



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Not For New Designs                                                     |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | CPU12                                                                   |
| Core Size                  | 16-Bit                                                                  |
| Speed                      | 8MHz                                                                    |
| Connectivity               | CANbus, I <sup>2</sup> C, SCI, SPI                                      |
| Peripherals                | POR, PWM, WDT                                                           |
| Number of I/O              | 69                                                                      |
| Program Memory Size        | 128KB (128K x 8)                                                        |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | 2K x 8                                                                  |
| RAM Size                   | 8K x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V                                                             |
| Data Converters            | A/D 16x8/10b                                                            |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 112-LQFP                                                                |
| Supplier Device Package    | 112-LQFP (20x20)                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc912dg128acpve |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



| 21-3  | STOP Recovery Timing Diagram               | 1 |
|-------|--------------------------------------------|---|
| 21-4  | WAIT Recovery Timing Diagram               | 2 |
| 21-5  | Interrupt Timing Diagram43                 | 3 |
| 21-6  | Port Read Timing Diagram                   | 4 |
| 21-7  | Port Write Timing Diagram                  | 4 |
| 21-8  | Multiplexed Expansion Bus Timing Diagram43 | 6 |
|       | A) SPI Master Timing (CPHA = 0)43          | 8 |
|       | B) SPI Master Timing (CPHA = 1)43          | 8 |
| 21-9  | SPI Timing Diagram (1 of 2)43              | 8 |
| 21-9  | A) SPI Slave Timing (CPHA = 0)43           | 9 |
| 21-9  | B) SPI Slave Timing (CPHA = 1)43           | 9 |
| 21-10 | SPI Timing Diagram (2 of 2)43              | 9 |

MC68HC912DT128A — Rev 4.0



**General Description** 

### 1.3 Devices Covered in this Document

The MC68HC912DG128A device is similar to the MC68HC912DT128A, but it has only two MSCAN12 modules. The entire databook applies to both devices, except where differences are noted.

The MC68HC912DT128C and MC68HC912DT128P are devices similar to the MC68HC912DT128A, but with different oscillator configurations. Sections of this book applicable to the MC68HC912DT128A also apply to the MC68HC912DT128C and MC68HC912DT128P, except for the differences highlighted in Section 13. Oscillator.

The MC68HC912DG128C and MC68HC912DG128P are devices similar to the MC68HC912DG128A, but with different oscillator configurations. Sections of this book applicable to the MC68HC912DG128A also apply to the MC68HC912DG128C and MC68HC912DG128P, except for the differences highlighted in Section 13. Oscillator.

**NOTE:** The generic term MC68HC912DT128A is used throughout the document to mean all derivatives mentioned above, except in Section 13. Oscillator, where it refers only to the MC68HC912DT128A and MC68HC912DG128A devices.

### 1.4 Features

- 16-bit CPU12
  - Upward compatible with M68HC11 instruction set
  - Interrupt stacking and programmer's model identical to M68HC11
  - 20-bit ALU
  - Instruction queue
  - Enhanced indexed addressing
- Multiplexed bus
  - Single chip or expanded
  - 16 address/16 data wide or 16 address/8 data narrow modes

Technical Data

MC68HC912DT128A — Rev 4.0

MOTOROLA



| Pin Name                 | Shared    | Pin<br>Number                   | Description                                                                                                                                                                                                                                      |  |  |
|--------------------------|-----------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                          | ροπ       | 112-pin                         |                                                                                                                                                                                                                                                  |  |  |
| IRQ                      | PE1       | 55                              | Maskable interrupt request input provides a means of applying asynchronous interrupt requests to the MCU. Either falling edge-sensitive triggering or level-sensitive triggering is program selectable (INTCR register).                         |  |  |
| XIRQ                     | PE0       | 56                              | Provides a means of requesting asynchronous nonmaskable interrupt requests after reset initialization                                                                                                                                            |  |  |
| SMODN/<br>BKGD/<br>TAGHI | -         | 23                              | Puring reset, this pin determines special or normal operating mode. After reserving single-wire background interface pin is dedicated to the background debug function. Pin function TAGHI used in instruction tagging. See Development Support. |  |  |
| IX[2:0]                  | PK[2:0]   | 109-111                         | Page Index register emulation outputs.                                                                                                                                                                                                           |  |  |
| ECS                      | PK7       | 108                             | Emulation Chip select.                                                                                                                                                                                                                           |  |  |
| PW[3:0]                  | PP[3:0]   | 112, 1–3                        | Pulse Width Modulator channel outputs.                                                                                                                                                                                                           |  |  |
| SS                       | PS7       | 96                              | Slave select output for SPI master mode, input for slave mode or master mode.                                                                                                                                                                    |  |  |
| SCK                      | PS6       | 95                              | Serial clock for SPI system.                                                                                                                                                                                                                     |  |  |
| SDO/MOSI                 | PS5       | 94                              | Master out/slave in pin for serial peripheral interface                                                                                                                                                                                          |  |  |
| SDI/MISO                 | PS4       | 93                              | Master in/slave out pin for serial peripheral interface                                                                                                                                                                                          |  |  |
| TxD1                     | PS3       | 92                              | SCI1 transmit pin                                                                                                                                                                                                                                |  |  |
| RxD1                     | PS2       | 91                              | CI1 receive pin                                                                                                                                                                                                                                  |  |  |
| TxD0                     | PS1       | 90                              | CI0 transmit pin                                                                                                                                                                                                                                 |  |  |
| RxD0                     | PS0       | 89                              | SCI0 receive pin                                                                                                                                                                                                                                 |  |  |
| IOC[7:0]                 | PT[7:0]   | 18–15,<br>7–4                   | Pins used for input capture and output compare in the timer and pulse accumulator subsystem.                                                                                                                                                     |  |  |
| AN1[7:0]                 | PAD1[7:0] | 84/82/80/<br>78/76/74/<br>72/70 | Analog inputs for the analog-to-digital conversion module 1                                                                                                                                                                                      |  |  |
| AN0[7:0]                 | PAD0[7:0] | 83/81/79/<br>77/75/73/<br>71/69 | Analog inputs for the analog-to-digital conversion module 0                                                                                                                                                                                      |  |  |
| TEST                     | -         | 97                              | Used for factory test purposes. Do not connect in the application; may be bonded to 5.5 V max.                                                                                                                                                   |  |  |
| TxCAN2 <sup>(1)</sup>    | -         | 100                             | MSCAN2 transmit pin (MC68HC912DT128A only). Leave unconnected if MSCAN2 is not used.                                                                                                                                                             |  |  |
| RxCAN2 <sup>(1)</sup>    | -         | 101                             | MSCAN2 receive pin (MC68HC912DT128A only). Pin has internal pull-up;<br>where msCAN module is not used, do not tie to VSS.                                                                                                                       |  |  |
| TxCAN1                   | -         | 102                             | MSCAN1 transmit pin. Leave unconnected if MSCAN1 is not used.                                                                                                                                                                                    |  |  |
| RxCAN1                   | -         | 103                             | MSCAN1 receive pin. Pin has internal pull-up; where msCAN module is not used, do not tie to VSS.                                                                                                                                                 |  |  |
| TxCAN0                   | -         | 104                             | 4 MSCAN0 transmit pin. Leave unconnected if MSCAN0 is not used.                                                                                                                                                                                  |  |  |
| RxCAN0                   | -         | 105                             | MSCAN0 receive pin. Pin has internal pull-up; where msCAN module is not used, do not tie to VSS.                                                                                                                                                 |  |  |
| SCL                      | PIB7      | 98                              | I <sup>2</sup> C bus serial clock line pin                                                                                                                                                                                                       |  |  |

MC68HC912DT128A — Rev 4.0

#### **Operating Modes**

while the MCU is in special peripheral mode as internal bus conflicts between BDM and the external master can cause improper operation of both functions.

|        | Bit 7    | 6     | 5    | 4    | 3    | 2      | 1   | Bit 0 |                     |
|--------|----------|-------|------|------|------|--------|-----|-------|---------------------|
|        | SMODN    | MODB  | MODA | ESTR | IVIS | EBSWAI | EMK | EME   |                     |
| RESET: | 0        | 0     | 0    | 1    | 1    | 0      | 1   | 1     | Special Single Chip |
| RESET: | 0        | 0     | 1    | 1    | 1    | 0      | 1   | 1     | Special Exp Nar     |
| RESET: | 0        | 1     | 0    | 1    | 1    | 0      | 1   | 1     | Peripheral          |
| RESET: | 0        | 1     | 1    | 1    | 1    | 0      | 1   | 1     | Special Exp Wide    |
| RESET: | 1        | 0     | 0    | 1    | 0    | 0      | 0   | 0     | Normal Single Chip  |
| RESET: | 1        | 0     | 1    | 1    | 0    | 0      | 0   | 0     | Normal Exp Nar      |
| RESET: | 1        | 1     | 1    | 1    | 0    | 0      | 0   | 0     | Normal Exp Wide     |
| MODE — | Mode Red | ister |      |      |      |        |     |       | \$000B              |

**MODE** — Mode Register

The MODE register controls the MCU operating mode and various configuration options. This register is not in the map in peripheral mode

SMODN, MODB, MODA — Mode Select Special, B and A

These bits show the current operating mode and reflect the status of the BKGD, MODB and MODA input pins at the rising edge of reset.

Read anytime.

SMODN may only be written if SMODN = 0 (in special modes) but the first write is ignored.

MODB, MODA may be written once if SMODN = 1; anytime if SMODN = 0 but the first write is ignored and in special peripheral and reserved modes cannot be selected.

**Technical Data** 

MC68HC912DT128A — Rev 4.0



NDRF — Narrow Data Bus for Register-Following Map Space

This bit enables a narrow bus feature for the 1K byte Register-Following Map. This is useful for accessing 8-bit peripherals and allows 8-bit and 16-bit external memory devices to be mixed in a system. In Expanded Narrow (eight bit) modes, Single Chip Modes, and Peripheral mode, this bit has no effect.

- 0 = Makes Register-Following MAP space act as a full 16 bit data bus.
- 1 = Makes the Register-Following MAP space act the same as an 8 bit only external data bus (data only goes through port A externally).

The Register-Following space is mapped from \$0400 to \$07FF after reset, which is next to the register map. If the registers are moved this space follows.

#### RFSTR1, RFSTR0 — Register Following Stretch

This two bit field determines the amount of clock stretch on accesses to the 1K byte Register Following Map. It is valid regardless of the state of the NDRF bit. In Single Chip and Peripheral Modes this bit has no meaning or effect.

| RFSTR1 RFSTR0 |   | Number of E Clocks<br>Stretched |
|---------------|---|---------------------------------|
| 0             | 0 | 0                               |
| 0             | 1 | 1                               |
| 1             | 0 | 2                               |
| 1             | 1 | 3                               |

EXSTR1, EXSTR0 — External Access Stretch

This two bit field determines the amount of clock stretch on accesses to an external address space. In Single Chip and Peripheral Modes this bit has no meaning or effect.

MC68HC912DT128A - Rev 4.0



### Technical Data — MC68HC912DT128A

# **Section 9. EEPROM Memory**

### 9.1 Contents

| 9.2 | Introduction                            |
|-----|-----------------------------------------|
| 9.3 | EEPROM Selective Write More Zeros       |
| 9.4 | EEPROM Programmer's Model125            |
| 9.5 | EEPROM Control Registers                |
| 9.6 | Program/Erase Operation133              |
| 9.7 | Shadow Word Mapping134                  |
| 9.8 | Programming EEDIVH and EEDIVL Registers |

### 9.2 Introduction

The MC68HC912DT128A EEPROM nonvolatile memory is arranged in a 16-bit configuration. The EEPROM array may be read as either bytes, aligned words or misaligned words. Access times are one bus cycle for byte and aligned word access and two bus cycles for misaligned word operations.

Programming is by byte or aligned word. Attempts to program or erase misaligned words will fail. Only the lower byte will be latched and programmed or erased. Programming and erasing of the user EEPROM can be done in normal modes.

Each EEPROM byte or aligned word must be erased before programming. The EEPROM module supports byte, aligned word, row (32 bytes) or bulk erase, all using the internal charge pump. The erased state is \$FF. The EEPROM module has hardware interlocks which protect stored data from corruption by accidentally enabling the program/erase voltage. Programming voltage is derived from the internal V<sub>DD</sub> supply with an internal charge pump.

MC68HC912DT128A - Rev 4.0



Resets and Interrupts Latching of Interrupts

#### 10.5 Latching of Interrupts

XIRQ is always level triggered and IRQ can be selected as a level triggered interrupt. These level triggered interrupt pins should only be released during the appropriate interrupt service routine. Generally the interrupt service routine will handshake with the interrupting logic to release the pin. In this way, the MCU will never start the interrupt service sequence only to determine that there is no longer an interrupt source. In event that this does occur the trap vector will be taken.

If IRQ is selected as an edge triggered interrupt, the hold time of the level after the active edge is independent of when the interrupt is serviced. As long as the minimum hold time is met, the interrupt will be latched inside the MCU. In this case the IRQ edge interrupt latch is cleared automatically when the interrupt is serviced.

All of the remaining interrupts are latched by the MCU with a flag bit. These interrupt flags should be cleared during an interrupt service routine or when interrupts are masked by the I bit. By doing this, the MCU will never get an unknown interrupt source and take the trap vector.

MC68HC912DT128A - Rev 4.0



**Clock Functions** 

- ACQ Not in Acquisition
  - If AUTO = 1 ( $\overline{ACQ}$  is Read Only)
    - 0 = PLL VCO is not within the desired tolerance of the target frequency. The loop filter is in high bandwidth, acquisition mode.
    - 1 = After the phase lock loop circuit is turned on, indicates the PLL VCO is within the desired tolerance of the target frequency. The loop filter is in low bandwidth, tracking mode.

#### If AUTO = 0

- 0 = High bandwidth PLL loop selected
- 1 = Low bandwidth PLL loop selected
- PSTP Pseudo-STOP Enable
  - 0 = Pseudo-STOP oscillator mode is disabled
  - 1 = Pseudo-STOP oscillator mode is enabled

In Pseudo-STOP mode, the oscillator is still running while the MCU is maintained in STOP mode. This allows for a faster STOP recovery and reduces the mechanical stress and aging of the resonator in case frequent STOP conditions at the expense of a slightly increased power consumption.

- LHIE Limp-Home Interrupt Enable
  - 0 = Limp-Home interrupt is disabled
  - 1 = Limp-Home interrupt is enabled

Forced to 0 when VDDPLL is at VSS level.

NOLHM --- No Limp-Home Mode

- 0 = Loss of reference clock forces the MCU in limp-home mode.
- 1 = Loss of reference clock causes standard Clock Monitor reset.

Read anytime; Normal modes: write once; Special modes: write anytime. Forced to 1 when VDDPLL is at VSS level.



variation or particle contamination).

- 3. Within this range, choose the EXTAL–VSS capacitance closest to  $(C_{EXTAL-VSS} = 2^{*}CL 10pF)$ .
- 4. If the ideal component is between two valid component values (the maximum ESR is sufficient for both component values), then choose the component with the highest maximum ESR or choose an available component between the two listed values.
- 5. Choose the size of the XTAL–VSS capacitance equal to EXTAL–VSS capacitance.
- 6. If the frequency of the crystal falls between listed values, determine the appropriate component for the listed frequency values on either side and extrapolate.
- 7. The maximum allowed capacitor is the highest listed component, and the minimum allowed capacitor is the lowest listed component. 'NA' or 'Not Allowed' means the listed component is not valid or allowed for the given frequency, Shunt Capacitance, and VDDPLL setting.

#### 13.5.3.2 General Specifications

The following limitations apply to every system:

- Ceramic resonators with integrated components must have the integrated components accounted for in the total component value.
- Series cut resonators should not be used. Use parallel cut instead.
- The Load Capacitance should be 12pF or higher, preferably greater than 15pF.

MC68HC912DT128A - Rev 4.0



### **Multiple Serial Interface**

### 16.3 Block diagram



Figure 16-1. Multiple Serial Interface Block Diagram

### 16.4 Serial Communication Interface (SCI)

Two serial communication interfaces are available on the MC68HC912DT128A. These are NRZ format (one start, eight or nine data, and one stop bit) asynchronous communication systems with independent internal baud rate generation circuitry and SCI transmitters and receivers. They can be configured for eight or nine data bits (one of which may be designated as a parity bit, odd or even). If enabled, parity is generated in hardware for transmitted and received data. Receiver parity errors are flagged in hardware. The baud rate generator is based on a modulus counter, allowing flexibility in choosing baud rates. There is a receiver wake-up feature, an idle line detect feature, a loop-back mode, and various error detection features. Two port pins for each SCI provide the external interface for the transmitted data (TXD) and the received data (RXD).

For a faster wake-up out of WAIT mode by a received SCI message, both SCI have the capability of sending a receiver interrupt, if enabled, when RAF (receiver active flag) is set. For compatibility with other M68HC12 products, this feature is active only in WAIT mode and is disabled when VDDPLL supply is at  $V_{SS}$  level.

Technical Data

Semiconductor, Inc

reescale

L.



| IBC5-0<br>(hex) | SCL Divider<br>(clocks) | SDA Hold<br>(clocks) |  |  |  |  |
|-----------------|-------------------------|----------------------|--|--|--|--|
| 00              | 20                      | 7                    |  |  |  |  |
| 01              | 22                      | 7                    |  |  |  |  |
| 02              | 24                      | 8                    |  |  |  |  |
| 03              | 26                      | 8                    |  |  |  |  |
| 04              | 28                      | 9                    |  |  |  |  |
| 05              | 30                      | 9                    |  |  |  |  |
| 06              | 34                      | 10                   |  |  |  |  |
| 07              | 40                      | 10                   |  |  |  |  |
| 08              | 28                      | 7                    |  |  |  |  |
| 09              | 32                      | 7                    |  |  |  |  |
| 0A              | 36                      | 9                    |  |  |  |  |
| 0B              | 40                      | 9                    |  |  |  |  |
| 0C              | 44                      | 11                   |  |  |  |  |
| 0D              | 48                      | 11                   |  |  |  |  |
| 0E              | 56                      | 13                   |  |  |  |  |
| 0F              | 68                      | 13                   |  |  |  |  |
| 10              | 48                      | 9                    |  |  |  |  |
| 11              | 56                      | 9                    |  |  |  |  |
| 12              | 64                      | 13                   |  |  |  |  |
| 13              | 72                      | 13                   |  |  |  |  |
| 14              | 80                      | 17                   |  |  |  |  |
| 15              | 88                      | 17                   |  |  |  |  |
| 16              | 104                     | 21                   |  |  |  |  |
| 17              | 128                     | 21                   |  |  |  |  |
| 18              | 80                      | 9                    |  |  |  |  |
| 19              | 96                      | 9                    |  |  |  |  |
| 1A              | 112                     | 17                   |  |  |  |  |

#### Table 17-2. IIC Divider and SDA Hold values

| IBC5-0<br>(hex) | SCL Divider<br>(clocks) | SDA Hold<br>(clocks) |
|-----------------|-------------------------|----------------------|
| 20              | 160                     | 17                   |
| 21              | 192                     | 17                   |
| 22              | 224                     | 33                   |
| 23              | 256                     | 33                   |
| 24              | 288                     | 49                   |
| 25              | 320                     | 49                   |
| 26              | 384                     | 65                   |
| 27              | 480                     | 65                   |
| 28              | 320                     | 33                   |
| 29              | 384                     | 33                   |
| 2A              | 448                     | 65                   |
| 2B              | 512                     | 65                   |
| 2C              | 576                     | 97                   |
| 2D              | 640                     | 97                   |
| 2E              | 768                     | 129                  |
| 2F              | 960                     | 129                  |
| 30              | 640                     | 65                   |
| 31              | 768                     | 65                   |
| 32              | 896                     | 129                  |
| 33              | 1024                    | 129                  |
| 34              | 1152                    | 193                  |
| 35              | 1280                    | 193                  |
| 36              | 1536                    | 257                  |
| 37              | 1920                    | 257                  |
| 38              | 1280                    | 129                  |
| 39              | 1536                    | 129                  |
| ЗA              | 1792                    | 257                  |

MOTOROLA

MC68HC912DT128A - Rev 4.0



three bits in the identifier acceptance control register (see msCAN12 Identifier Acceptance Control Register (CIDAC)). These identifier hit flags (IDHIT2–0) clearly identify the filter section that caused the acceptance. They simplify the application software's task to identify the cause of the receiver interrupt. In case that more than one hit occurs (two or more filters match) the lower hit has priority.

A hit will also cause a receiver interrupt if enabled.

### 18.6 Interrupts

The msCAN12 supports four interrupt vectors mapped onto eleven different interrupt sources, any of which can be individually masked (for details see msCAN12 Receiver Flag Register (CRFLG) to msCAN12 Transmitter Control Register (CTCR)):

- Transmit interrupt: At least one of the three transmit buffers is empty (not scheduled) and can be loaded to schedule a message for transmission. The TXE flags of the empty message buffers are set.
- *Receive interrupt*: A message has been successfully received and loaded into the foreground receive buffer. This interrupt will be emitted immediately after receiving the EOF symbol. The RXF flag is set.
- *Wake-up interrupt*: An activity on the CAN bus occurred during msCAN12 internal SLEEP mode.
- Error interrupt: An overrun, error or warning condition occurred. The receiver flag register (CRFLG) will indicate one of the following conditions:
  - Overrun: an overrun condition as described in Receive Structures has occurred.
  - Receiver warning: the receive error counter has reached the CPU warning limit of 96.
  - Transmitter warning: the transmit error counter has reached the CPU warning limit of 96.

MC68HC912DT128A - Rev 4.0



Semiconductor, Inc

reescale

Analog-to-Digital Converter

mode is required, the existing continuous sequence must be interrupted, the control registers modified, and a new conversion sequence initiated.

#### MULT — Multi-Channel Sample Mode

- 0 = Sample only the specified channel
- 1 = Sample across many channels

When MULT is 0, the ATD sequence controller samples only from the specified analog input channel for an entire conversion sequence. The analog channel is selected by channel selection code (control bits CC/CB/CA located in ATDCTL5).

When MULT is 1, the ATD sequence controller samples across channels. The number of channels sampled is determined by the sequence length value (S8C, S1C control bits). The first analog channel examined is determined by channel selection code (CC, CB, CA control bits); subsequent channels sampled in the sequence are determined by incrementing the channel selection code.

#### SC — Special Channel Conversion Mode

- 0 = Perform A/D conversion on an analog input channel
- 1 = Perform special channel A/D conversion

SC determines if the ATD module performs A/D conversions on any of the analog input channels (normal operation) or whether it performs a conversion on one of the defined, special channels. The special channels are normally used to test the A/D machine and include converting the high and low reference potentials for the module. The control bits CC/CB/CA are used to indicate which special channel is to be converted.

| CC | СВ | CA | Special       | Expected            |
|----|----|----|---------------|---------------------|
|    |    |    | Channel       | Digital Result Code |
| 0  | Х  | Х  | reserved      | _                   |
| 1  | 0  | 0  | VRH           | \$FF                |
| 1  | 0  | 1  | VRL           | \$00                |
| 1  | 1  | 0  | (VRH + VRL)/2 | \$7F                |
| 1  | 1  | 1  | reserved      | -                   |

| Table 19-8 | 3. Special | Channel | Conversion | Select | Coding |
|------------|------------|---------|------------|--------|--------|
|------------|------------|---------|------------|--------|--------|



Resetting to idle mode defines the only exception of the reset control bit condition to the system reset condition. The reset control bit does not initialize the ADPU bit to its reset condition and therefore does not power down the module. This except allows the module to remain active for other test operations.

#### 19.9.7 PORTAD Port Data Register

The input data port associated with the ATD module is input-only. The port pins are shared with the analog A/D inputs.

PORTAD0/PORTAD1 — Port AD Data Input Register

\$006F/\$01EF

|        | Bit 7 | 6     | 5     | 4     | 3     | 2     | 1     | Bit 0 |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|
|        | PADx7 | PADx6 | PADx5 | PADx4 | PADx3 | PADx2 | PADx1 | PADx0 |
| RESET: | -     | -     | -     | -     | -     | -     | -     | -     |

PADx[7:0] — Port AD Data Input Bits

Reset: These pins reflect the state of the input pins.

The ATD input ports may be used for general purpose digital input. When the port data registers are read, they contain the digital levels appearing on the input pins at the time of the read. Input pins with signal potentials not meeting V  $\parallel$  or V  $\parallel$  specifications will have an indeterminate value.

Use of any Port pin for digital input does not preclude the use of any other Port pin for analog input.

Writes to this register have no meaning at any time.

MC68HC912DT128A - Rev 4.0



#### **Analog-to-Digital Converter**

#### 19.9.8 ADRx A/D Conversion Result Registers (ADR0-15)

\$0070/\$01F0 \$0071/\$01F1 \$0072/\$01F2 \$0073/\$01F3 \$0074/\$01F4 \$0075/\$01F5 \$0076/\$01F6 \$0077/\$01F7 \$0078/\$01F8 \$0079/\$01F9 \$007A/\$01FA \$007B/\$01FB \$007C/\$01FC \$007D/\$01FD \$007E/\$01FE \$007F/\$01FF

| ADRxxH | Bit 15 | 6     | 5 | 4 | 3 | 2 | 1 | Bit 8 |
|--------|--------|-------|---|---|---|---|---|-------|
| ADRxxL | Bit 7  | Bit 6 | 0 | 0 | 0 | 0 | 0 | 0     |
| RESET: | 0      | 0     | 0 | 0 | 0 | 0 | 0 | 0     |

The A/D conversion results are stored in 8 result registers. These registers are designated ADR0 through ADR7.

The result data is formatted using the DJM control bit in ATDCTL2. For 8-bit result data, the result data maps between the high (left justified) and low (right justified) order bytes of the result register. For 10-bit result data, the result data maps between bits 6-15 (left justified) and bits 0-9 (right justified) of the result register.

These registers are normally read-only.

Technical Data

MOTOROLA

Development Support Background Debug Mode

BKGD pin during host-to-target transmissions to speed up rising edges. Since the target does not drive the BKGD pin during this period, there is no need to treat the line as an open-drain signal during host-to-target transmissions.



Figure 20-1. BDM Host to Target Serial Bit Timing



Figure 20-2. BDM Target to Host Serial Bit Timing (Logic 1)

MC68HC912DT128A — Rev 4.0

399



Semiconductor, Inc.

Freescale

Freescale Semiconductor, Inc.

### **Electrical Specifications**



1. <u>SS</u> output mode (DDS7 = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

#### A) SPI Master Timing (CPHA = 0)



1.  $\overline{SS}$  output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

B) SPI Master Timing (CPHA = 1)

#### Figure 21-9. SPI Timing Diagram (1 of 2)

**Technical Data** 

MC68HC912DT128A — Rev 4.0

438



| Reference [MHz] | SYNR | Fbus [MHz] | C [nF] | <b>R [k</b> Ω] | Loop Bandwidth<br>[kHz] | Bandwidth<br>Limit [kHz] |
|-----------------|------|------------|--------|----------------|-------------------------|--------------------------|
| 0.614           | \$0C | 7.98       | 100    | 4.3            | 1.1                     | 157                      |
| 0.614           | \$0C | 7.98       | 4.7    | 20             | 5.3                     | 157                      |
| 0.614           | \$0C | 7.98       | 1      | 43             | 11.5                    | 157                      |
| 0.614           | \$0C | 7.98       | 0.33   | 75             | 20                      | 157                      |
| 0.8             | \$09 | 8.00       | 220    | 2.7            | 0.9                     | 201                      |
| 0.8             | \$09 | 8.00       | 10     | 12             | 4.2                     | 201                      |
| 0.8             | \$09 | 8.00       | 2.2    | 27             | 8.6                     | 201                      |
| 0.8             | \$09 | 8.00       | 0.47   | 56             | 19.2                    | 201                      |
| 1               | \$07 | 8.00       | 220    | 2.4            | 1                       | 251                      |
| 1               | \$07 | 8.00       | 10     | 11             | 4.7                     | 251                      |
| 1               | \$07 | 8.00       | 2.2    | 24             | 9.9                     | 251                      |
| 1               | \$07 | 8.00       | 0.47   | 51             | 21.4                    | 251                      |
| 1.6             | \$05 | 8.00       | 330    | 1.5            | 1                       | 402                      |
| 1.6             | \$05 | 8.00       | 10     | 9.1            | 5.9                     | 402                      |
| 1.6             | \$05 | 8.00       | 3.3    | 15             | 10.2                    | 402                      |
| 1.6             | \$05 | 8.00       | 1      | 27             | 18.6                    | 402                      |
| 2               | \$03 | 8.00       | 470    | 1.1            | 0.96                    | 502                      |
| 2               | \$03 | 8.00       | 22     | 5.1            | 4.4                     | 502                      |
| 2               | \$03 | 8.00       | 4.7    | 11             | 9.6                     | 502                      |
| 2               | \$03 | 8.00       | 1      | 24             | 20.8                    | 502                      |
| 2.66            | \$02 | 8.00       | 220    | 1.5            | 1.6                     | 668                      |
| 2.66            | \$02 | 8.00       | 22     | 4.7            | 5.1                     | 668                      |
| 2.66            | \$02 | 8.00       | 4.7    | 10             | 11                      | 668                      |
| 2.66            | \$02 | 8.00       | 1      | 22             | 24                      | 668                      |
| 4               | \$01 | 8.00       | 220    | 1.2            | 1.98                    | 1005                     |
| 4               | \$01 | 8.00       | 33     | 3              | 5.1                     | 1005                     |
| 4               | \$01 | 8.00       | 10     | 5.6            | 9.3                     | 1005                     |
| 4               | \$01 | 8.00       | 2.2    | 12             | 19.8                    | 1005                     |

#### Table 23-1. Suggested 8MHz Synthesis PLL Filter Elements (Tracking Mode)



Glossary

Technical Data

MC68HC912DT128A — Rev 4.0

MOTOROLA

