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• Bit 1 – EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then
Reset the MCUSR as early as possible in the program. If the register is cleared before another
reset occurs, the source of the reset can be found by examining the Reset Flags.

8.1 Internal Voltage Reference
ATmega48/88/168 features an internal bandgap reference. This reference is used for Brown-out
Detection, and it can be used as an input to the Analog Comparator or the ADC.

8.1.1 Voltage Reference Enable Signals and Start-up Time
The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in Table 8-4. To save power, the reference is not always turned on. The
reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuses).

2. When the bandgap reference is connected to the Analog Comparator (by setting the 
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

Note: 1. Values are guidelines only. Actual values are TBD.

Table 8-4. Internal Voltage Reference Characteristics

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units

VBG Bandgap reference voltage
VCC=2.7
TA=25°C

1.0 1.1 1.2 V

tBG Bandgap reference start-up time
VCC=2.7
TA=25°C

40 70 µs

IBG Bandgap reference current consumption
VCC=2.7
TA=25°C

10 µA
48
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becomes the inverting output of the Oscillator amplifier. In this mode, a crystal Oscillator is con-
nected to this pin, and the pin cannot be used as an I/O pin.

PCINT7: Pin Change Interrupt source 7. The PB7 pin can serve as an external interrupt source.

If PB7 is used as a clock pin, DDB7, PORTB7 and PINB7 will all read 0.

• XTAL1/TOSC1/PCINT6 – Port B, Bit 6
XTAL1: Chip clock Oscillator pin 1. Used for all chip clock sources except internal calibrated RC
Oscillator. When used as a clock pin, the pin can not be used as an I/O pin. 

TOSC1: Timer Oscillator pin 1. Used only if internal calibrated RC Oscillator is selected as chip
clock source, and the asynchronous timer is enabled by the correct setting in ASSR. When the
AS2 bit in ASSR is set (one) to enable asynchronous clocking of Timer/Counter2, pin PB6 is dis-
connected from the port, and becomes the input of the inverting Oscillator amplifier. In this
mode, a crystal Oscillator is connected to this pin, and the pin can not be used as an I/O pin.

PCINT6: Pin Change Interrupt source 6. The PB6 pin can serve as an external interrupt source.

If PB6 is used as a clock pin, DDB6, PORTB6 and PINB6 will all read 0.

• SCK/PCINT5 – Port B, Bit 5
SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB5. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB5. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB5 bit.

PCINT5: Pin Change Interrupt source 5. The PB5 pin can serve as an external interrupt source.

• MISO/PCINT4 – Port B, Bit 4
MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a
Master, this pin is configured as an input regardless of the setting of DDB4. When the SPI is
enabled as a Slave, the data direction of this pin is controlled by DDB4. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB4 bit.

PCINT4: Pin Change Interrupt source 4. The PB4 pin can serve as an external interrupt source.

• MOSI/OC2/PCINT3 – Port B, Bit 3
MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB3. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB3. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB3 bit.

OC2, Output Compare Match Output: The PB3 pin can serve as an external output for the
Timer/Counter2 Compare Match. The PB3 pin has to be configured as an output (DDB3 set
(one)) to serve this function. The OC2 pin is also the output pin for the PWM mode timer
function.

PCINT3: Pin Change Interrupt source 3. The PB3 pin can serve as an external interrupt source.

• SS/OC1B/PCINT2 – Port B, Bit 2
SS: Slave Select input. When the SPI is enabled as a Slave, this pin is configured as an input
regardless of the setting of DDB2. As a Slave, the SPI is activated when this pin is driven low.
72
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Notes: 1. INTRC means that one of the internal RC Oscillators are selected (by the CKSEL fuses), 
EXTCK means that external clock is selected (by the CKSEL fuses).

Table 10-4. Overriding Signals for Alternate Functions in PB7..PB4

Signal
Name

PB7/XTAL2/
TOSC2/PCINT7(1)

PB6/XTAL1/
TOSC1/PCINT6(1)

PB5/SCK/
PCINT5

PB4/MISO/
PCINT4

PUOE
INTRC • EXTCK+ 
AS2

INTRC + AS2 SPE • MSTR SPE • MSTR

PUOV 0 0 PORTB5 • PUD PORTB4 • PUD

DDOE
INTRC • EXTCK+ 
AS2

INTRC + AS2 SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE 0 0 SPE • MSTR SPE • MSTR

PVOV 0 0 SCK OUTPUT
SPI SLAVE 
OUTPUT

DIEOE
INTRC • EXTCK + 
AS2 + PCINT7 • 
PCIE0

INTRC + AS2 + 
PCINT6 • PCIE0

PCINT5 • PCIE0 PCINT4 • PCIE0

DIEOV
(INTRC + EXTCK) • 
AS2

INTRC • AS2 1 1

DI PCINT7 INPUT PCINT6 INPUT
PCINT5 INPUT
SCK INPUT

PCINT4 INPUT
SPI MSTR INPUT

AIO Oscillator Output
Oscillator/Clock 
Input

– –

Table 10-5. Overriding Signals for Alternate Functions in PB3..PB0

Signal 
Name

PB3/MOSI/
OC2/PCINT3

PB2/SS/
OC1B/PCINT2

PB1/OC1A/
PCINT1

PB0/ICP1/
PCINT0

PUOE SPE • MSTR SPE • MSTR 0 0

PUOV PORTB3 • PUD PORTB2 • PUD 0 0

DDOE SPE • MSTR SPE • MSTR 0 0

DDOV 0 0 0 0

PVOE
SPE • MSTR + 
OC2A ENABLE

OC1B ENABLE OC1A ENABLE 0

PVOV
SPI MSTR OUTPUT 
+ OC2A

OC1B OC1A 0

DIEOE PCINT3 • PCIE0 PCINT2 • PCIE0 PCINT1 • PCIE0 PCINT0 • PCIE0

DIEOV 1 1 1 1

DI
PCINT3 INPUT

SPI SLAVE INPUT

PCINT2 INPUT

SPI SS
PCINT1 INPUT

PCINT0 INPUT

ICP1 INPUT

AIO – – – –
74
2545E–AVR–02/05

ATmega48/88/168



ATmega48/88/168
10.4 Register Description for I/O Ports

10.4.1 The Port B Data Register – PORTB

10.4.2 The Port B Data Direction Register – DDRB

10.4.3 The Port B Input Pins Address – PINB

10.4.4 The Port C Data Register – PORTC

10.4.5 The Port C Data Direction Register – DDRC

10.4.6 The Port C Input Pins Address – PINC

10.4.7 The Port D Data Register – PORTD

10.4.8 The Port D Data Direction Register – DDRD

Bit 7 6 5 4 3 2 1 0

PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

– PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC
Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC
Read/Write R R R R R R R R

Initial Value 0 N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
81
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11.1.4 Pin Change Interrupt Control Register - PCICR

• Bit 7..3 - Res: Reserved Bits
These bits are unused bits in the ATmega48/88/168, and will always read as zero.

• Bit 2 - PCIE2: Pin Change Interrupt Enable 2
When the PCIE2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 2 is enabled. Any change on any enabled PCINT23..16 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI2
Interrupt Vector. PCINT23..16 pins are enabled individually by the PCMSK2 Register.

• Bit 1 - PCIE1: Pin Change Interrupt Enable 1
When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 1 is enabled. Any change on any enabled PCINT14..8 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI1
Interrupt Vector. PCINT14..8 pins are enabled individually by the PCMSK1 Register.

• Bit 0 - PCIE0: Pin Change Interrupt Enable 0
When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 0 is enabled. Any change on any enabled PCINT7..0 pin will cause an interrupt.
The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI0 Inter-
rupt Vector. PCINT7..0 pins are enabled individually by the PCMSK0 Register.

11.1.5 Pin Change Interrupt Flag Register - PCIFR

• Bit 7..3 - Res: Reserved Bits
These bits are unused bits in the ATmega48/88/168, and will always read as zero.

• Bit 2 - PCIF2: Pin Change Interrupt Flag 2
When a logic change on any PCINT23..16 pin triggers an interrupt request, PCIF2 becomes set
(one). If the I-bit in SREG and the PCIE2 bit in PCICR are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 1 - PCIF1: Pin Change Interrupt Flag 1
When a logic change on any PCINT14..8 pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIE1 bit in PCICR are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

Bit 7 6 5 4 3 2 1 0

– – – – – PCIE2 PCIE1 PCIE0 PCICR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – PCIF2 PCIF1 PCIF0 PCIFR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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ATmega48/88/168
Note: 1. See ”About Code Examples” on page 6.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” 
instructions must be replaced with instructions that allow access to extended I/O. Typically 
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-
ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both
the main code and the interrupt code update the temporary register, the main code must disable
the interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNT1 Register contents.
Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Examples(1)

...

; Set TCNT1 to 0x01FF
ldi r17,0x01

ldi r16,0xFF

out TCNT1H,r17
out TCNT1L,r16
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
...

C Code Examples(1)

unsigned int i;

...

/* Set TCNT1 to 0x01FF */
TCNT1 = 0x1FF;
/* Read TCNT1 into i */
i = TCNT1;
...
109
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ATmega48/88/168
Note: 1. See ”About Code Examples” on page 6.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” 
instructions must be replaced with instructions that allow access to extended I/O. Typically 
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-
ten to TCNT1.

13.2.1 Reusing the Temporary High Byte Register
If writing to more than one 16-bit register where the high byte is the same for all registers written,
then the high byte only needs to be written once. However, note that the same rule of atomic
operation described previously also applies in this case.

13.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS12:0) bits
located in the Timer/Counter control Register B (TCCR1B). For details on clock sources and
prescaler, see ”Timer/Counter0 and Timer/Counter1 Prescalers” on page 135.

Assembly Code Example(1)

TIM16_WriteTCNT1:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNT1 to r17:r16
out TCNT1H,r17
out TCNT1L,r16
; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

void TIM16_WriteTCNT1( unsigned int i )
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Set TCNT1 to i */
TCNT1 = i;
/* Restore global interrupt flag */

SREG = sreg;

}

111
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ATmega48/88/168
Figure 15-3. Output Compare Unit, Block Diagram

The OCR2x Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double
buffering is disabled. The double buffering synchronizes the update of the OCR2x Compare
Register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR2x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR2x directly. 

15.4.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC2x) bit. Forcing compare match will not set the
OCF2x Flag or reload/clear the timer, but the OC2x pin will be updated as if a real compare
match had occurred (the COM2x1:0 bits settings define whether the OC2x pin is set, cleared or
toggled).

15.4.2 Compare Match Blocking by TCNT2 Write
All CPU write operations to the TCNT2 Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR2x to be initial-
ized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is
enabled.

15.4.3 Using the Output Compare Unit
Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT2 when using the Output Compare channel,
independently of whether the Timer/Counter is running or not. If the value written to TCNT2
equals the OCR2x value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is
downcounting.

OCFnx (Int.Req.)

= (8-bit Comparator )

OCRnx

OCnx

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMnX1:0

bottom
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ATmega48/88/168
output can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when
WGM2:0 = 3, and OCR2A when MGM2:0 = 7 (See Table 15-4 on page 150). The actual OC2x
value will only be visible on the port pin if the data direction for the port pin is set as output. The
PWM waveform is generated by clearing (or setting) the OC2x Register at the compare match
between OCR2x and TCNT2 when the counter increments, and setting (or clearing) the OC2x
Register at compare match between OCR2x and TCNT2 when the counter decrements. The
PWM frequency for the output when using phase correct PWM can be calculated by the follow-
ing equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 15-7 OCnx has a transition from high to low even though
there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-
TOM. There are two cases that give a transition without Compare Match. 

• OCR2A changes its value from MAX, like in Figure 15-7. When the OCR2A value is MAX the 
OCn pin value is the same as the result of a down-counting compare match. To ensure 
symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-
counting Compare Match.

• The timer starts counting from a value higher than the one in OCR2A, and for that reason 
misses the Compare Match and hence the OCn change that would have happened on the way 
up.

15.7 Timer/Counter Timing Diagrams
The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2)
is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be replaced by
the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are
set. Figure 15-8 contains timing data for basic Timer/Counter operation. The figure shows the
count sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 15-8. Timer/Counter Timing Diagram, no Prescaling

Figure 15-9 shows the same timing data, but with the prescaler enabled.

fOCnxPCPWM
fclk_I/O
N 510⋅
------------------=

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1
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17.4 USART Initialization
The USART has to be initialized before any communication can take place. The initialization pro-
cess normally consists of setting the baud rate, setting frame format and enabling the
Transmitter or the Receiver depending on the usage. For interrupt driven USART operation, the
Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the
initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no
ongoing transmissions during the period the registers are changed. The TXCn Flag can be used
to check that the Transmitter has completed all transfers, and the RXC Flag can be used to
check that there are no unread data in the receive buffer. Note that the TXCn Flag must be
cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.
174
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17.9 USART Register Description

17.9.1 USART I/O Data Register n– UDRn

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the
same I/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer Reg-
ister (TXB) will be the destination for data written to the UDRn Register location. Reading the
UDRn Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to
zero by the Receiver.

The transmit buffer can only be written when the UDREn Flag in the UCSRnA Register is set.
Data written to UDRn when the UDREn Flag is not set, will be ignored by the USART Transmit-
ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter
will load the data into the Transmit Shift Register when the Shift Register is empty. Then the
data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify-
Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions
(SBIC and SBIS), since these also will change the state of the FIFO.

17.9.2 USART Control and Status Register n A – UCSRnA

• Bit 7 – RXCn: USART Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive
buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag can be
used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

• Bit 6 – TXCn: USART Transmit Complete
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see
description of the TXCIEn bit).

• Bit 5 – UDREn: USART Data Register Empty

The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn
is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can generate a
Data Register Empty interrupt (see description of the UDRIEn bit).

Bit 7 6 5 4 3 2 1 0

RXB[7:0] UDRn (Read)

TXB[7:0] UDRn (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn FEn DORn UPEn U2Xn MPCMn UCSRnA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0
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Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps)

fOSC System Oscillator clock frequency

UBRRn Contents of the UBRRnH and UBRRnL Registers, (0-4095)

18.3 SPI Data Modes and Timing
There are four combinations of XCKn (SCK) phase and polarity with respect to serial data, which
are determined by control bits UCPHAn and UCPOLn. The data transfer timing diagrams are
shown in Figure 18-1. Data bits are shifted out and latched in on opposite edges of the XCKn
signal, ensuring sufficient time for data signals to stabilize. The UCPOLn and UCPHAn function-
ality is summarized in Table 18-2. Note that changing the setting of any of these bits will corrupt
all ongoing communication for both the Receiver and Transmitter.

Figure 18-1. UCPHAn and UCPOLn data transfer timing diagrams.

Table 18-1. Equations for Calculating Baud Rate Register Setting

Operating Mode
Equation for Calculating Baud 

Rate(1)
Equation for Calculating UBRRn 

Value

Synchronous Master 
mode BAUD

fOSC
2 UBRRn 1+( )
---------------------------------------= UBRRn

fOSC
2BAUD
-------------------- 1–=

Table 18-2. UCPOLn and UCPHAn Functionality-

UCPOLn UCPHAn SPI Mode Leading Edge Trailing Edge

0 0 0 Sample (Rising) Setup (Falling)

0 1 1 Setup (Rising) Sample (Falling)

1 0 2 Sample (Falling) Setup (Rising)

1 1 3 Setup (Falling) Sample (Rising)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

UCPOL=0 UCPOL=1

U
C

P
H

A
=0

U
C

P
H

A
=1
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that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock
period. The SCL frequency is generated according to the following equation:

• TWBR = Value of the TWI Bit Rate Register.

• PrescalerValue = Value of the prescaler, see Table 19-2 on page 215.

Note: TWBR should be 10 or higher if the TWI operates in Master mode. If TWBR is lower than 10, the 
Master may produce an incorrect output on SDA and SCL for the reminder of the byte. The prob-
lem occurs when operating the TWI in Master mode, sending Start + SLA + R/W to a Slave (a 
Slave does not need to be connected to the bus for the condition to happen).

19.5.3 Bus Interface Unit
This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted,
or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also
contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK Regis-
ter is not directly accessible by the application software. However, when receiving, it can be set
or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode, the
value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED
START, and STOP conditions. The START/STOP controller is able to detect START and STOP
conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up
if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continu-
ously monitors the transmission trying to determine if arbitration is in process. If the TWI has lost
an arbitration, the Control Unit is informed. Correct action can then be taken and appropriate
status codes generated.

19.5.4 Address Match Unit
The Address Match unit checks if received address bytes match the seven-bit address in the
TWI Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the
TWAR is written to one, all incoming address bits will also be compared against the General Call
address. Upon an address match, the Control Unit is informed, allowing correct action to be
taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR.
The Address Match unit is able to compare addresses even when the AVR MCU is in sleep
mode, enabling the MCU to wake up if addressed by a Master. If another interrupt (e.g., INT0)
occurs during TWI Power-down address match and wakes up the CPU, the TWI aborts opera-
tion and return to it’s idle state. If this cause any problems, ensure that TWI Address Match is the
only enabled interrupt when entering Power-down.

19.5.5 Control Unit
The Control unit monitors the TWI bus and generates responses corresponding to settings in the
TWI Control Register (TWCR). When an event requiring the attention of the application occurs
on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-
tus Register (TWSR) is updated with a status code identifying the event. The TWSR only
contains relevant status information when the TWI Interrupt Flag is asserted. At all other times,
the TWSR contains a special status code indicating that no relevant status information is avail-

SCL frequency CPU Clock frequency
16 2(TWBR) PrescalerValue( )⋅+
-----------------------------------------------------------------------------------------=
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Figure 19-11. Interfacing the Application to the TWI in a Typical Transmission

1. The first step in a TWI transmission is to transmit a START condition. This is done by 
writing a specific value into TWCR, instructing the TWI hardware to transmit a START 
condition. Which value to write is described later on. However, it is important that the 
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will 
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the 
application has cleared TWINT, the TWI will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT Flag in TWCR is set, and 
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.

3. The application software should now examine the value of TWSR, to make sure that the 
START condition was successfully transmitted. If TWSR indicates otherwise, the applica-
tion software might take some special action, like calling an error routine. Assuming that 
the status code is as expected, the application must load SLA+W into TWDR. Remember 
that TWDR is used both for address and data. After TWDR has been loaded with the 
desired SLA+W, a specific value must be written to TWCR, instructing the TWI hardware 
to transmit the SLA+W present in TWDR. Which value to write is described later on. 
However, it is important that the TWINT bit is set in the value written. Writing a one to 
TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in 
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate 
transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and 
TWSR is updated with a status code indicating that the address packet has successfully 
been sent. The status code will also reflect whether a Slave acknowledged the packet or 
not.

5. The application software should now examine the value of TWSR, to make sure that the 
address packet was successfully transmitted, and that the value of the ACK bit was as 
expected. If TWSR indicates otherwise, the application software might take some special 
action, like calling an error routine. Assuming that the status code is as expected, the 
application must load a data packet into TWDR. Subsequently, a specific value must be 
written to TWCR, instructing the TWI hardware to transmit the data packet present in 
TWDR. Which value to write is described later on. However, it is important that the 
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will 

START SLA+W A Data A STOP
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Status code indicates
START condition sent
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19.8 Transmission Modes
The TWI can operate in one of four major modes. These are named Master Transmitter (MT),
Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these
modes can be used in the same application. As an example, the TWI can use MT mode to write
data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters
are present in the system, some of these might transmit data to the TWI, and then SR mode
would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described
along with figures detailing data transmission in each of the modes. These figures contain the
following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 19-13 to Figure 19-19, circles are used to indicate that the TWINT Flag is set. The
numbers in the circles show the status code held in TWSR, with the prescaler bits masked to
zero. At these points, actions must be taken by the application to continue or complete the TWI
transfer. The TWI transfer is suspended until the TWINT Flag is cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate soft-
ware action. For each status code, the required software action and details of the following serial
transfer are given in Table 19-3 to Table 19-6. Note that the prescaler bits are masked to zero in
these tables.

19.8.1 Master Transmitter Mode
In the Master Transmitter mode, a number of data bytes are transmitted to a Slave Receiver
(see Figure 19-12). In order to enter a Master mode, a START condition must be transmitted.
The format of the following address packet determines whether Master Transmitter or Master
Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is trans-
mitted, MR mode is entered. All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.
221
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Figure 21-7. ADC Timing Diagram, Free Running Conversion

21.4 Changing Channel or Reference Selection
The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary
register to which the CPU has random access. This ensures that the channels and reference
selection only takes place at a safe point during the conversion. The channel and reference
selection is continuously updated until a conversion is started. Once the conversion starts, the
channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-
tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in
ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after
ADSC is written. The user is thus advised not to write new channel or reference selection values
to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:

a. When ADATE or ADEN is cleared.

b. During conversion, minimum one ADC clock cycle after the trigger event.

c. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

Table 21-1. ADC Conversion Time

Condition
Sample & Hold 
(Cycles from Start of Conversion)

Conversion Time 
(Cycles)

First conversion 13.5 25

Normal conversions, single ended 1.5 13

Auto Triggered conversions 2 13.5

11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number
1 2

One Conversion Next Conversion

3 4

Conversion
Complete

Sample & Hold

MUX and REFS
Update
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trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running
mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

21.6.5 Digital Input Disable Register 0 – DIDR0

• Bits 7:6 – Res: Reserved Bits
These bits are reserved for future use. To ensure compatibility with future devices, these bits
must be written to zero when DIDR0 is written.

• Bit 5:0 – ADC5D..ADC0D: ADC5..0 Digital Input Disable
When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-
abled. The corresponding PIN Register bit will always read as zero when this bit is set. When an
analog signal is applied to the ADC5..0 pin and the digital input from this pin is not needed, this
bit should be written logic one to reduce power consumption in the digital input buffer. 

Note that ADC pins ADC7 and ADC6 do not have digital input buffers, and therefore do not
require Digital Input Disable bits.

Table 21-5. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter0 Compare Match A

1 0 0 Timer/Counter0 Overflow

1 0 1 Timer/Counter1 Compare Match B

1 1 0 Timer/Counter1 Overflow

1 1 1 Timer/Counter1 Capture Event

Bit 7 6 5 4 3 2 1 0

– – ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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24.7.14 ATmega168 Boot Loader Parameters
In Table 24-9 through Table 24-11, the parameters used in the description of the self program-
ming are given. 

Note: The different BOOTSZ Fuse configurations are shown in Figure 24-2.

For details about these two section, see ”NRWW – No Read-While-Write Section” on page 265
and ”RWW – Read-While-Write Section” on page 265

Table 24-9. Boot Size Configuration, ATmega168

BOOTSZ1 BOOTSZ0
Boot 
Size Pages

Application
Flash 
Section

Boot 
Loader
Flash 
Section

End
Application
Section

Boot Reset 
Address 
(Start Boot 
Loader 
Section)

1 1
128 
words

2
0x0000 - 
0x1F7F

0x1F80 - 
0x1FFF

0x1F7F 0x1F80 

1 0
256 
words

4
0x0000 - 
0x1EFF

0x1F00 - 
0x1FFF

0x1EFF 0x1F00

0 1
512 
words

8
0x0000 - 
0x1DFF

0x1E00 - 
0x1FFF

0x1DFF 0x1E00

0 0
1024 
words

16
0x0000 - 
0x1BFF

0x1C00 - 
0x1FFF

0x1BFF 0x1C00

Table 24-10. Read-While-Write Limit, ATmega168

Section Pages Address

Read-While-Write section (RWW) 112 0x0000 - 0x1BFF

No Read-While-Write section (NRWW) 16 0x1C00 - 0x1FFF
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Figure 27-4. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Figure 27-5. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)
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Figure 27-41. Calibrated 8 MHz RC Oscillator Frequency vs. VCC

Figure 27-42. Calibrated 8 MHz RC Oscillator Frequency vs. Osccal Value
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