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ATmega48/88/168
4. AVR CPU Core

4.1 Introduction
This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

4.2 Architectural Overview

Figure 4-1. Block Diagram of the AVR Architecture 

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.
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ATmega48/88/168
5. AVR ATmega48/88/168 Memories
This section describes the different memories in the ATmega48/88/168. The AVR architecture
has two main memory spaces, the Data Memory and the Program Memory space. In addition,
the ATmega48/88/168 features an EEPROM Memory for data storage. All three memory spaces
are linear and regular.

5.1 In-System Reprogrammable Flash Program Memory 
The ATmega48/88/168 contains 4/8/16K bytes On-chip In-System Reprogrammable Flash
memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is orga-
nized as 2/4/8K x 16. For software security, the Flash Program memory space is divided into two
sections, Boot Loader Section and Application Program Section in ATmega88 and ATmega168.
ATmega48 does not have separate Boot Loader and Application Program sections, and the
SPM instruction can be executed from the entire Flash. See SELFPRGEN description in section
”Store Program Memory Control and Status Register – SPMCSR” on page 259 and page 269for
more details.

The Flash memory has an endurance of at least 10,000 wri te/erase cycles. The
ATmega48/88/168 Program Counter (PC) is 11/12/13 bits wide, thus addressing the 2/4/8K pro-
gram memory locations. The operation of Boot Program section and associated Boot Lock bits
for software protection are described in detail in ”Self-Programming the Flash, ATmega48” on
page 256 and ”Boot Loader Support – Read-While-Write Self-Programming, ATmega88 and
ATmega168” on page 264. ”Memory Programming” on page 280 contains a detailed description
on Flash Programming in SPI- or Parallel Programming mode.

Constant tables can be allocated within the entire program memory address space (see the LPM
– Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in ”Instruction Execution Tim-
ing” on page 12.
15
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Figure 8-1. Reset Logic

Notes: 1. Values are guidelines only. Actual values are TBD.
2. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)

8.0.3 Power-on Reset
A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in Table 8-1. The POR is activated whenever VCC is below the detection level. The
POR circuit can be used to trigger the start-up Reset, as well as to detect a failure in supply
voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after VCC rise. The RESET signal is activated again, without any delay,
when VCC decreases below the detection level.

Table 8-1. Reset Characteristics

Symbol Parameter Min(1) Typ(1) Max(1) Units

VPOT

Power-on Reset Threshold Voltage (rising) 0.7 1.0 1.4 V

Power-on Reset Threshold Voltage (falling)(2) 0.6 0.9 1.3 V

VRST  RESET Pin Threshold Voltage 0.2 VCC 0.9 VCC V

tRST Minimum pulse width on RESET Pin 2.5 µs
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9. Interrupts
This section describes the specifics of the interrupt handling as performed in ATmega48/88/168.
For a general explanation of the AVR interrupt handling, refer to ”Reset and Interrupt Handling”
on page 12.

The interrupt vectors in ATmega48, ATmega88 and ATmega168 are generally the same, with
the following differences:

• Each Interrupt Vector occupies two instruction words in ATmega168, and one instruction word 
in ATmega48 and ATmega88.

• ATmega48 does not have a separate Boot Loader Section. In ATmega88 and ATmega168, the 
Reset Vector is affected by the BOOTRST fuse, and the Interrupt Vector start address is 
affected by the IVSEL bit in MCUCR.

9.1 Interrupt Vectors in ATmega48

Table 9-1. Reset and Interrupt Vectors in ATmega48

Vector No. Program Address Source Interrupt Definition

1 0x000 RESET External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset

2 0x001 INT0 External Interrupt Request 0

3 0x002 INT1 External Interrupt Request 1

4 0x003 PCINT0 Pin Change Interrupt Request 0

5 0x004 PCINT1 Pin Change Interrupt Request 1

6 0x005 PCINT2 Pin Change Interrupt Request 2

7 0x006 WDT Watchdog Time-out Interrupt

8 0x007 TIMER2 COMPA Timer/Counter2 Compare Match A

9 0x008 TIMER2 COMPB Timer/Counter2 Compare Match B

10 0x009 TIMER2 OVF Timer/Counter2 Overflow

11 0x00A TIMER1 CAPT Timer/Counter1 Capture Event

12 0x00B TIMER1 COMPA Timer/Counter1 Compare Match A

13 0x00C TIMER1 COMPB Timer/Coutner1 Compare Match B

14 0x00D TIMER1 OVF Timer/Counter1 Overflow

15 0x00E TIMER0 COMPA Timer/Counter0 Compare Match A

16 0x00F TIMER0 COMPB Timer/Counter0 Compare Match B

17 0x010 TIMER0 OVF Timer/Counter0 Overflow

18 0x011 SPI, STC SPI Serial Transfer Complete

19 0x012 USART, RX USART Rx Complete

20 0x013 USART, UDRE USART, Data Register Empty

21 0x014 USART, TX USART, Tx Complete

22 0x015 ADC ADC Conversion Complete

23 0x016 EE READY EEPROM Ready
54
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feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.

12.6.4 Phase Correct PWM Mode
The phase correct PWM mode (WGM02:0 = 1 or 5) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-slope
operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-
TOM. TOP is defined as 0xFF when WGM2:0 = 1, and OCR0A when WGM2:0 = 5. In non-
inverting Compare Output mode, the Output Compare (OC0x) is cleared on the compare match
between TCNT0 and OCR0x while upcounting, and set on the compare match while downcount-
ing. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the symmet-
ric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.
When the counter reaches TOP, it changes the count direction. The TCNT0 value will be equal
to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown
on Figure 12-7. The TCNT0 value is in the timing diagram shown as a histogram for illustrating
the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The
small horizontal line marks on the TCNT0 slopes represent compare matches between OCR0x
and TCNT0.

Figure 12-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC0x pins. Setting the COM0x1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM0x1:0 to three: Setting the COM0A0 bits to
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13. 16-bit Timer/Counter1 with PWM
The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement. The main features are:

• True 16-bit Design (i.e., Allows 16-bit PWM)
• Two independent Output Compare Units
• Double Buffered Output Compare Registers
• One Input Capture Unit
• Input Capture Noise Canceler
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• External Event Counter
• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

13.1 Overview
Most register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, and a lower case “x” replaces the Output Compare unit
channel. However, when using the register or bit defines in a program, the precise form must be
used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on. 

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 13-1. For the actual
placement of I/O pins, refer to ”Pinout ATmega48/88/168” on page 2. CPU accessible I/O Regis-
ters, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit
locations are listed in the ”16-bit Timer/Counter Register Description” on page 128.

The PRTIM1 bit in ”Power Reduction Register - PRR” on page 40 must be written to zero to
enable Timer/Counter1 module.
106
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13.10 16-bit Timer/Counter Register Description

13.10.1 Timer/Counter1 Control Register A – TCCR1A

• Bit 7:6 – COM1A1:0: Compare Output Mode for Channel A

• Bit 5:4 – COM1B1:0: Compare Output Mode for Channel B
The COM1A1:0 and COM1B1:0 control the Output Compare pins (OC1A and OC1B respec-
tively) behavior. If one or both of the COM1A1:0 bits are written to one, the OC1A output
overrides the normal port functionality of the I/O pin it is connected to. If one or both of the
COM1B1:0 bit are written to one, the OC1B output overrides the normal port functionality of the
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit correspond-
ing to the OC1A or OC1B pin must be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x1:0 bits is depen-
dent of the WGM13:0 bits setting. Table 13-1 shows the COM1x1:0 bit functionality when the
WGM13:0 bits are set to a Normal or a CTC mode (non-PWM).

Table 13-2 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast
PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In 
this case the compare match is ignored, but the set or clear is done at TOP. See Section 
“13.8.3” on page 119. for more details.

Bit 7 6 5 4 3 2 1 0

COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 TCCR1A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 13-1. Compare Output Mode, non-PWM

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1 Toggle OC1A/OC1B on Compare Match.

1 0
Clear OC1A/OC1B on Compare Match (Set output to 
low level).

1 1
Set OC1A/OC1B on Compare Match (Set output to 
high level).

Table 13-2. Compare Output Mode, Fast PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1

WGM13:0 = 14 or 15: Toggle OC1A on Compare 
Match, OC1B disconnected (normal port operation). 
For all other WGM1 settings, normal port operation, 
OC1A/OC1B disconnected.

1 0
Clear OC1A/OC1B on Compare Match, set 
OC1A/OC1B at TOP

1 1
Set OC1A/OC1B on Compare Match, clear 
OC1A/OC1B at TOP
128
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ATmega48/88/168
In fast PWM mode, the counter is incremented until the counter value matches the TOP value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 15-6. The TCNT2 value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare
matches between OCR2x and TCNT2.

Figure 15-6. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches TOP. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin.
Setting the COM2x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when WGM2:0 = 3,
and OCR2A when MGM2:0 = 7. (See Table 15-3 on page 149). The actual OC2x value will only
be visible on the port pin if the data direction for the port pin is set as output. The PWM wave-
form is generated by setting (or clearing) the OC2x Register at the compare match between
OCR2x and TCNT2, and clearing (or setting) the OC2x Register at the timer clock cycle the
counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC2x to toggle its logical level on each compare match (COM2x1:0 = 1). The waveform
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OCRnx Update and
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1Period 2 3

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Interrupt Flag Set

4 5 6 7

fOCnxPWM
fclk_I/O
N 256⋅
------------------=
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ATmega48/88/168
• Bit 5 – DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

• Bit 3 – CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 16-3 and Figure 16-4 for an example. The CPOL functionality is sum-
marized below:

• Bit 2 – CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 16-3 and Figure 16-4 for an example. The CPOL
functionality is summarized below:

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have
no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency fosc is
shown in the following table:

Table 16-2. CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

Table 16-3. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

Table 16-4. Relationship Between SCK and the Oscillator Frequency 

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fosc/64
165
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Figure 17-1. USART Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2 and Table 10-9 on page 78 for USART0 pin placement. 

17.2 Clock Generation
The Clock Generation logic generates the base clock for the Transmitter and Receiver. The
USART supports four modes of clock operation: Normal asynchronous, Double Speed asyn-
chronous, Master synchronous and Slave synchronous mode. The UMSELn bit in USART
Control and Status Register C (UCSRnC) selects between asynchronous and synchronous
operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the
UCSRnA Register. When using synchronous mode (UMSELn = 1), the Data Direction Register
for the XCKn pin (DDR_XCKn) controls whether the clock source is internal (Master mode) or
external (Slave mode). The XCKn pin is only active when using synchronous mode.

Figure 17-2 shows a block diagram of the clock generation logic.
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The UPEn bit is set if the next character that can be read from the receive buffer had a Parity
Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is
valid until the receive buffer (UDRn) is read.

17.6.6 Disabling the Receiver
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing
receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero) the Receiver will
no longer override the normal function of the RxDn port pin. The Receiver buffer FIFO will be
flushed when the Receiver is disabled. Remaining data in the buffer will be lost

17.6.7 Flushing the Receive Buffer
The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer will be
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal
operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag
is cleared. The following code example shows how to flush the receive buffer.

Note: 1. See ”About Code Examples” on page 6.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” 
instructions must be replaced with instructions that allow access to extended I/O. Typically 
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

17.7 Asynchronous Data Reception
The USART includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery logic is used for synchronizing the internally generated baud rate
clock to the incoming asynchronous serial frames at the RxDn pin. The data recovery logic sam-
ples and low pass filters each incoming bit, thereby improving the noise immunity of the
Receiver. The asynchronous reception operational range depends on the accuracy of the inter-
nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

17.7.1 Asynchronous Clock Recovery
The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 17-5
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times
the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The hor-
izontal arrows illustrate the synchronization variation due to the sampling process. Note the
larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples
denoted zero are samples done when the RxDn line is idle (i.e., no communication activity).

Assembly Code Example(1)

USART_Flush:

sbis UCSRnA, RXCn

ret

in r16, UDRn

rjmp USART_Flush

C Code Example(1)

void USART_Flush( void )

{

unsigned char dummy;

while ( UCSRnA & (1<<RXCn) ) dummy = UDRn;

}

182
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nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames. When
the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the
frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a
master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular slave MCU has been addressed, it will receive the following data
frames as normal, while the other slave MCUs will ignore the received frames until another
address frame is received.

17.8.1 Using MPCMn
For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn = 7). The
ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame
(TXB = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit character
frame format. 

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in
UCSRnA is set).

2. The Master MCU sends an address frame, and all slaves receive and read this frame. In 
the Slave MCUs, the RXCn Flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If so, 
it clears the MPCMn bit in UCSRnA, otherwise it waits for the next address byte and 
keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is received. 
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU sets 
the MPCMn bit and waits for a new address frame from master. The process then 
repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes full-
duplex operation difficult since the Transmitter and Receiver uses the same character size set-
ting. If 5- to 8-bit character frames are used, the Transmitter must be set to use two stop bit
(USBSn = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit. The
MPCMn bit shares the same I/O location as the TXCn Flag and this might accidentally be
cleared when using SBI or CBI instructions.
186
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ATmega48/88/168
baud rate is given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in the r17:r16 registers. 

Note: 1. See ”About Code Examples” on page 6.

18.5 Data Transfer
Using the USART in MSPI mode requires the Transmitter to be enabled, i.e. the TXENn bit in
the UCSRnB register is set to one. When the Transmitter is enabled, the normal port operation
of the TxDn pin is overridden and given the function as the Transmitter's serial output. Enabling
the receiver is optional and is done by setting the RXENn bit in the UCSRnB register to one.
When the receiver is enabled, the normal pin operation of the RxDn pin is overridden and given
the function as the Receiver's serial input. The XCKn will in both cases be used as the transfer
clock.

Assembly Code Example(1)

USART_Init:

clr r18

out UBRRnH,r18

out UBRRnL,r18

; Setting the XCKn port pin as output, enables master mode.

sbi XCKn_DDR, XCKn

; Set MSPI mode of operation and SPI data mode 0.

ldi r18, (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn)

out UCSRnC,r18

; Enable receiver and transmitter.

ldi r18, (1<<RXENn)|(1<<TXENn)

out UCSRnB,r18

; Set baud rate. 

; IMPORTANT: The Baud Rate must be set after the transmitter is enabled!

out UBRRnH, r17

out UBRRnL, r18

ret

C Code Example(1)

void USART_Init( unsigned int baud )

{

UBRRn = 0;

/* Setting the XCKn port pin as output, enables master mode. */

XCKn_DDR |= (1<<XCKn);

/* Set MSPI mode of operation and SPI data mode 0. */

UCSRnC = (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn);

/* Enable receiver and transmitter. */

UCSRnB = (1<<RXENn)|(1<<TXENn);

/* Set baud rate. */

/* IMPORTANT: The Baud Rate must be set after the transmitter is enabled 
*/

UBRRn = baud;

}
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• Bit 5 – ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles. 

• Bit 4 – ACI: Analog Comparator Interrupt Flag
This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable
When written logic one, this bit enables the input capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
input capture front-end logic, making the comparator utilize the noise canceler and edge select
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the input capture function exists. To make the comparator
trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask
Register (TIMSK1) must be set.

• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select
These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 20-1.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the
bits are changed.

20.1 Analog Comparator Multiplexed Input
It is possible to select any of the ADC7..0 pins to replace the negative input to the Analog Com-
parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be
switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in
ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2..0 in ADMUX
select the input pin to replace the negative input to the Analog Comparator, as shown in Table

Table 20-1. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.
237
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24.7.12 Simple Assembly Code Example for a Boot Loader
;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24), 
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:
; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SELFPRGEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SELFPRGEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SELFPRGEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop
275
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If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current 
greater than the listed test condition.

5. All DC Characteristics contained in this datasheet are based on simulation and characterization of other AVR microcontrol-
lers manufactured in the same process technology. These values are preliminary values representing design targets, and 
will be updated after characterization of actual silicon

6. Values with “Power Reduction Register - PRR” disabled (0x00).

26.3 External Clock Drive Waveforms

Figure 26-1. External Clock Drive Waveforms

26.4 External Clock Drive

Note: All DC Characteristics contained in this datasheet are based on simulation and characterization of 
other AVR microcontrollers manufactured in the same process technology. These values are pre-
liminary values representing design targets, and will be updated after characterization of actual 
silicon.

26.5 Maximum Speed vs. VCC
Maximum frequency is dependent on VCC. As shown in Figure 26-2 and Figure 26-3, the Maxi-
mum Frequency vs. VCC curve is linear between 1.8V < VCC < 2.7V and between 2.7V < VCC <
4.5V.

VIL1

VIH1

Table 26-1. External Clock Drive

Symbol Parameter

VCC=1.8-5.5V VCC=2.7-5.5V VCC=4.5-5.5V

UnitsMin. Max. Min. Max. Min. Max.

1/tCLCL
Oscillator 
Frequency

0 4 0 10 0 20 MHz

tCLCL Clock Period 250 100 50 ns

tCHCX High Time 100 40 20 ns

tCLCX Low Time 100 40 20 ns

tCLCH Rise Time 2.0 1.6 0.5 µs

tCHCL Fall Time 2.0 1.6 0.5 µs

∆tCLCL

Change in period 
from one clock 
cycle to the next

2 2 2 %
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Figure 27-2. Active Supply Current vs. Frequency (1 - 24 MHz)

Figure 27-3. Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)
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Figure 27-10. Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Figure 27-11. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)
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27.12 Current Consumption of Peripheral Units

Figure 27-43. Brownout Detector Current vs. VCC

Figure 27-44. ADC Current vs. VCC (ADC at 50 kHz)
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