

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D - 12b SAR
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32pg12b500f1024gm48-cr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Power

The EFM32PG12 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.

The EFM32PG12 device family includes support for internal supply voltage scaling, as well as two different power domains groups for peripherals. These enhancements allow for further supply current reductions and lower overall power consumption.

AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA.

3.2.1 Energy Management Unit (EMU)

The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold.

3.2.2 DC-DC Converter

The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.

3.2.3 Power Domains

The EFM32PG12 has two peripheral power domains for operation in EM2 and lower. If all of the peripherals in a peripheral power domain are configured as unused, the power domain for that group will be powered off in the low-power mode, reducing the overall current consumption of the device.

Peripheral Power Domain 1	Peripheral Power Domain 2
ACMP0	ACMP1
PCNT0	PCNT1
ADC0	PCNT2
LETIMER0	CSEN
LESENSE	DAC0
APORT	LEUART0
-	12C0
-	I2C1
-	IDAC

Table 3.1. Peripheral Power Subdomains

3.5.4 Low Energy Timer (LETIMER)

The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.

3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER)

The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.

3.5.6 Pulse Counter (PCNT)

The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop.

3.5.7 Watchdog Timer (WDOG)

The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS.

3.6 Communications and Other Digital Peripherals

3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:

- ISO7816 SmartCards
- IrDA
- I²S

3.6.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption.

3.6.3 Inter-Integrated Circuit Interface (I²C)

The I²C module provides an interface between the MCU and a serial I²C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I²C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.

3.6.4 Peripheral Reflex System (PRS)

The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement. Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality can be applied by the PRS. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.

4.1.10 General-Purpose I/O (GPIO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input low voltage	V _{IL}	GPIO pins	—	_	IOVDD*0.3	V
Input high voltage	V _{IH}	GPIO pins	IOVDD*0.7	_	_	V
Output high voltage relative	V _{OH}	Sourcing 3 mA, IOVDD \ge 3 V,	IOVDD*0.8		_	V
to IOVDD		DRIVESTRENGTH ¹ = WEAK				
		Sourcing 1.2 mA, IOVDD \ge 1.62 V,	IOVDD*0.6	_	_	V
		DRIVESTRENGTH ¹ = WEAK				
		Sourcing 20 mA, IOVDD \ge 3 V,	IOVDD*0.8	_	—	V
		DRIVESTRENGTH ¹ = STRONG				
		Sourcing 8 mA, IOVDD ≥ 1.62 V,	IOVDD*0.6	_	—	V
		DRIVESTRENGTH ¹ = STRONG				
Output low voltage relative to	V _{OL}	Sinking 3 mA, IOVDD ≥ 3 V,	_	_	IOVDD*0.2	V
IOVDD		DRIVESTRENGTH ¹ = WEAK				
		Sinking 1.2 mA, IOVDD ≥ 1.62 V,			IOVDD*0.4	V
		DRIVESTRENGTH ¹ = WEAK				
		Sinking 20 mA, IOVDD \ge 3 V,			IOVDD*0.2	V
		DRIVESTRENGTH ¹ = STRONG				
		Sinking 8 mA, IOVDD ≥ 1.62 V,	—	_	IOVDD*0.4	V
		DRIVESTRENGTH ¹ = STRONG				
Input leakage current	IIOLEAK	All GPIO except LFXO pins, GPIO \leq IOVDD, T _{amb} \leq 85 °C	—	0.1	TBD	nA
		LFXO Pins, GPIO \leq IOVDD, T _{amb} \leq 85 °C	—	0.1	TBD	nA
		All GPIO except LFXO pins, GPIO ≤ IOVDD, T _{AMB} > 85 °C	—	_	TBD	nA
		LFXO Pins, GPIO ≤ IOVDD, T _{AMB} > 85 °C	—	_	TBD	nA
Input leakage current on 5VTOL pads above IOVDD	I _{5VTOLLEAK}	IOVDD < GPIO ≤ IOVDD + 2 V	—	3.3	15	μA
I/O pin pull-up/pull-down re- sistor	R _{PUD}		TBD	43	TBD	kΩ
Pulse width of pulses re- moved by the glitch suppres- sion filter	t _{IOGLITCH}		TBD	25	TBD	ns

Table 4.17. General-Purpose I/O (GPIO)

4.1.11 Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply current (including I_SENSE)	I _{VMON}	In EM0 or EM1, 1 supply moni- tored	_	6.3	TBD	μA
		In EM0 or EM1, 4 supplies moni- tored	—	12.5	TBD	μA
		In EM2, EM3 or EM4, 1 supply monitored and above threshol	—	62	_	nA
		In EM2, EM3 or EM4, 1 supply monitored and below threshold	_	62	_	nA
		In EM2, EM3 or EM4, 4 supplies monitored and all above threshold	_	99		nA
		In EM2, EM3 or EM4, 4 supplies monitored and all below threshold	—	99		nA
Loading of monitored supply	I _{SENSE}	In EM0 or EM1	_	2	_	μA
		In EM2, EM3 or EM4	_	2	_	nA
Threshold range	V _{VMON_RANGE}		1.62	—	3.4	V
Threshold step size	N _{VMON_STESP}	Coarse	_	200	_	mV
		Fine	—	20	—	mV
Response time	t _{VMON_RES}	Supply drops at 1V/µs rate	_	460	_	ns
Hysteresis	V _{VMON_HYST}			26	—	mV

Table 4.18. Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	VRESOLUTION		6	—	12	Bits
Input voltage range	V _{ADCIN}	Single ended	—	_	2xV _{REF}	V
		Differential	-V _{REF}	_	V _{REF}	V
Input range of external refer- ence voltage, single ended and differential	V _{ADCREFIN_P}		1	_	V _{AVDD}	V
Power supply rejection ²	PSRR _{ADC}	At DC	_	80	_	dB
Analog input common mode rejection ratio	CMRR _{ADC}	At DC	_	80	_	dB
Current from all supplies, us- ing internal reference buffer. Continous operation. WAR-	IADC_CONTI- NOUS_LP	1 Msps / 16 MHz ADCCLK, BIA-SPROG = 0, GPBIASACC = 1 3	_	270	TBD	μA
MUPMODE ⁴ = KEEPADC- WARM		250 ksps / 4 MHz ADCCLK, BIA- SPROG = 6, GPBIASACC = 1 ³	_	125	_	μA
		62.5 ksps / 1 MHz ADCCLK, BIA- SPROG = 15, GPBIASACC = 1 ³	_	80	_	μA
Current from all supplies, us- ing internal reference buffer.	IADC_NORMAL_LP	35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³	_	45	_	μA
Duty-cycled operation. WAR- MUPMODE ⁴ = NORMAL		5 ksps / 16 MHz ADCCLK BIA- SPROG = 0, GPBIASACC = 1 ³	_	8	_	μA
Current from all supplies, us- ing internal reference buffer. Duty-cycled operation.	IADC_STAND- BY_LP	125 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³	_	105	_	μA
AWARMUPMODE ⁴ = KEEP- INSTANDBY or KEEPIN- SLOWACC		35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³		70	_	μA
Current from all supplies, us- ing internal reference buffer. Continous operation. WAR-	I _{ADC_CONTI-} NOUS_HP	1 Msps / 16 MHz ADCCLK, BIA-SPROG = 0, GPBIASACC = 0 3	_	325	_	μA
MUPMODE ⁴ = KEEPADC- WARM		250 ksps / 4 MHz ADCCLK, BIA-SPROG = 6, GPBIASACC = 0 3	_	175	_	μA
		62.5 ksps / 1 MHz ADCCLK, BIA- SPROG = 15, GPBIASACC = 0 ³	_	125	_	μA
Current from all supplies, us- ing internal reference buffer.	IADC_NORMAL_HP	35 ksps / 16 MHz ADCCLK, BIA-SPROG = 0, GPBIASACC = 0 3	_	85	_	μA
Duty-cycled operation. WAR- MUPMODE ⁴ = NORMAL		5 ksps / 16 MHz ADCCLK BIA- SPROG = 0, GPBIASACC = 0 ³	_	16	_	μA
Current from all supplies, us- ing internal reference buffer.	IADC_STAND- BY_HP	125 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ³	—	160	_	μA
Duty-cycled operation. AWARMUPMODE ⁴ = KEEP- INSTANDBY or KEEPIN- SLOWACC		35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ³	_	125	-	μA
Current from HFPERCLK	I _{ADC_CLK}	HFPERCLK = 16 MHz	—	180	_	μA
	I				1	

Table 4.19. Analog to Digital Converter (ADC)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Hysteresis (V _{CM} = 1.25 V,	V _{ACMPHYST}	HYSTSEL ⁵ = HYST0	TBD		TBD	mV
$BIASPROG^4 = 0x10, FULL-$ $BIAS^4 = 1)$		HYSTSEL ⁵ = HYST1	TBD	18	TBD	mV
		HYSTSEL ⁵ = HYST2	TBD	32	TBD	mV
		HYSTSEL ⁵ = HYST3	TBD	44	TBD	mV
		HYSTSEL ⁵ = HYST4	TBD	55	TBD	mV
		HYSTSEL ⁵ = HYST5	TBD	65	TBD	mV
		HYSTSEL ⁵ = HYST6	TBD	77	TBD	mV
		HYSTSEL ⁵ = HYST7	TBD	86	TBD	mV
		HYSTSEL ⁵ = HYST8	TBD	_	TBD	mV
		HYSTSEL ⁵ = HYST9	TBD	-18	TBD	mV
		HYSTSEL ⁵ = HYST10	TBD	-32	TBD	mV
		HYSTSEL ⁵ = HYST11	TBD	-43	TBD	mV
		HYSTSEL ⁵ = HYST12	TBD	-54	TBD	mV
		HYSTSEL ⁵ = HYST13	TBD	-64	TBD	mV
		HYSTSEL ⁵ = HYST14	TBD	-74	TBD	mV
		HYSTSEL ⁵ = HYST15	TBD	-85	TBD	mV
Comparator delay ³	t _{ACMPDELAY}	$BIASPROG^4 = 1$, $FULLBIAS^4 = 0$	—	30	_	μs
		$BIASPROG^4 = 0x10, FULLBIAS^4 = 0$		3.7	_	μs
		BIASPROG ⁴ = $0x02$, FULLBIAS ⁴ = 1	_	360	_	ns
		BIASPROG ⁴ = 0x20, FULLBIAS ⁴ = 1	_	35	—	ns
Offset voltage	V _{ACMPOFFSET}	BIASPROG ⁴ =0x10, FULLBIAS ⁴ = 1	TBD	_	TBD	mV
Reference voltage	V _{ACMPREF}	Internal 1.25 V reference	TBD	1.25	TBD	V
		Internal 2.5 V reference	TBD	2.5	TBD	V
Capacitive sense internal re- sistance	R _{CSRES}	CSRESSEL ⁶ = 0		inf	_	kΩ
		CSRESSEL ⁶ = 1		15	_	kΩ
		CSRESSEL ⁶ = 2	—	27	_	kΩ
		CSRESSEL ⁶ = 3	—	39	_	kΩ
		CSRESSEL ⁶ = 4	—	51		kΩ
		CSRESSEL ⁶ = 5	—	102		kΩ
		CSRESSEL ⁶ = 6	—	164	—	kΩ
		CSRESSEL ⁶ = 7	—	239		kΩ

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Note:	·					
1. Specified configura V. Nominal voltage		iguration is: INCBW = 1, HCMDIS =	1, RESINSEL =	VSS, V _{INPUT} =	0.5 V, V _{OUT}	_{TPUT} = 1.5
2. If the maximum C_L	_{DAD} is exceeded, an i	isolation resistor is required for stabil	ity. See AN0038	for more infor	mation.	
3. When INCBW is se or the OPAMP may		ndwidth is increased. This is allowed	I only when the r	non-inverting cl	ose-loop ga	in is ≥ 3,
drive the resistor fe	edback network. The	d. When the OPAMP is connected wi internal resistor feedback network h IP drives 1.5 V between output and g	as total resistan			
5. Step between 0.2V	and $V_{\mbox{OPA}}\mbox{-}0.2\mbox{V},10\mbox{\%}$	6-90% rising/falling range.				
6. From enable to out	put settled. In sample	e-and-off mode, RC network after OP	AMP will contrib	oute extra delay	. Settling er	ror < 1mV
•	•	-bandwidth product of the OPAMP. Ir on of the feedback network.	n 3x Gain conne	ction, UGF is th	ne gain-band	dwidth
8. Specified configura V _{OUTPUT} = 0.5 V.	tion for Unit gain buff	er configuration is: INCBW = 0, HCM	1DIS = 0, RESIN	ISEL = DISABL	.E. V _{INPUT} =	0.5 V,
V001P01 - 0.0 V.				/ :	will change.	

4.1.18 Pulse Counter (PCNT)

Table 4.25. Pulse Counter (PCNT)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Input frequency	F _{IN}	Asynchronous Single and Quad- rature Modes	—	_	10	MHz
	Sampled Mode filter set to 0.		_		8	kHz
Setup time in asynchronous external clock mode	t _{SU_S1N_S0N}	S1N (data) to S0N (clock)	TBD	_	—	ns

4.1.19 Analog Port (APORT)

Table 4.26. Analog Port (APORT)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply current ¹	I _{APORT}	Continuous operation	_	7	_	μA
Noto:						

Note:

1. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported module currents. Additional peripherals requesting access to APORT do not incur further current.

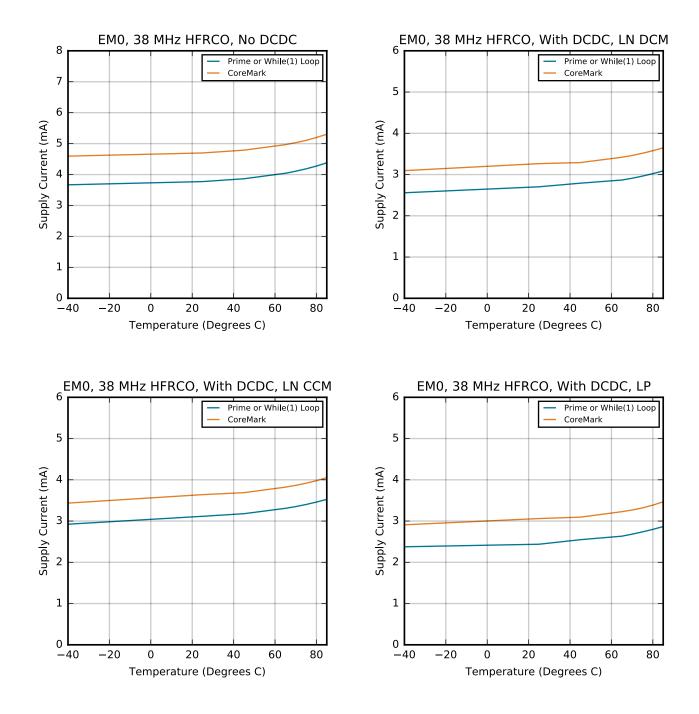


Figure 4.3. EM0 Active Mode Typical Supply Current vs. Temperature

6. Pin Definitions

6.1 EFM32PG12B5xx in BGA125 Device Pinout

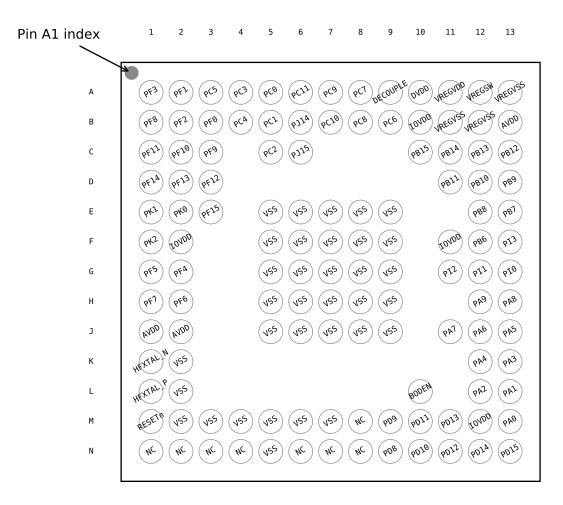


Figure 6.1. EFM32PG12B5xx in BGA125 Device Pinout

	Pin		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
B1	PF8	BUSBY BUSAX	WTIM1_CC1 #30 WTIM1_CC2 #28 WTIM1_CC3 #26 PCNT1_S0IN #21 PCNT1_S1IN #20 PCNT2_S0IN #21 PCNT2_S1IN #20	US2_TX #21 US2_RX #20 US2_CLK #19 US2_CS #18 US2_CTS #17 US2_RTS #16 I2C1_SDA #21 I2C1_SCL #20	ETM_TCLK #0
B2	PF2	BUSBY BUSAX	TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 WTIM0_CDTI2 #30 WTIM1_CC0 #26 WTIM1_CC1 #24 WTIM1_CC3 #20 LE- TIM0_OUT0 #26 LE- TIM0_OUT0 #26 LE- TIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25	US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS #23 US0_CTS #22 US0_RTS #21 US1_TX #26 US1_RX #25 US1_CLK #24 US1_CS #23 US1_CTS #22 US1_RTS #21 LEU0_TX #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25	CMU_CLK0 #6 PRS_CH0 #2 PRS_CH1 #1 PRS_CH2 #0 PRS_CH3 #7 ACMP0_O #26 ACMP1_O #26 DBG_TDO DBG_SWO #0 GPIO_EM4WU0
В3	PF0	BUSBY BUSAX	TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 WTIM0_CDTI1 #30 WTIM0_CDTI2 #28 WTIM1_CC0 #24 WTIM1_CC1 #22 WTIM1_CC1 #22 WTIM1_CC3 #18 LE- TIM0_OUT0 #24 LE- TIM0_OUT0 #24 LE- TIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23	US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 US2_TX #14 US2_RX #13 US2_CLK #12 US2_CS #11 US2_CTS #10 US2_RTS #9 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23	PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK BOOT_TX

	Pin		Pin Alternate Functionality / Description			
Pin #	Pin Name	Analog	Timers	Communication	Other	
Β4	PC4	BUSBY BUSAX	WTIM0_CC0 #24 WTIM0_CC1 #22 WTIM0_CC2 #20 WTIM0_CDTI0 #16 WTIM0_CDTI1 #14 WTIM0_CDTI2 #12 WTIM1_CC0 #8 WTIM1_CC1 #6 WTIM1_CC2 #4 WTIM1_CC3 #2 PCNT1_S0IN #17 PCNT1_S1IN #16 PCNT2_S0IN #17 PCNT2_S1IN #16	US3_TX #22 US3_RX #21 US3_CLK #20 US3_CS #19 US3_CTS #18 US3_RTS #17 I2C1_SDA #17 I2C1_SCL #16		
B5	PC1	BUSAY BUSBX	WTIM0_CC0 #21 WTIM0_CC1 #19 WTIM0_CC2 #17 WTIM0_CDTI0 #13 WTIM0_CDTI1 #11 WTIM0_CDTI2 #9 WTIM1_CC0 #5 WTIM1_CC1 #3 WTIM1_CC2 #1 PCNT1_S0IN #14 PCNT1_S0IN #14 PCNT2_S0IN #14 PCNT2_S1IN #13	US3_TX #19 US3_RX #18 US3_CLK #17 US3_CS #16 US3_CTS #15 US3_RTS #14 I2C1_SDA #14 I2C1_SCL #13		
B6	PJ14	BUSACMP1Y BU- SACMP1X	PCNT1_S0IN #11 PCNT1_S1IN #10 PCNT2_S0IN #11 PCNT2_S1IN #10	US3_TX #16 US3_RX #15 US3_CLK #14 US3_CS #13 US3_CTS #12 US3_RTS #11 I2C1_SDA #11 I2C1_SCL #10	LES_ALTEX2	
Β7	PC10	BUSBY BUSAX	TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 WTIM0_CC0 #30 WTIM0_CC1 #28 WTIM0_CC1 #28 WTIM0_CC1 #28 WTIM0_CC1 #22 WTIM0_CDTI0 #22 WTIM0_CDTI1 #20 WTIM0_CDT10 #22 WTIM0_CDT11 #20 WTIM0_CDT12 #18 WTIM1_CC3 #8 LE- TIM0_OUT0 #15 LE- TIM0_OUT0 #15 LE- TIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14 PCNT2_S0IN #19 PCNT2_S1IN #18	US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14 I2C1_SDA #19 I2C1_SCL #18	CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 ETM_TD3 #3 GPIO_EM4WU12	

	Pin	Pin Alternate Functionality / Description				
Pin #	Pin Name	Analog	Timers	Communication	Other	
D13	PB9	OPA2_OUTALT #0 BUSCY BUSDX	WTIM0_CC0 #13 WTIM0_CC1 #11 WTIM0_CC2 #9 WTIM0_CDTI0 #5 WTIM0_CDT11 #3 WTIM0_CDT12 #1 PCNT1_S0IN #9 PCNT1_S1IN #8 PCNT2_S0IN #9 PCNT2_S1IN #8	US2_TX #12 US2_RX #11 US2_CLK #10 US2_CS #9 US2_CTS #8 US2_RTS #7 US3_TX #13 US3_RX #12 US3_CLK #11 US3_CS #10 US3_CTS #9 US3_RTS #8 I2C1_SDA #9 I2C1_SCL #8		
E1	PK1		PCNT1_S0IN #30 PCNT1_S1IN #29 PCNT2_S0IN #30 PCNT2_S1IN #29	US2_TX #30 US2_RX #29 US2_CLK #28 US2_CS #27 US2_CTS #26 US2_RTS #25 US3_TX #30 US3_RX #29 US3_CLK #28 US3_CS #27 US3_CTS #26 US3_RTS #25 I2C1_SDA #30 I2C1_SCL #29		
E2	PK0	IDAC0_OUT	PCNT1_S0IN #29 PCNT1_S1IN #28 PCNT2_S0IN #29 PCNT2_S1IN #28	US2_TX #29 US2_RX #28 US2_CLK #27 US2_CS #26 US2_CTS #25 US2_RTS #24 US3_TX #29 US3_RX #28 US3_CLK #27 US3_CS #26 US3_CTS #25 US3_RTS #24 I2C1_SDA #29 I2C1_SCL #28		
E3	PF15	BUSAY BUSBX	PCNT1_S0IN #28 PCNT1_S1IN #27 PCNT2_S0IN #28 PCNT2_S1IN #27	US2_TX #28 US2_RX #27 US2_CLK #26 US2_CS #25 US2_CTS #24 US2_RTS #23 US3_TX #28 US3_RX #27 US3_CLK #26 US3_CS #25 US3_CTS #24 US3_RTS #23 I2C1_SDA #28 I2C1_SCL #27		
E5	VSS	Ground				
E6	VSS	Ground				
E7	VSS	Ground				
E8	VSS	Ground				
E9	VSS	Ground				
E12	PB8	BUSDY BUSCX	WTIM0_CC0 #12 WTIM0_CC1 #10 WTIM0_CC2 #8 WTIM0_CDTI0 #4 WTIM0_CDT11 #2 WTIM0_CDT12 #0 PCNT1_S0IN #8 PCNT1_S1IN #7 PCNT2_S0IN #8 PCNT2_S0IN #7	US2_TX #11 US2_RX #10 US2_CLK #9 US2_CS #8 US2_CTS #7 US2_RTS #6 US3_TX #12 US3_RX #11 US3_CLK #10 US3_CS #9 US3_CTS #8 US3_RTS #7 I2C1_SDA #8 I2C1_SCL #7	ETM_TD3 #2	

Pin		Pin Alternate Functionality / Description						
Pin # Pin Name		Analog	Timers	Communication	Other			
МЭ	PD9	BUSCY BUSDX	TIM0_CC0 #17 TIM0_CC1 #16 TIM0_CC2 #15 TIM0_CDTI0 #14 TIM0_CDTI1 #13 TIM0_CDTI2 #12 TIM1_CC0 #17 TIM1_CC1 #16 TIM1_CC2 #15 TIM1_CC3 #14 WTIM0_CC1 #31 WTIM0_CC1 #31 WTIM0_CC1 #31 WTIM0_CDTI0 #25 WTIM0_CDTI0 #25 WTIM0_CDT11 #23 WTIM0_CDT12 #21 WTIM1_CC0 #17 WTIM1_CC1 #15 WTIM1_CC2 #13 WTIM1_CC3 #11 LE- TIM0_OUT0 #17 LE- TIM0_OUT1 #16 PCNT0_S0IN #17 PCNT0_S1IN #16	US0_TX #17 US0_RX #16 US0_CLK #15 US0_CS #14 US0_CTS #13 US0_RTS #12 US1_TX #17 US1_RX #16 US1_CLK #15 US1_CS #14 US1_CTS #13 US1_RTS #12 US3_TX #1 US3_RX #0 US3_CLK #31 US3_CS #30 US3_CTS #29 US3_RTS #28 LEU0_TX #17 LEU0_RX #16 I2C0_SDA #17 I2C0_SCL #16	CMU_CLK0 #4 PRS_CH3 #8 PRS_CH4 #0 PRS_CH5 #6 PRS_CH6 #11 ACMP0_O #17 ACMP1_O #17 LES_CH1			
M10	PD11	BUSCY BUSDX	TIM0_CC0 #19 TIM0_CC1 #18 TIM0_CC2 #17 TIM0_CDTI0 #16 TIM0_CDTI1 #15 TIM0_CDTI2 #14 TIM1_CC0 #19 TIM1_CC1 #18 TIM1_CC2 #17 TIM1_CC3 #16 WTIM0_CDTI0 #27 WTIM0_CDTI0 #27 WTIM0_CDTI1 #25 WTIM0_CDTI1 #25 WTIM0_CDTI2 #23 WTIM1_CC1 #17 WTIM1_CC1 #17 WTIM1_CC2 #15 WTIM1_CC3 #13 LE- TIM0_OUT0 #19 LE- TIM0_OUT0 #19 LE- TIM0_OUT1 #18 PCNT0_S0IN #19 PCNT0_S1IN #18	US0_TX #19 US0_RX #18 US0_CLK #17 US0_CS #16 US0_CTS #15 US0_RTS #14 US1_TX #19 US1_RX #18 US1_CLK #17 US1_CS #16 US1_CTS #15 US1_RTS #14 US3_TX #3 US3_RX #2 US3_CLK #1 US3_CS #0 US3_CTS #31 US3_RTS #30 LEU0_TX #19 LEU0_RX #18 I2C0_SDA #19 I2C0_SCL #18	PRS_CH3 #10 PRS_CH4 #2 PRS_CH5 #1 PRS_CH6 #13 ACMP0_O #19 ACMP1_O #19 LES_CH3			

6.1.1 EFM32PG12B5xx in BGA125 GPIO Overview

The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), with individual pins on each port indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin
Port A	-	-	-	-	-	-	PA9 (5V)	PA8 (5V)	PA7 (5V)	PA6 (5V)	PA5 (5V)	PA4	PA3	PA2	PA1	PAC
Port B	PB15	PB14	PB13	PB12	PB11	PB10 (5V)	PB9 (5V)	PB8 (5V)	PB7 (5V)	PB6 (5V)	-	-	-	-	-	-
Port C	-	-	-	-	PC11 (5V)	PC10 (5V)	PC9 (5V)	PC8 (5V)	PC7 (5V)	PC6 (5V)	PC5 (5V)	PC4 (5V)	PC3 (5V)	PC2 (5V)	PC1 (5V)	PC0 (5V
Port D	PD15	PD14	PD13	PD12 (5V)	PD11 (5V)	PD10 (5V)	PD9 (5V)	PD8 (5V)	-	-	-	-	-	-	-	-
Port F	PF15 (5V)	PF14 (5V)	PF13 (5V)	PF12 (5V)	PF11 (5V)	PF10 (5V)	PF9 (5V)	PF8 (5V)	PF7 (5V)	PF6 (5V)	PF5 (5V)	PF4 (5V)	PF3 (5V)	PF2 (5V)	PF1 (5V)	PF0 (5V
Port I	-	-	-	-	-	-	-	-	-	-	-	-	PI3 (5V)	Pl2 (5V)	PI1 (5V)	PI0 (5V
Port J	PJ15 (5V)	PJ14 (5V)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Port K	-	-	-	-	-	-	-	-	-	-	-	-	-	PK2 (5V)	PK1 (5V)	РК

Table 6.2. EFM32PG12B5xx in BGA125 GPIO Pinout

	Pin	Pin Alternate Functionality / Description								
Pin #	Pin Name	Analog Timers Communication Other								
10	HFXTAL_N	High Frequency Crystal ir	iput pin.	,						
11	HFXTAL_P	High Frequency Crystal o	utput pin.							
12	RESETn	Reset input, active low. To low during reset, and let t		source to this pin, it is requi that reset is released.	red to only drive this pin					
13	NC	No Connect.	No Connect.							
14	NC	No Connect.								
15	NC	No Connect.								
16	NC	No Connect.								
17	PD8	BUSDY BUSCX	WTIM0_CC1 #30 WTIM0_CC2 #28 WTIM0_CDTI0 #24 WTIM0_CDTI1 #22 WTIM0_CDTI2 #20 WTIM1_CC0 #16 WTIM1_CC1 #14 WTIM1_CC2 #12 WTIM1_CC3 #10	US3_TX #0 US3_RX #31 US3_CLK #30 US3_CS #29 US3_CTS #28 US3_RTS #27	LES_CH0					
18	PD9	BUSCY BUSDX	TIM0_CC0 #17 TIM0_CC1 #16 TIM0_CC2 #15 TIM0_CDTI0 #14 TIM0_CDTI1 #13 TIM0_CDTI2 #12 TIM1_CC0 #17 TIM1_CC1 #16 TIM1_CC2 #15 TIM1_CC3 #14 WTIM0_CC1 #31 WTIM0_CC1 #31 WTIM0_CC1 #31 WTIM0_CDTI0 #25 WTIM0_CDTI0 #25 WTIM0_CDT11 #23 WTIM0_CDT12 #21 WTIM1_CC0 #17 WTIM1_CC1 #15 WTIM1_CC3 #11 LE- TIM0_OUT0 #17 LE- TIM0_OUT1 #16 PCNT0_S0IN #17 PCNT0_S1IN #16	US0_TX #17 US0_RX #16 US0_CLK #15 US0_CS #14 US0_CTS #13 US0_RTS #12 US1_TX #17 US1_RX #16 US1_CLK #15 US1_CS #14 US1_CTS #13 US1_RTS #12 US3_TX #1 US3_RX #0 US3_CLK #31 US3_CS #30 US3_CTS #29 US3_RTS #28 LEU0_TX #17 LEU0_RX #16 I2C0_SDA #17 I2C0_SCL #16	CMU_CLK0 #4 PRS_CH3 #8 PRS_CH4 #0 PRS_CH5 #6 PRS_CH6 #11 ACMP0_O #17 ACMP1_O #17 LES_CH1					

7. BGA125 Package Specifications

7.1 BGA125 Package Dimensions

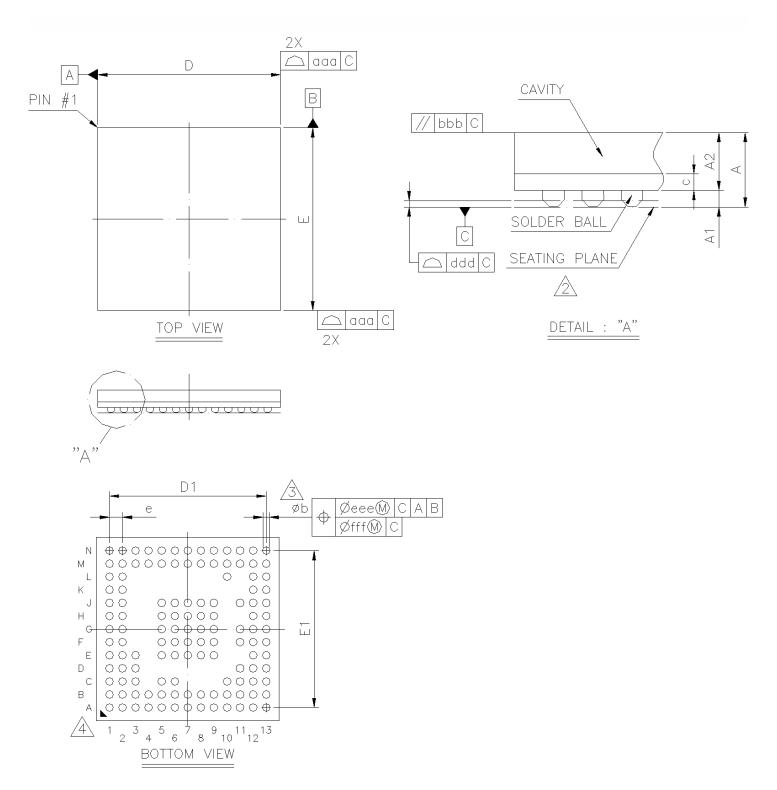


Figure 7.1. BGA125 Package Drawing

8.2 QFN48 PCB Land Pattern

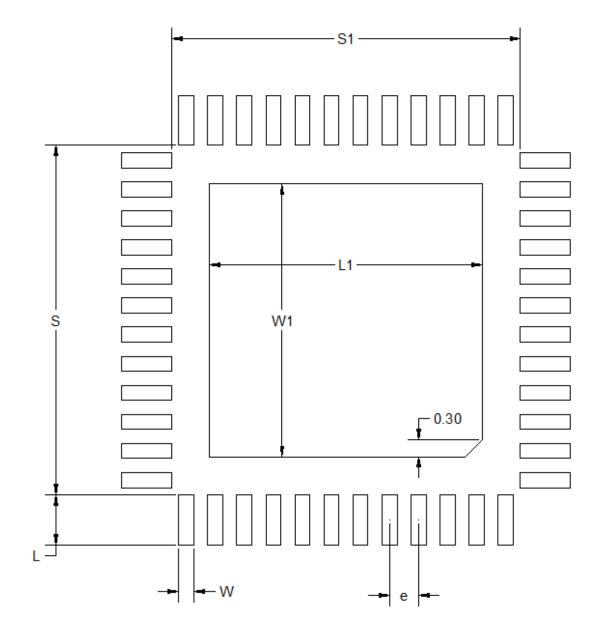


Figure 8.2. QFN48 PCB Land Pattern Drawing

Table of Contents

1.	Feature List	. 1
2.	Ordering Information	. 2
3.	System Overview	. 3
	3.1 Introduction	. 3
	3.2 Power	. 4
	3.2.1 Energy Management Unit (EMU)	. 4
	3.2.2 DC-DC Converter	
	3.2.3 Power Domains	. 4
	3.3 General Purpose Input/Output (GPIO)	. 5
	3.4 Clocking	. 5
	3.4.1 Clock Management Unit (CMU)	
	3.4.2 Internal and External Oscillators	. 5
	3.5 Counters/Timers and PWM	. 5
	3.5.1 Timer/Counter (TIMER)	
	3.5.2 Wide Timer/Counter (WTIMER)	
	3.5.3 Real Time Counter and Calendar (RTCC).	
	3.5.4 Low Energy Timer (LETIMER).	
	3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER)	
	3.5.6 Pulse Counter (PCNT)	
	3.5.7 Watchdog Timer (WDOG)	
	3.6 Communications and Other Digital Peripherals	
	3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)	
	3.6.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)	
	3.6.3 Inter-Integrated Circuit Interface (I ² C)	
	3.6.4 Peripheral Reflex System (PRS)	
	3.6.5 Low Energy Sensor Interface (LESENSE).	
	3.7 Security Features.	
	3.7.1 GPCRC (General Purpose Cyclic Redundancy Check)	
	3.7.2 Crypto Accelerator (CRYPTO).	
	3.7.3 True Random Number Generator (TRNG)	
	3.7.4 Security Management Unit (SMU)	
	3.8 Analog	
	3.8.1 Analog Port (APORT)	
	3.8.2 Analog Comparator (ACMP)	
	3.8.3 Analog to Digital Converter (ADC)	
	3.8.4 Capacitive Sense (CSEN)	
	3.8.6 Digital to Analog Converter (VDAC)	
	3.8.7 Operational Amplifiers	
	3.9 Reset Management Unit (RMU)	
	3.10 Core and Memory	
	3.10.1 Processor Core	. 8

6.	Pin Definitions
	6.1 EFM32PG12B5xx in BGA125 Device Pinout . </td
	6.2 EFM32PG12B5xx in QFN48 Device Pinout
	6.3 Alternate Functionality Overview
	6.4 Analog Port (APORT) Client Maps
7.	BGA125 Package Specifications
	7.1 BGA125 Package Dimensions
	7.2 BGA125 PCB Land Pattern
	7.3 BGA125 Package Marking
8.	QFN48 Package Specifications.
	8.1 QFN48 Package Dimensions.
	8.2 QFN48 PCB Land Pattern
	8.3 QFN48 Package Marking
9.	Revision History
	9.1 Revision 0.5
	9.2 Revision 0.2
Та	ble of Contents

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Supp

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com