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ATmega48/88/168
dependent as shown in ”ATmega48/88/168 Typical Characteristics – Preliminary Data” on page
307.

Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum VCC. The
delay will not monitor the actual voltage and it will be required to select a delay longer than the
VCC rise time. If this is not possible, an internal or external Brown-Out Detection circuit should be
used. A BOD circuit will ensure sufficient VCC before it releases the reset, and the time-out delay
can be disabled. Disabling the time-out delay without utilizing a Brown-Out Detection circuit is
not recommended. 

The oscillator is required to oscillate for a minimum number of cycles before the clock is consid-
ered stable. An internal ripple counter monitors the oscillator output clock, and keeps the internal
reset active for a given number of clock cycles. The reset is then released and the device will
start to execute. The recommended oscillator start-up time is dependent on the clock type, and
varies from 6 cycles for an externally applied clock to 32K cycles for a low frequency crystal.

The start-up sequence for the clock includes both the time-out delay and the start-up time when
the device starts up from reset. When starting up from Power-save or Power-down mode, VCC is
assumed to be at a sufficient level and only the start-up time is included.

6.3 Low Power Crystal Oscillator
Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be
configured for use as an On-chip Oscillator, as shown in Figure 6-2. Either a quartz crystal or a
ceramic resonator may be used.

This Crystal Oscillator is a low power oscillator, with reduced voltage swing on the XTAL2 out-
put. It gives the lowest power consumption, but is not capable of driving other clock inputs, and
may be more susceptible to noise in noisy environments. In these cases, refer to the ”Full Swing
Crystal Oscillator” on page 29.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for
use with crystals are given in Table 6-3. For ceramic resonators, the capacitor values given by
the manufacturer should be used. 

Table 6-2. Number of Watchdog Oscillator Cycles

Typ Time-out (VCC = 5.0V) Typ Time-out (VCC = 3.0V) Number of Cycles

0 ms 0 ms 0

4.1 ms 4.3 ms 4K (4,096)

65 ms 69 ms 8K (8,192)
27
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8.0.5 Brown-out Detection
ATmega48/88/168 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC

level during operation by comparing it to a fixed trigger level. The trigger level for the BOD can
be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike free
Brown-out Detection. The hysteresis on the detection level should be interpreted as VBOT+ =
VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.

Notes: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where 
this is the case, the device is tested down to VCC = VBOT during the production test. This guar-
antees that a Brown-Out Reset will occur before VCC drops to a voltage where correct 
operation of the microcontroller is no longer guaranteed. The test is performed using 
BODLEVEL = 110 and BODLEVEL = 101 for ATmega48V/88V/168V, and BODLEVEL = 101 
and BODLEVEL = 101 for ATmega48/88/168.

2. Min/Max values applicable for ATmega48.

When the BOD is enabled, and VCC decreases to a value below the trigger level (VBOT- in Figure
8-5), the Brown-out Reset is immediately activated. When VCC increases above the trigger level
(VBOT+ in Figure 8-5), the delay counter starts the MCU after the Time-out period tTOUT has
expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for
longer than tBOD given in Table 8-1.

Table 8-2. BODLEVEL Fuse Coding(1)

BODLEVEL 2..0 Fuses Min VBOT Typ VBOT Max VBOT Units

111 BOD Disabled

110 1.7(2) 1.8 2.0(2)

V101 2.5(2) 2.7 2.9(2)

100 4.1(2) 4.3 4.5(2)

011

Reserved
010

001

000

Table 8-3. Brown-out Characteristics

Symbol Parameter Min Typ Max Units

VHYST Brown-out Detector Hysteresis 50 mV

tBOD Min Pulse Width on Brown-out Reset 2 µs
46
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Figure 12-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 12-10 shows the setting of OCF0B in all modes and OCF0A in all modes except CTC
mode and PWM mode, where OCR0A is TOP.

Figure 12-10. Timer/Counter Timing Diagram, Setting of OCF0x, with Prescaler (fclk_I/O/8)

Figure 12-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode and fast
PWM mode where OCR0A is TOP.

Figure 12-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)
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Table 12-4 shows the COM0A1:0 bit functionality when the WGM02:0 bits are set to phase cor-
rect PWM mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on 
page 121 for more details.

• Bits 5:4 – COM0B1:0: Compare Match Output B Mode
These bits control the Output Compare pin (OC0B) behavior. If one or both of the COM0B1:0
bits are set, the OC0B output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0B pin
must be set in order to enable the output driver.

When OC0B is connected to the pin, the function of the COM0B1:0 bits depends on the
WGM02:0 bit setting. Table 12-5 shows the COM0B1:0 bit functionality when the WGM02:0 bits
are set to a normal or CTC mode (non-PWM).

Table 12-6 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Fast PWM Mode” on page 94 
for more details.

Table 12-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1
WGM02 = 0: Normal Port Operation, OC0A Disconnected.
WGM02 = 1: Toggle OC0A on Compare Match.

1 0
Clear OC0A on Compare Match when up-counting. Set OC0A on 
Compare Match when down-counting.

1 1
Set OC0A on Compare Match when up-counting. Clear OC0A on 
Compare Match when down-counting.

Table 12-5. Compare Output Mode, non-PWM Mode

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Toggle OC0B on Compare Match

1 0 Clear OC0B on Compare Match

1 1 Set OC0B on Compare Match

Table 12-6. Compare Output Mode, Fast PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0 Clear OC0B on Compare Match, set OC0B at TOP

1 1 Set OC0B on Compare Match, clear OC0B at TOP
100
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ATmega48/88/168
15.1.1 Registers
The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are 8-bit reg-
isters. Interrupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag
Register (TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register
(TIMSK2). TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from
the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock
source he Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-
tive when no clock source is selected. The output from the Clock Select logic is referred to as the
timer clock (clkT2).

The double buffered Output Compare Register (OCR2A and OCR2B) are compared with the
Timer/Counter value at all times. The result of the compare can be used by the Waveform Gen-
erator to generate a PWM or variable frequency output on the Output Compare pins (OC2A and
OC2B). See Section “15.4” on page 140. for details. The compare match event will also set the
Compare Flag (OCF2A or OCF2B) which can be used to generate an Output Compare interrupt
request.

15.1.2 Definitions
Many register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 2. However, when using the register or bit
defines in a program, the precise form must be used, i.e., TCNT2 for accessing Timer/Counter2
counter value and so on.

The definitions in Table 15-1 are also used extensively throughout the section.

15.2 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal synchronous or an external asynchronous
clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the AS2
bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter
Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see ”Asyn-
chronous Status Register – ASSR” on page 156. For details on clock sources and prescaler, see
”Timer/Counter Prescaler” on page 158.

15.3 Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
15-2 shows a block diagram of the counter and its surrounding environment.

Table 15-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value 0xFF
(MAX) or the value stored in the OCR2A Register. The assignment is depen-
dent on the mode of operation.
139
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Table 15-4 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to phase cor-
rect PWM mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on 
page 146 for more details.

• Bits 5:4 – COM2B1:0: Compare Match Output B Mode
These bits control the Output Compare pin (OC2B) behavior. If one or both of the COM2B1:0
bits are set, the OC2B output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2B pin
must be set in order to enable the output driver.

When OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the
WGM22:0 bit setting. Table 15-5 shows the COM2B1:0 bit functionality when the WGM22:0 bits
are set to a normal or CTC mode (non-PWM).

Table 15-6 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on 
page 146 for more details.

Table 15-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1
WGM22 = 0: Normal Port Operation, OC2A Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.

1 0
Clear OC2A on Compare Match when up-counting. Set OC2A on 
Compare Match when down-counting.

1 1
Set OC2A on Compare Match when up-counting. Clear OC2A on 
Compare Match when down-counting.

Table 15-5. Compare Output Mode, non-PWM Mode

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Toggle OC2B on Compare Match

1 0 Clear OC2B on Compare Match

1 1 Set OC2B on Compare Match

Table 15-6. Compare Output Mode, Fast PWM Mode(1)

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Reserved

1 0 Clear OC2B on Compare Match, set OC2B at TOP

1 1 Set OC2B on Compare Match, clear OC2B at TOP
150
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ATmega48/88/168
16. Serial Peripheral Interface – SPI
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATmega48/88/168 and peripheral devices or between several AVR devices. The
ATmega48/88/168 SPI includes the following features:

• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

The USART can also be used in Master SPI mode, see “USART in SPI Mode” on page 196. The
PRSPI bit in ”Power Reduction Register - PRR” on page 40 must be written to zero to enable
SPI module.

Figure 16-1. SPI Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2, and Table 10-3 on page 71 for SPI pin placement. 

The interconnection between Master and Slave CPUs with SPI is shown in Figure 16-2. The sys-
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the
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17.2.3 External Clock
External clocking is used by the synchronous slave modes of operation. The description in this
section refers to Figure 17-2 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the
chance of meta-stability. The output from the synchronization register must then pass through
an edge detector before it can be used by the Transmitter and Receiver. This process intro-
duces a two CPU clock period delay and therefore the maximum external XCKn clock frequency
is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recommended to
add some margin to avoid possible loss of data due to frequency variations.

17.2.4 Synchronous Clock Operation
When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either clock input
(Slave) or clock output (Master). The dependency between the clock edges and data sampling
or data change is the same. The basic principle is that data input (on RxDn) is sampled at the
opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Figure 17-3. Synchronous Mode XCKn Timing.

The UCPOLn bit UCRSC selects which XCKn clock edge is used for data sampling and which is
used for data change. As Figure 17-3 shows, when UCPOLn is zero the data will be changed at
rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is set, the data will be changed
at falling XCKn edge and sampled at rising XCKn edge.

17.3 Frame Formats
A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of
the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

fXCK
fOSC

4
-----------<

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample
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ATmega48/88/168
17.6.3 Receive Compete Flag and Interrupt
The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive
buffer. This flag is one when unread data exist in the receive buffer, and zero when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled (RXENn = 0),
the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART Receive
Complete interrupt will be executed as long as the RXCn Flag is set (provided that global inter-
rupts are enabled). When interrupt-driven data reception is used, the receive complete routine
must read the received data from UDRn in order to clear the RXCn Flag, otherwise a new inter-
rupt will occur once the interrupt routine terminates.

17.6.4 Receiver Error Flags
The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and
Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the Error Flags is
that they are located in the receive buffer together with the frame for which they indicate the
error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the
receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location.
Another equality for the Error Flags is that they can not be altered by software doing a write to
the flag location. However, all flags must be set to zero when the UCSRnA is written for upward
compatibility of future USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame
stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one),
and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for
detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn
Flag is not affected by the setting of the USBSn bit in UCSRnC since the Receiver ignores all,
except for the first, stop bits. For compatibility with future devices, always set this bit to zero
when writing to UCSRnA.

The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condition. A
Data OverRun occurs when the receive buffer is full (two characters), it is a new character wait-
ing in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set there
was one or more serial frame lost between the frame last read from UDRn, and the next frame
read from UDRn. For compatibility with future devices, always write this bit to zero when writing
to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved from
the Shift Register to the receive buffer.

The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a Parity
Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For
compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more
details see ”Parity Bit Calculation” on page 173 and ”Parity Checker” on page 181.

17.6.5 Parity Checker
The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set. Type of Par-
ity Check to be performed (odd or even) is selected by the UPMn0 bit. When enabled, the Parity
Checker calculates the parity of the data bits in incoming frames and compares the result with
the parity bit from the serial frame. The result of the check is stored in the receive buffer together
with the received data and stop bits. The Parity Error (UPEn) Flag can then be read by software
to check if the frame had a Parity Error.
181
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• Bits 7..0 – TWD: TWI Data Register 
These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the 2-wire Serial Bus.

19.6.5 TWI (Slave) Address Register – TWAR

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of
TWAR) to which the TWI will respond when programmed as a Slave Transmitter or Receiver,
and not needed in the Master modes. In multi master systems, TWAR must be set in masters
which can be addressed as Slaves by other Masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an
associated address comparator that looks for the slave address (or general call address if
enabled) in the received serial address. If a match is found, an interrupt request is generated.

• Bits 7..1 – TWA: TWI (Slave) Address Register 
These seven bits constitute the slave address of the TWI unit.

• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit 
If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus.

19.6.6 TWI (Slave) Address Mask Register – TWAMR

• Bits 7..1 – TWAM: TWI Address Mask
The TWAMR can be loaded with a 7-bit Salve Address mask. Each of the bits in TWAMR can
mask (disable) the corresponding address bits in the TWI Address Register (TWAR). If the mask
bit is set to one then the address match logic ignores the compare between the incoming
address bit and the corresponding bit in TWAR. Figure 19-10 shown the address match logic in
detail.

Bit 7 6 5 4 3 2 1 0

TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0

Bit 7 6 5 4 3 2 1 0

TWAM[6:0] – TWAMR

Read/Write R/W R/W R/W R/W R/W R/W R/W R

Initial Value 0 0 0 0 0 0 0 0
216
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23.0.3 Performing a Page Write
To execute Page Write, set up the address in the Z-pointer, write “00000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to
zero during this operation.

• The CPU is halted during the Page Write operation.

23.1 Addressing the Flash During Self-Programming
The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 25-8 on page 284), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in Figure 24-3. Note that the Page Erase and Page Write operations are
addressed independently. Therefore it is of major importance that the software addresses the
same page in both the Page Erase and Page Write operation. 

The LPM instruction uses the Z-pointer to store the address. Since this instruction addresses the
Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 23-1. Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 24-3 are listed in Table 25-8 on page 284. 

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0
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24.3 Read-While-Write and No Read-While-Write Flash Sections
Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader soft-
ware update is dependent on which address that is being programmed. In addition to the two
sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also
divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-
Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 24-
7 on page 277 and Figure 24-2 on page 267. The main difference between the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section can be 
read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted during the 
entire operation.

Note that the user software can never read any code that is located inside the RWW section dur-
ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which
section that is being programmed (erased or written), not which section that actually is being
read during a Boot Loader software update.

24.3.1 RWW – Read-While-Write Section
If a Boot Loader software update is programming a page inside the RWW section, it is possible
to read code from the Flash, but only code that is located in the NRWW section. During an on-
going programming, the software must ensure that the RWW section never is being read. If the
user software is trying to read code that is located inside the RWW section (i.e., by a
call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown
state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader sec-
tion. The Boot Loader section is always located in the NRWW section. The RWW Section Busy
bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will be read
as logical one as long as the RWW section is blocked for reading. After a programming is com-
pleted, the RWWSB must be cleared by software before reading code located in the RWW
section. See Section “24.5.1” on page 269. for details on how to clear RWWSB.

24.3.2 NRWW – No Read-While-Write Section
The code located in the NRWW section can be read when the Boot Loader software is updating
a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU
is halted during the entire Page Erase or Page Write operation.

Table 24-1. Read-While-Write Features

Which Section does the Z-
pointer Address during 

the Programming?

Which Section can be 
read during 

Programming? CPU Halted?
Read-While-Write 

Supported?

RWW Section NRWW Section No Yes

NRWW Section None Yes No
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Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady state 

conditions (non-transient), the following must be observed:
ATmega48:
1] The sum of all IOL, for ports C0 - C5, should not exceed 100 mA.
2] The sum of all IOL, for ports C6, D0 - D4, should not exceed 100 mA.
3] The sum of all IOL, for ports B0 - B7, D5 - D7, should not exceed 100 mA.
ATmega88/168:
1] The sum of all IOL, for ports C0 - C5, should not exceed 100 mA.
2] The sum of all IOL, for ports C6, D0 - D4, should not exceed 100 mA.
3] The sum of all IOL, for ports B0 - B7, D5 - D7, should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater 
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady state 
conditions (non-transient), the following must be observed:
ATmega48:
1] The sum of all IOH, for ports C0 - C5, should not exceed 100 mA.
2] The sum of all IOH, for ports C6, D0 - D4, should not exceed 100 mA.
3] The sum of all IOH, for ports B0 - B7, D5 - D7, should not exceed 100 mA.
ATmega88/168:
1] The sum of all IOH, for ports C0 - C5, should not exceed 100 mA.
2] The sum of all IOH, for ports C6, D0 - D4, should not exceed 100 mA.
3] The sum of all IOH, for ports B0 - B7, D5 - D7, should not exceed 100 mA.

RRST Reset Pull-up Resistor 30 60 kΩ

RPU I/O Pin Pull-up Resistor 20 50 kΩ

ICC

Power Supply Current(6)

Active 1MHz, VCC = 2V

(ATmega48/88/168V)
0.55 mA

Active 4MHz, VCC = 3V

(ATmega48/88/168L)
3.5 mA

Active 8MHz, VCC = 5V

(ATmega48/88/168)
12 mA

Idle 1MHz, VCC = 2V

(ATmega48/88/168V)
0.25 0.5 mA

Idle 4MHz, VCC = 3V

(ATmega48/88/168L)
1.5 mA

Idle 8MHz, VCC = 5V

(ATmega48/88/168)
5.5 mA

Power-down mode
WDT enabled, VCC = 3V <8 15 µA

WDT disabled, VCC = 3V <1 2 µA

VACIO
Analog Comparator 
Input Offset Voltage

VCC = 5V
Vin = VCC/2

<10 40 mV

IACLK
Analog Comparator 
Input Leakage Current

VCC = 5V
Vin = VCC/2

-50 50 nA

tACID
Analog Comparator 
Propagation Delay

VCC = 2.7V
VCC = 4.0V

750
500

ns

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted)  (Continued)

Symbol Parameter Condition Min.(5) Typ. Max.(5) Units
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ATmega48/88/168
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current 
greater than the listed test condition.

5. All DC Characteristics contained in this datasheet are based on simulation and characterization of other AVR microcontrol-
lers manufactured in the same process technology. These values are preliminary values representing design targets, and 
will be updated after characterization of actual silicon

6. Values with “Power Reduction Register - PRR” disabled (0x00).

26.3 External Clock Drive Waveforms

Figure 26-1. External Clock Drive Waveforms

26.4 External Clock Drive

Note: All DC Characteristics contained in this datasheet are based on simulation and characterization of 
other AVR microcontrollers manufactured in the same process technology. These values are pre-
liminary values representing design targets, and will be updated after characterization of actual 
silicon.

26.5 Maximum Speed vs. VCC
Maximum frequency is dependent on VCC. As shown in Figure 26-2 and Figure 26-3, the Maxi-
mum Frequency vs. VCC curve is linear between 1.8V < VCC < 2.7V and between 2.7V < VCC <
4.5V.

VIL1

VIH1

Table 26-1. External Clock Drive

Symbol Parameter

VCC=1.8-5.5V VCC=2.7-5.5V VCC=4.5-5.5V

UnitsMin. Max. Min. Max. Min. Max.

1/tCLCL
Oscillator 
Frequency

0 4 0 10 0 20 MHz

tCLCL Clock Period 250 100 50 ns

tCHCX High Time 100 40 20 ns

tCLCX Low Time 100 40 20 ns

tCLCH Rise Time 2.0 1.6 0.5 µs

tCHCL Fall Time 2.0 1.6 0.5 µs

∆tCLCL

Change in period 
from one clock 
cycle to the next

2 2 2 %
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Figure 26-2. Maximum Frequency vs. VCC, ATmega48V/88V/168V

Figure 26-3. Maximum Frequency vs. VCC, ATmega48/88/168

26.6 2-wire Serial Interface Characteristics
Table 26-2 describes the requirements for devices connected to the 2-wire Serial Bus. The ATmega48/88/168 2-wire Serial
Interface meets or exceeds these requirements under the noted conditions.

Timing symbols refer to Figure 26-4.

10 MHz

4 MHz

1.8V 2.7V 5.5V

Safe Operating Area

20 MHz

10 MHz

2.7V 4.5V 5.5V

Safe Operating Area

Table 26-2. 2-wire Serial Bus Requirements 

Symbol Parameter Condition Min Max Units

VIL Input Low-voltage -0.5 0.3 VCC V

VIH Input High-voltage 0.7 VCC VCC + 0.5 V

Vhys
(1) Hysteresis of Schmitt Trigger Inputs 0.05 VCC

(2) – V

VOL
(1) Output Low-voltage 3 mA sink current 0 0.4 V

tr
(1) Rise Time for both SDA and SCL 20 + 0.1Cb

(3)(2) 300 ns

tof
(1) Output Fall Time from VIHmin to VILmax 10 pF < Cb < 400 pF(3) 20 + 0.1Cb

(3)(2) 250 ns

tSP
(1) Spikes Suppressed by Input Filter 0 50(2) ns

Ii Input Current each I/O Pin 0.1VCC < Vi < 0.9VCC -10 10 µA
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Figure 27-2. Active Supply Current vs. Frequency (1 - 24 MHz)

Figure 27-3. Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)
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ATmega48/88/168
Figure 27-4. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Figure 27-5. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)
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Figure 27-27. I/O Pin Sink Current vs. Output Voltage (VCC = 1.8V)

27.9 Pin Thresholds and Hysteresis

Figure 27-28. I/O Pin Input Threshold Voltage vs. VCC (VIH, I/O Pin Read As '1')
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ATmega48/88/168
27.10 BOD Thresholds and Analog Comparator Offset

Figure 27-33. BOD Thresholds vs. Temperature (BODLEVEL Is 4.0V)

Figure 27-34. BOD Thresholds vs. Temperature (BODLEVEL Is 2.7V)
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The Asynchronous oscillator does not stop when entering power down mode. This leads to
higher power consumption than expected.

Problem fix / Workaround
Manually disable the asynchronous timer before entering power down.

32.2 Errata ATmega88
The revision letter in this section refers to the revision of the ATmega88 device.

32.2.1 Rev. A
• Writing to EEPROM does not work at low Operating Voltages
• Part may hang in reset

1. Writing to EEPROM does not work at low operating voltages
Writing to the EEPROM does not work at low voltages.

Problem Fix/Workaround
Do not write the EEPROM at voltages below 4.5 Volts.
This will be corrected in rev. B.

2. Part may hang in reset
Some parts may get stuck in a reset state when a reset signal is applied when the internal reset
state-machine is in a specific state. The internal reset state-machine is in this state for approxi-
mately 10 ns immediately before the part wakes up after a reset, and in a 10 ns window when
altering the system clock prescaler. The problem is most often seen during In-System Program-
ming of the device. There are theoretical possibilities of this happening also in run-mode. The
following three cases can trigger the device to get stuck in a reset-state:

- Two succeeding resets are applied where the second reset occurs in the 10ns window before
the device is out of the reset-state caused by the first reset.

- A reset is applied in a 10 ns window while the system clock prescaler value is updated by
software.

- Leaving SPI-programming mode generates an internal reset signal that can trigger this case.

The two first cases can occur during normal operating mode, while the last case occurs only dur-
ing programming of the device.

Problem Fix/Workaround
The first case can be avoided during run-mode by ensuring that only one reset source is active.
If an external reset push button is used, the reset start-up time should be selected such that the
reset line is fully debounced during the start-up time.

The second case can be avoided by not using the system clock prescaler.

The third case occurs during In-System programming only. It is most frequently seen when using
the internal RC at maximum frequency.

If the device gets stuck in the reset-state, turn power off, then on again to get the device out of
this state.

32.2.2 Rev. D
No errata.
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