STMicroelectronics - STM32F101VFT6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	36MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	80
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f101vft6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3.19 I²C bus

Up to two I²C bus interfaces can operate in multi-master and slave modes. They support standard and fast modes.

They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded. They can be served by DMA and they support SMBus 2.0/PMBus.

2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F101xF and STM32F101xG access line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).

These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The five interfaces are able to communicate at speeds of up to 2.25 Mbit/s.

USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5.

2.3.21 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

All SPIs can be served by the DMA controller.

2.3.22 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-capable.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

2.3.23 ADC (analog to digital converter)

A 12-bit analog-to-digital converter is embedded into STM32F101xF and STM32F101xG access line devices. It has up to 16 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V (for the 2 V $\leq V_{DD} \leq 3.6$ V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 7*.

5.1.7 Current consumption measurement

Figure 10. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 7: Voltage characteristics*, *Table 8: Current characteristics*, and *Table 9: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA} and $V_{DD})^{\left(1\right)}$	-0.3	4.0	
V (2)	Input voltage on five volt tolerant pin	V _{SS} -0.3	V _{DD} +4.0	V
VIN [®]	Input voltage on any other pin	V _{SS} -0.3	Max Max 4.0 4.0 4.0 4.0 50 50 50 50 50 50 50 50 6.3.12: Absolute ratings (electrical ensitivity)	
$ \Delta V_{DDx} $	Variations between different V _{DD} power pins	-	50	
V _{SSX} -V _{SS}	Variations between all the different ground pins including $V_{REF^{-}}$	-	50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 5. maximum rati sensi	3.12: Absolute ngs (electrical itivity)	-

Table 7. Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 8: Current characteristics* for the maximum allowed injected current values.

5.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 12* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.1	2.18	Typ Max L 2.18 2.26 1 2.08 2.16 1 2.28 2.37 1 2.18 2.27 1 2.38 2.48 1 2.38 2.48 1 2.38 2.48 1 2.48 2.58 1 2.48 2.69 1 2.48 2.69 1 2.48 2.69 1 2.58 2.69 1 2.58 2.69 1 2.58 2.69 1 2.78 2.9 1 2.88 3 1 2.88 3 1 1.90 - 1 1.88 1.96 1 1.92 2.0 1 40 - 1	V
		PLS[2:0]=000 (falling edge)	2	2.08	2.16	V
		PLS[2:0]=001 (rising edge)	2.19	2.28	2.37	V
	Image: Parameter Conditions Min Type PLS[2:0]=000 (rising edge) 2.1 2. PLS[2:0]=000 (falling edge) 2 2. PLS[2:0]=001 (rising edge) 2.19 2. PLS[2:0]=001 (rising edge) 2.09 2. PLS[2:0]=001 (rising edge) 2.09 2. PLS[2:0]=010 (rising edge) 2.18 2. PLS[2:0]=010 (rising edge) 2.38 2. PLS[2:0]=011 (rising edge) 2.38 2. PLS[2:0]=011 (rising edge) 2.38 2. PLS[2:0]=010 (rising edge) 2.38 2. PLS[2:0]=101 (rising edge) 2.38 2. PLS[2:0]=101 (rising edge) 2.47 2. PLS[2:0]=100 (rising edge) 2.47 2. PLS[2:0]=101 (rising edge) 2.66 2. PLS[2:0]=111 (rising edge) 2.66 2. PL	2.18	2.27	V		
		PLS[2:0]=010 (rising edge)	2.28	Min Typ Max Unit 2.1 2.18 2.26 V 2 2.08 2.16 V 2.19 2.28 2.37 V 2.09 2.18 2.27 V 2.09 2.18 2.27 V 2.09 2.18 2.27 V 2.28 2.38 2.47 V 2.18 2.28 2.38 V 2.18 2.28 2.38 V 2.18 2.48 2.58 V 2.38 2.48 2.59 V 2.47 2.58 2.69 V 2.47 2.58 2.69 V 2.47 2.58 2.69 V 2.47 2.58 2.69 V 2.66 2.78 2.9 V 2.56 2.68 3 V 2.66 2.78 2.9 V 1.84 1.92 2.0	V	
		PLS[2:0]=010 (falling edge)	2.18		V	
		PLS[2:0]=011 (rising edge)	2.38		V	
V	Programmable voltage	PLS[2:0]=011 (falling edge)	2.28	2.38	Max Un 2.26 V 2.16 V 2.37 V 2.48 V 2.38 V 2.69 V 2.69 V 2.69 V 2.69 V 2.69 V 2.9 V 3 V 2.9 V - m ¹ 1.96 V 3.5 m:	V
¥ PVD	detector level selection	PLS[2:0]=100 (rising edge)	Denditions Min Typ Max Unit 00 (rising edge) 2.1 2.18 2.26 V 00 (falling edge) 2 2.08 2.16 V 01 (rising edge) 2.19 2.28 2.37 V 01 (rising edge) 2.09 2.18 2.27 V 10 (rising edge) 2.28 2.38 2.48 V 10 (rising edge) 2.18 2.28 2.38 V 11 (rising edge) 2.38 2.48 V 00 (rising edge) 2.47 2.58 2.69 V 00 (rising edge) 2.47 2.58 2.69 V 00 (rising edge) 2.47 2.58 2.69 V 01 (rising edge) 2.57 2.68 2.79 V 01 (rising edge) 2.56 2.68 2.8 V 10 (rising edge) 2.56 2.68 2.8 V 11 (rising edge) 2.66 2.78 2.9 V			
Symbol Parameter PLS[2:0] PLS[2:0] PLS[2:0] VPORhyst ⁽²⁾ PVD hysteresis VPOR/PDR Power on/power down reset threshold Reset temporization Fallin		PLS[2:0]=100 (falling edge)	2.37	2.48	2.59	V
	PLS[2:0]=101 (rising edge)	2.57	2.68	2.79	V	
		arameter Conditions Min Typ Max Uni PLS[2:0]=000 (rising edge) 2.1 2.18 2.26 V PLS[2:0]=000 (falling edge) 2 2.08 2.16 V PLS[2:0]=001 (rising edge) 2.19 2.28 2.37 V PLS[2:0]=001 (falling edge) 2.09 2.18 2.27 V PLS[2:0]=010 (falling edge) 2.28 2.38 2.48 V PLS[2:0]=010 (falling edge) 2.18 2.28 2.38 V PLS[2:0]=010 (falling edge) 2.18 2.28 2.38 V PLS[2:0]=010 (falling edge) 2.38 2.48 V PLS[2:0]=010 (rising edge) 2.48 2.58 V PLS[2:0]=100 (rising edge) 2.47 2.58 2.69 V PLS[2:0]=101 (rising edge) 2.57 2.68 2.79 V PLS[2:0]=111 (rising edge) 2.66 2.78 2.9 V PLS[2:0]=111 (rising edge) 2.66 2.78 2.9 V <tr< td=""><td>V</td></tr<>	V			
	rmbolParameterConditionsMinTypMaxUPLS[2:0]=000 (rising edge)2.12.182.261PLS[2:0]=000 (faling edge)22.082.161PLS[2:0]=001 (rising edge)2.092.182.271PLS[2:0]=001 (rising edge)2.092.182.282.381PLS[2:0]=010 (rising edge)2.182.282.382.481PLS[2:0]=010 (rising edge)2.182.282.382.481PLS[2:0]=010 (rising edge)2.182.282.382.481PLS[2:0]=010 (rising edge)2.382.482.591PLS[2:0]=011 (rising edge)2.372.482.591PLS[2:0]=100 (rising edge)2.372.482.591PLS[2:0]=101 (rising edge)2.572.682.691PLS[2:0]=101 (rising edge)2.562.682.691PLS[2:0]=101 (rising edge)2.562.682.691PLS[2:0]=110 (rising edge)2.562.682.691PLS[2:0]=111 (rising edge)2.662.782.91PLS[2:0]=111 (rising edge)2.662.782.91PLS[2:0]=111 (rising edge)2.662.782.91PLS[2:0]=111 (rising edge)1.841.922.01PLS[2:0]=111 (rising edge)1.841.922.01PLS[2:0]=111 (rising edge)1.841.922.01PLS[2:0]=111 (rising e	V				
		V				
		PLS[2:0]=111 (rising edge)	2.76	2.88	Typ Max Unit 2.18 2.26 V 2.08 2.16 V 2.08 2.16 V 2.28 2.37 V 2.18 2.27 V 2.18 2.27 V 2.38 2.48 V 2.38 2.48 V 2.38 2.48 V 2.38 2.48 V 2.58 2.69 V 2.58 2.9 V 2.68 3 V 2.78 2.9 V 100 - mV 1.88 1.96 V 40 - mV 2.55 3.5 ms <td>V</td>	V
		PLS[2:0]=111 (falling edge)	2.66	2.78	2.9	V
V _{PVDhyst} ⁽²⁾	PVD hysteresis	-	-	100	-	mV
VDOD/DDD	Power on/power down	Falling edge	1.8 ⁽¹⁾	1.88	1.96	V
Y POR/PDR	reset threshold	Rising edge	1.84	1.92	2.0	V
V _{PDRhyst} ⁽²⁾	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO} ⁽²⁾	Reset temporization	-	1.5	2.5	3.5	ms

1. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

2. Guaranteed by design.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	25	MHz
V _{HSEH}	OSC_IN input pin high level voltage	Ť	0.7V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	20
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	Duty cycle	-	45	-	55	%
ΙL	OSC_IN Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	±1	μA

Table 21. High-speed external user clock characteristics

1. Guaranteed by design.

Low-speed external user clock generated from an external source

The characteristics given in *Table 22* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 10*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency ⁽¹⁾	-	-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage	-	0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time ⁽¹⁾	-	450	-	-	ne
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾	-	-	-	50	113
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	-	70	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

 Table 22. Low-speed user external clock characteristics

1. Guaranteed by design.

Figure 15. High-speed external clock source AC timing diagram

- Note: For C_{L1} and C_{L2} , it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . Load capacitance C_L has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
- **Caution:** To avoid exceeding the maximum value of C_{L1} and C_{L2} (15 pF) it is strongly recommended to use a resonator with a load capacitance $C_L \le 7$ pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of C_L = 6 pF, and C_{stray} = 2 pF, then C_{L1} = C_{L2} = 8 pF.

5.3.7 Internal clock source characteristics

The parameters given in *Table 25* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-		-	8	-	MHz
DuCy _(HSI)	Duty cycle	-		45	-	55	%
ACC _{HSI}	Accuracy of the HSI oscillator	User-trimmed with the RCC_CR register ⁽²⁾		-	-	1 ⁽³⁾	%
		Factory- calibrated ⁽⁴⁾	$T_A = -40$ to 105 °C	-2	-	2.5	%
			$T_A = -10$ to 85 °C	-1.5	-	2.2	%
			$T_A = 0$ to 70 °C	-1.3	-	2	%
			T _A = 25 °C	-1.1	-	1.8	%
t _{su(HSI)} ⁽⁴⁾	HSI oscillator startup time	-		1	-	2	μs
I _{DD(HSI)} ⁽⁴⁾	HSI oscillator power consumption	-		-	80	100	μA

Table 25. HSI oscillator characteristics⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 85 °C unless otherwise specified.

- 2. Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI) calibration" available from the ST website www.st.com
- 3. Guaranteed by design.
- 4. Guaranteed by characterization results.

Low-speed internal (LSI) RC oscillator

Table 26. LSI oscillator characteristics ⁽¹⁾

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI} ⁽²⁾	Frequency	30	40	60	kHz
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	0.65	1.2	μÂ

1. V_{DD} = 3 V, T_A = -40 to 85 °C unless otherwise specified.

- 2. Guaranteed by characterization results.
- 3. Guaranteed by design.

Wakeup time from low-power mode

The wakeup times given in *Table 27* are measured on a wakeup phase with an 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol	Parameter	Тур	Unit
t _{WUSLEEP} (1)	Wakeup from Sleep mode	1.8	μs
twustop ⁽¹⁾	Wakeup from Stop mode (regulator in run mode)	3.6	110
	Wakeup from Stop mode (regulator in low-power mode)	5.4	μs
t _{WUSTDBY} ⁽¹⁾	Wakeup from Standby mode	50	μs

Table 27. Low-power mode wakeup timings

1. The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction.

Symbol	Parameter	Conditions	Value	Unit	
Symbol	Farameter	Conditions	Min ⁽¹⁾	Omit	
N _{END}	Endurance	$T_A = -40$ °C to 85 °C	10	kcycles	
+	Data rotantian	T _A = 85 °C, 1 kcycle ⁽²⁾	30	Voars	
^I RET		T _A = 55 °C, 10 kcycle ⁽²⁾	20	Tears	

Table 30	Flach	memory	ondurance	and	data	retention
Table 30.	riasn	memory	endurance	anu	uala	retention

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

5.3.10 FSMC characteristics

Asynchronous waveforms and timings

Figure 19 through *Figure 22* represent asynchronous waveforms and *Table 31* through *Table 34* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- AddressSetupTime = 0
- AddressHoldTime = 1
- DataSetupTime = 1

Table 37. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.6	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)	-	1.5	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	2	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	0.5	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	1	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 025)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 025)	2	-	ns
t _{d(CLKL-NOEL)}	FSMC_CLK low to FSMC_NOE low	-	t _{HCLK} + 1	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	1.5	-	ns
t _{su(DV-CLKH)}	FSMC_D[15:0] valid data before FSMC_CLK high	3.5	-	ns
t _{h(CLKH-DV)}	FSMC_D[15:0] valid data after FSMC_CLK high	0	-	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_SMCLK high	7	-	ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2	-	ns

1. C_L = 15 pF.

Symbol	Parameter	Min	Мах	Unit
tw _(NIOWR)	FSMC_NIOWR low width	8 THCLK	-	ns
tv _(NIOWR-D)	FSMC_NIOWR low to FSMC_D[15:0] valid	-	5 THCLK - 4	ns
th _(NIOWR-D)	FSMC_NIOWR high to FSMC_D[15:0] invalid	11THCLK- 7	-	ns
td _(NCE4_1-NIOWR)	FSMC_NCE4_1 low to FSMC_NIOWR valid	-	5THCLK + 1	ns
th _(NCEx-NIOWR)	FSMC_NCEx high to FSMC_NIOWR invalid	5THCLK - 2.5	-	ns
td _(NIORD-NCEx)	FSMC_NCEx low to FSMC_NIORD valid	-	5THCLK - 0.5	ns
th _(NCEx-NIORD)	FSMC_NCEx high to FSMC_NIORD) valid	5 THCLK - 0.5	-	ns
tw _(NIORD)	FSMC_NIORD low width	8THCLK	-	ns
tsu _(D-NIORD)	FSMC_D[15:0] valid before FSMC_NIORD high	28	-	ns
td _(NIORD-D)	FSMC_D[15:0] valid after FSMC_NIORD high	3	-	ns

Table 40. Switching characteristics for PC Card/CF read and write cycles in I/O spac
--

NAND controller waveforms and timings

Figure 33 through *Figure 36* represent synchronous waveforms and *Table 40* and *Table 41* provide the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FSMC_SetupTime = 0x00;
- COM.FSMC_WaitSetupTime = 0x02;
- COM.FSMC HoldSetupTime = 0x02;
- COM.FSMC HiZSetupTime = 0x00;
- ATT.FSMC_SetupTime = 0x01;
- ATT.FSMC_WaitSetupTime = 0x02;
- ATT.FSMC HoldSetupTime = 0x01;
- ATT.FSMC_HiZSetupTime = 0x00;
- Bank = FSMC_Bank_NAND;
- MemoryDataWidth = FSMC_MemoryDataWidth_16b;
- ECC = FSMC_ECC_Enable;
- ECCPageSize = FSMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0;

The test results are given in Table 46

		Functional s			
Symbol	Description	Negative injection	Positive injection	Unit	
I _{INJ}	Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13	-0 +0			
	Injected current on all FT pins	-5	+0	mA	
	Injected current on any other pin	-5	+5		

Table 46. I/O current injection susceptibility

Output voltage levels

Unless otherwise specified, the parameters given in *Table 48* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit	
V _{OL} ⁽¹⁾	Output Low level voltage for an I/O pin when 8 pins are sunk at the same time	CMOS port ⁽²⁾ ,	-	0.4	V	
V _{OH} ⁽³⁾	Output High level voltage for an I/O pin when 8 pins are sourced at the same time	$1_{O} - 40 \text{ mA},$ 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	V	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	TTL port ⁽²⁾	-	0.4	V	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	$1_{O} - 40 \text{ mA}$ 2.7 V < V _{DD} < 3.6 V	2.4	-	V	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	I _{IO} = +20 mA ⁽⁴⁾	-	1.3	V	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	v	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	I _{IO} = +6 mA ⁽⁴⁾	-	0.4	V	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	V	

Table 48.	Output	voltage	characteristics
-----------	--------	---------	-----------------

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 8* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 8 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Guaranteed by characterization results.

Symbol	Parameter	Conditions	nditions Min		Мах	Unit
V _{DDA}	Power supply	-	2.4	-	3.6	V
V_{REF^+}	Positive reference voltage	-	2.4	-	V _{DDA}	V
V _{REF-}	Negative reference voltage	-	-	0	-	V
I _{VREF}	Current on the V _{REF} input pin	-	-	160	220 ⁽¹⁾	μA
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
$f_{S}^{(2)}$	Sampling rate	-	0.05	-	1	MHz
£ (2)	Extornal trigger frequency	f _{ADC} = 14 MHz	-	-	823	kHz
ITRIG ⁽⁼⁾	External trigger frequency	-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See Equation 1 and Table 57 for details	See Equation 1 and Table 57 for details		50	kΩ
$R_{ADC}^{(2)}$	Sampling switch resistance	-	-	-	1	kΩ
$C_{ADC}^{(2)}$	Internal sample and hold capacitor	-			8	pF
t (2)	Calibration time	f _{ADC} = 14 MHz	5.9			μs
'CAL		-	83			1/f _{ADC}
t. (2)	Injection trigger conversion	f _{ADC} = 14 MHz	-	-	0.214	μs
Yat	latency	-	-	-	3 ⁽⁴⁾	1/f _{ADC}
t. (2)	Regular trigger conversion	f _{ADC} = 14 MHz	-	-	0.143	μs
latr	latency	-	-	-	2 ⁽⁴⁾	1/f _{ADC}
• (2)	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
is		-	1.5		239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	0	0	1	μs
	Total conversion time	f _{ADC} = 14 MHz	1	-	18	μs
t _{CONV} ⁽²⁾	(including sampling time)	-	14 to 252 (t _S for sampling +12.5 for successive approximation)			1/f _{ADC}

 Table 56. ADC characteristics

1. Guaranteed by characterization results.

- 2. Guaranteed by design.
- V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 3: Pinouts and pin descriptions for further details.
- 4. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table 56*.

Equation 1: R_{AIN} max formula:

$$R_{AIN} < \frac{I_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ)
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA

Table 57.	RAIN max	for fanc	= 14	$MHz^{(1)}$
		I ADC		141112

1. Guaranteed by design.

Table 58. ADC accuracy - limited test conditi	ions ⁽¹⁾⁽²⁾
---	------------------------

Symbol	Parameter	Test conditions	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error	$f_{PCLK2} = 28 \text{ MHz},$	±1.3	±2	
EO	Offset error	$f_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega$	±1	±1.5	
EG	Gain error	°C	±0.5	±1.5	LSB
ED	Differential linearity error	Measurements made after	±0.7	±1	
EL	Integral linearity error	$V_{\text{REF+}} = V_{\text{DDA}}$	±0.8	±1.5	

1. ADC DC accuracy values are measured after internal calibration.

ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in *Section 5.3.13* does not affect the ADC accuracy. 2.

3. Guaranteed by characterization results.

Figure 50. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

5.3.19 DAC electrical specifications

Table 60. DAC characteristics

Symbol	Parameter	Cond	Conditions		Тур	Max ⁽¹⁾	Unit	Comments
V _{DDA}	Analog supply voltage			2.4	-	3.6	V	-
V _{REF+}	Reference supply voltage			2.4	-	3.6	V	V _{REF+} must always be below V _{DDA}
V _{SSA}	Ground			0	-	0	V	-
R (2)	Resistive load with	DAC	R _{LOAD} connected to V _{SSA}	5	-	-	kO	-
LOAD	buffer ON	buffer ON	R _{LOAD} connected to V _{DDA}	25	-	-	. 177	-
R ₀ ⁽²⁾	Impedance output with buffer OFF			-	-	15	kΩ	When the buffer is OFF, the minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽²⁾	Capacitive load			-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).

Electrical characteristics

Symbol	Parameter	Condi	tions	Min	Тур	Max ⁽¹⁾	Unit	Comments
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer ON			0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer ON			-	-	V _{DDA} – 0.2	v	code (0x0E0) to (0xF1C) at V_{REF+} = 3.6 V and (0x155) and (0xEAB) at V_{REF+} = 2.4 V.
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer OFF			-	0.5	-	mV	It gives the maximum output
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer OFF			-	-	V _{REF+} – 1LSB	V	excursion of the DAC.
I _{DDVREF+}	DAC DC current consumption in quiescent mode (Standby mode)			-	-	220	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs.
DAC DC current I _{DDA} consumption in quiescent mode ⁽³⁾				-	-	380	μA	With no load, middle code (0x800) on the inputs.
	consumption in quiescent mode ⁽³⁾			-	-	480	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs.
Diffe linea	Differential non nearity Difference			-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code- 1LSB)			-	-	±2	LSB	Given for the DAC in 12-bit configuration.
	Integral non linearity (difference between			-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽¹⁾	measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)			-	-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error			-	-	±10	mV	-
Offset ⁽¹⁾	(difference between measured value at Code (0x800) and			-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V.
	the ideal value = V _{REF+} /2)			-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V.
Gain error ⁽¹⁾	Gain error			-	-	±0.5	%	Given for the DAC in 12bit configuration.

Table 60. DAC characteristics (continued)

Figure 53. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package footprint

1. Dimensions are expressed in millimeters.

Device marking for LQFP64

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

