5.4.1 General Purpose I/O Registers
The ATmega48/88/168 contains three General Purpose I/O Registers. These registers can be
used for storing any information, and they are particularly useful for storing global variables and
Status Flags. General Purpose I/O Registers within the address range 0x00 - 0x1F are directly
bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

5.4.2 General Purpose I/O Register 2 – GPIOR2

5.4.3 General Purpose I/O Register 1 – GPIOR1

5.4.4 General Purpose I/O Register 0 – GPIOR0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
24
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Table 6-14. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved
36
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ATmega48/88/168
Figure 8-5. Brown-out Reset During Operation

8.0.6 Watchdog System Reset
When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT. Refer to
page 49 for details on operation of the Watchdog Timer.

Figure 8-6. Watchdog System Reset During Operation

8.0.7 MCU Status Register – MCUSR
The MCU Status Register provides information on which reset source caused an MCU reset.

• Bit 7..4: Res: Reserved Bits
These bits are unused bits in the ATmega48/88/168, and will always read as zero.

• Bit 3 – WDRF: Watchdog System Reset Flag
This bit is set if a Watchdog System Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT

CK

CC

Bit 7 6 5 4 3 2 1 0

– – – – WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description
47
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8.2.1 Watchdog Timer Control Register - WDTCSR

• Bit 7 - WDIF: Watchdog Interrupt Flag
This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is config-
ured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit in
SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.

• Bit 6 - WDIE: Watchdog Interrupt Enable
When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt is
enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Interrupt
Mode, and the corresponding interrupt is executed if time-out in the Watchdog Timer occurs.

If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in
the Watchdog Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE
and WDIF automatically by hardware (the Watchdog goes to System Reset Mode). This is use-
ful for keeping the Watchdog Timer security while using the interrupt. To stay in Interrupt and
System Reset Mode, WDIE must be set after each interrupt. This should however not be done
within the interrupt service routine itself, as this might compromise the safety-function of the
Watchdog System Reset mode. If the interrupt is not executed before the next time-out, a Sys-
tem Reset will be applied.

• Bit 4 - WDCE: Watchdog Change Enable
This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit,
and/or change the prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

• Bit 3 - WDE: Watchdog System Reset Enable
WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is
set. To clear WDE, WDRF must be cleared first. This feature ensures multiple resets during con-
ditions causing failure, and a safe start-up after the failure.

Bit 7 6 5 4 3 2 1 0

WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 WDTCSR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X 0 0 0

Table 8-5. Watchdog Timer Configuration

WDTON WDE WDIE Mode Action on Time-out

0 0 0 Stopped None

0 0 1 Interrupt Mode Interrupt

0 1 0 System Reset Mode Reset

0 1 1
Interrupt and System Reset 
Mode

Interrupt, then go to System 
Reset Mode

1 x x System Reset Mode Reset
52
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ATmega48/88/168
The most typical and general program setup for the Reset and Interrupt Vector Addresses in
ATmega48 is:

Address Labels Code Comments

0x000 rjmp RESET ; Reset Handler

0x001 rjmp EXT_INT0 ; IRQ0 Handler

0x002 rjmp EXT_INT1 ; IRQ1 Handler

0x003 rjmp PCINT0 ; PCINT0 Handler

0x004 rjmp PCINT1 ; PCINT1 Handler

0x005 rjmp PCINT2 ; PCINT2 Handler

0x006 rjmp WDT ; Watchdog Timer Handler

0x007 rjmp TIM2_COMPA ; Timer2 Compare A Handler

0x008 rjmp TIM2_COMPB ; Timer2 Compare B Handler

0x009 rjmp TIM2_OVF ; Timer2 Overflow Handler

0x00A rjmp TIM1_CAPT ; Timer1 Capture Handler

0x00B rjmp TIM1_COMPA ; Timer1 Compare A Handler

0x00C rjmp TIM1_COMPB ; Timer1 Compare B Handler

0x00D rjmp TIM1_OVF ; Timer1 Overflow Handler

0x00E rjmp TIM0_COMPA ; Timer0 Compare A Handler

0x00F rjmp TIM0_COMPB ; Timer0 Compare B Handler

0x010 rjmp TIM0_OVF ; Timer0 Overflow Handler

0x011 rjmp SPI_STC ; SPI Transfer Complete Handler

0x012 rjmp USART_RXC ; USART, RX Complete Handler

0x013 rjmp USART_UDRE ; USART, UDR Empty Handler

0x014 rjmp USART_TXC ; USART, TX Complete Handler

0x015 rjmp ADC ; ADC Conversion Complete Handler

0x016 rjmp EE_RDY ; EEPROM Ready Handler

0x017 rjmp ANA_COMP ; Analog Comparator Handler

0x018 rjmp TWI ; 2-wire Serial Interface Handler

0x019 rjmp SPM_RDY ; Store Program Memory Ready Handler

;

0x01ARESET: ldi r16, high(RAMEND); Main program start

0x01B out SPH,r16 ; Set Stack Pointer to top of RAM

0x01C ldi r16, low(RAMEND)

0x01D out SPL,r16

0x01E sei ; Enable interrupts

0x01F <instr>  xxx

  ...  ...    ...  ... 

24 0x017 ANALOG COMP Analog Comparator

25 0x018 TWI 2-wire Serial Interface

26 0x019 SPM READY Store Program Memory Ready

Table 9-1. Reset and Interrupt Vectors in ATmega48 (Continued)

Vector No. Program Address Source Interrupt Definition
55
2545E–AVR–02/05



ATmega48/88/168
Note: 1. The Boot Reset Address is shown in Table 24-6 on page 276. For the BOOTRST Fuse “1” 
means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in
ATmega88 is:

Address Labels Code Comments

0x000 rjmp RESET ; Reset Handler

0x001 rjmp EXT_INT0 ; IRQ0 Handler

0x002 rjmp EXT_INT1 ; IRQ1 Handler

0x003 rjmp PCINT0 ; PCINT0 Handler

0x004 rjmp PCINT1 ; PCINT1 Handler

0x005 rjmp PCINT2 ; PCINT2 Handler

0x006 rjmp WDT ; Watchdog Timer Handler

0x007 rjmp TIM2_COMPA ; Timer2 Compare A Handler

0X008 rjmp TIM2_COMPB ; Timer2 Compare B Handler

0x009 rjmp TIM2_OVF ; Timer2 Overflow Handler

0x00A rjmp TIM1_CAPT ; Timer1 Capture Handler

0x00B rjmp TIM1_COMPA ; Timer1 Compare A Handler

0x00C rjmp TIM1_COMPB ; Timer1 Compare B Handler

0x00D rjmp TIM1_OVF ; Timer1 Overflow Handler

0x00E rjmp TIM0_COMPA ; Timer0 Compare A Handler

0x00F rjmp TIM0_COMPB ; Timer0 Compare B Handler

0x010 rjmp TIM0_OVF ; Timer0 Overflow Handler

0x011 rjmp SPI_STC ; SPI Transfer Complete Handler

0x012 rjmp USART_RXC ; USART, RX Complete Handler

0x013 rjmp USART_UDRE ; USART, UDR Empty Handler

0x014 rjmp USART_TXC ; USART, TX Complete Handler

0x015 rjmp ADC ; ADC Conversion Complete Handler

0x016 rjmp EE_RDY ; EEPROM Ready Handler

0x017 rjmp ANA_COMP ; Analog Comparator Handler

0x018 rjmp TWI ; 2-wire Serial Interface Handler

0x019 rjmp SPM_RDY ; Store Program Memory Ready Handler

;

0x01ARESET: ldi r16, high(RAMEND); Main program start

0x01B out SPH,r16 ; Set Stack Pointer to top of RAM

0x01C ldi r16, low(RAMEND)

0x01D out SPL,r16
0x01E sei ; Enable interrupts

0x01F <instr>  xxx

Table 9-3. Reset and Interrupt Vectors Placement in ATmega88(1)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x000 0x001

1 1 0x000 Boot Reset Address + 0x001

0 0 Boot Reset Address 0x001

0 1 Boot Reset Address Boot Reset Address + 0x001
57
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ATmega48/88/168
11. External Interrupts
The External Interrupts are triggered by the INT0 and INT1 pins or any of the PCINT23..0 pins.
Observe that, if enabled, the interrupts will trigger even if the INT0 and INT1 or PCINT23..0 pins
are configured as outputs. This feature provides a way of generating a software interrupt. The
pin change interrupt PCI2 will trigger if any enabled PCINT23..16 pin toggles. The pin change
interrupt PCI1 will trigger if any enabled PCINT14..8 pin toggles. The pin change interrupt PCI0
will trigger if any enabled PCINT7..0 pin toggles. The PCMSK2, PCMSK1 and PCMSK0 Regis-
ters control which pins contribute to the pin change interrupts. Pin change interrupts on
PCINT23..0 are detected asynchronously. This implies that these interrupts can be used for
waking the part also from sleep modes other than Idle mode.

The INT0 and INT1 interrupts can be triggered by a falling or rising edge or a low level. This is
set up as indicated in the specification for the External Interrupt Control Register A – EICRA.
When the INT0 or INT1 interrupts are enabled and are configured as level triggered, the inter-
rupts will trigger as long as the pin is held low. Note that recognition of falling or rising edge
interrupts on INT0 or INT1 requires the presence of an I/O clock, described in ”Clock Systems
and their Distribution” on page 25. Low level interrupt on INT0 and INT1 is detected asynchro-
nously. This implies that this interrupt can be used for waking the part also from sleep modes
other than Idle mode. The I/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down, the required level
must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If
the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-
rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described
in ”System Clock and Clock Options” on page 25.

11.1 Pin Change Interrupt Timing
An example of timing of a pin change interrupt is shown in Figure 11-1.

Figure 11-1. Timing of pin change interrupts

clk

PCINT(0)

pin_lat

pin_sync

pcint_in_(0)

pcint_syn

pcint_setflag

PCIF

PCINT(0)

pin_sync
pcint_syn

pin_lat
D     Q

LE

pcint_setflag
PCIF

clk

clk
PCINT(0) in PCMSK(x)

pcint_in_(0) 0

x
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ATmega48/88/168
Table 12-7 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase cor-
rect PWM mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on 
page 96 for more details.

• Bits 3, 2 – Res: Reserved Bits
These bits are reserved bits in the ATmega48/88/168 and will always read as zero.

• Bits 1:0 – WGM01:0: Waveform Generation Mode
Combined with the WGM02 bit found in the TCCR0B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 12-8. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of
Pulse Width Modulation (PWM) modes (see ”Modes of Operation” on page 93).

Notes: 1. MAX        = 0xFF
2. BOTTOM = 0x00

Table 12-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on Compare Match when up-counting. Set OC0B on 
Compare Match when down-counting.

1 1
Set OC0B on Compare Match when up-counting. Clear OC0B on 
Compare Match when down-counting.

Table 12-8. Waveform Generation Mode Bit Description

Mode WGM02 WGM01 WGM00

Timer/Counter 
Mode of 
Operation TOP

Update of
OCRx at

TOV Flag
Set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1
PWM, Phase 
Correct

0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF TOP MAX

4 1 0 0 Reserved – – –

5 1 0 1
PWM, Phase 
Correct

OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA TOP TOP
101
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ATmega48/88/168
Figure 13-13. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
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ATmega48/88/168
13.10.7 Input Capture Register 1 – ICR1H and ICR1L

The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the
ICP1 pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See Section “13.2” on page 108.

13.10.8 Timer/Counter1 Interrupt Mask Register – TIMSK1

• Bit 7, 6 – Res: Reserved Bits
These bits are unused bits in the ATmega48/88/168, and will always read as zero.

• Bit 5 – ICIE1: Timer/Counter1, Input Capture Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt
Vector (see “Interrupts” on page 54) is executed when the ICF1 Flag, located in TIFR1, is set.

• Bit 4, 3 – Res: Reserved Bits
These bits are unused bits in the ATmega48/88/168, and will always read as zero.

• Bit 2 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 54) is executed when the OCF1B Flag, located in
TIFR1, is set.

• Bit 1 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 54) is executed when the OCF1A Flag, located in
TIFR1, is set.

• Bit 0 – TOIE1: Timer/Counter1, Overflow Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding Interrupt Vector
(See Section “8.2” on page 49.) is executed when the TOV1 Flag, located in TIFR1, is set.

Bit 7 6 5 4 3 2 1 0

ICR1[15:8] ICR1H

ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – ICIE1 – – OCIE1B OCIE1A TOIE1 TIMSK1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
133
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Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least
one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the sys-
tem clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since the edge detector uses
sampling, the maximum frequency of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 14-2. Prescaler for Timer/Counter0 and Timer/Counter1(1)

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 14-1.

PSRSYNC

Clear

clkT1 clkT0

T1

T0

clkI/O

Synchronization

Synchronization
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Table 17-12. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

Baud 
Rate 
(bps)

fosc = 16.0000 MHz fosc = 18.4320 MHz fosc = 20.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR
n Error

UBRR
n Error

UBRR
n Error

UBRR
n Error

UBRR
n Error

UBRR
n Error

2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%

4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%

9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%

14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%

19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%

28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%

38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%

57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%

76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%

115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%

230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%

250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%

0.5M 1 0.0% 3 0.0% – – 4 -7.8% – – 4 0.0%

1M 0 0.0% 1 0.0% – – – – – – – –

Max. (1) 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps

1. UBRRn = 0, Error = 0.0%
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depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.

Figure 19-3. START, REPEATED START and STOP conditions

19.3.3 Address Packet Format
All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address bits, one
READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read opera-
tion is to be performed, otherwise a write operation should be performed. When a Slave
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL
(ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the Mas-
ter’s request, the SDA line should be left high in the ACK clock cycle. The Master can then
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or
SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the
designer, but the address 0000 000 is reserved for a general call. 

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK
cycle. A general call is used when a Master wishes to transmit the same message to several
slaves in the system. When the general call address followed by a Write bit is transmitted on the
bus, all slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.
The following data packets will then be received by all the slaves that acknowledged the general
call. Note that transmitting the general call address followed by a Read bit is meaningless, as
this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 19-4. Address Packet Format

SDA

SCL

START STOPREPEATED STARTSTOP START

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK
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• Bits 7..0 – TWD: TWI Data Register 
These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the 2-wire Serial Bus.

19.6.5 TWI (Slave) Address Register – TWAR

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of
TWAR) to which the TWI will respond when programmed as a Slave Transmitter or Receiver,
and not needed in the Master modes. In multi master systems, TWAR must be set in masters
which can be addressed as Slaves by other Masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an
associated address comparator that looks for the slave address (or general call address if
enabled) in the received serial address. If a match is found, an interrupt request is generated.

• Bits 7..1 – TWA: TWI (Slave) Address Register 
These seven bits constitute the slave address of the TWI unit.

• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit 
If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus.

19.6.6 TWI (Slave) Address Mask Register – TWAMR

• Bits 7..1 – TWAM: TWI Address Mask
The TWAMR can be loaded with a 7-bit Salve Address mask. Each of the bits in TWAMR can
mask (disable) the corresponding address bits in the TWI Address Register (TWAR). If the mask
bit is set to one then the address match logic ignores the compare between the incoming
address bit and the corresponding bit in TWAR. Figure 19-10 shown the address match logic in
detail.

Bit 7 6 5 4 3 2 1 0

TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0

Bit 7 6 5 4 3 2 1 0

TWAM[6:0] – TWAMR

Read/Write R/W R/W R/W R/W R/W R/W R/W R

Initial Value 0 0 0 0 0 0 0 0
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If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.

21.3 Prescaling and Conversion Timing

Figure 21-3. ADC Prescaler

By default, the successive approximation circuitry requires an input clock frequency between 50
kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA.
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit
in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously
reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle. 

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new
conversion will be initiated on the first rising ADC clock edge. 

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold
takes place two ADC clock cycles after the rising edge on the trigger source signal. Three addi-
tional CPU clock cycles are used for synchronization logic.

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. For a summary of conversion times, see Table 21-1 on page
244.

7-BIT ADC PRESCALER

ADC CLOCK SOURCE
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4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 25-3 for signal 
waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits address
the pages within the FLASH. This is illustrated in Figure 25-2 on page 289. Note that if less than
eight bits are required to address words in the page (pagesize < 256), the most significant bit(s)
in the address low byte are used to address the page when performing a Page Write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY 
goes low.

2. Wait until RDY/BSY goes high (See Figure 25-3 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals are 
reset.
288
2545E–AVR–02/05

ATmega48/88/168



ATmega48/88/168
25.7.14 Reading the Calibration Byte
The algorithm for reading the Calibration byte is as follows (refer to ”Programming the Flash” on
page 287 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

25.7.15 Parallel Programming Characteristics

Figure 25-7. Parallel Programming Timing, Including some General Timing Requirements

Figure 25-8. Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 25-7 (i.e., tDVXH, tXHXL, and tXLDX) also apply to load-
ing operation.

Data & Contol
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LOAD ADDRESS
(LOW BYTE)
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LOAD DATA
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Figure 27-4. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Figure 27-5. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)
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