



Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| De | eta | i | ls |
|----|-----|---|----|
|    |     |   |    |

| Details                        |                                                                |
|--------------------------------|----------------------------------------------------------------|
| Product Status                 | Active                                                         |
| Number of LABs/CLBs            | 7911                                                           |
| Number of Logic Elements/Cells | 101261                                                         |
| Total RAM Bits                 | 4939776                                                        |
| Number of I/O                  | 338                                                            |
| Number of Gates                | -                                                              |
| Voltage - Supply               | 1.14V ~ 1.26V                                                  |
| Mounting Type                  | Surface Mount                                                  |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                                |
| Package / Case                 | 484-FBGA, CSPBGA                                               |
| Supplier Device Package        | 484-CSPBGA (19x19)                                             |
| Purchase URL                   | https://www.e-xfl.com/product-detail/xilinx/xc6slx100-3csg484c |
|                                |                                                                |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Symbol                                | Des                                                                                                                                                   | cription          |                                     | Min   | Тур  | Max                    | Units |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------|-------|------|------------------------|-------|
|                                       |                                                                                                                                                       | -3, -3N, -2       | Standard performance <sup>(2)</sup> | 1.14  | 1.2  | 1.26                   | V     |
| V <sub>CCINT</sub>                    | Internal supply voltage relative to GND                                                                                                               | -3, -2            | Extended performance <sup>(2)</sup> | 1.2   | 1.23 | 1.26                   | V     |
|                                       |                                                                                                                                                       | -1L               | Standard performance <sup>(2)</sup> | 0.95  | 1.0  | 1.05                   | V     |
| V <sub>CCAUX</sub> <sup>(3)(4)</sup>  | Auxiliary supply voltage relative to GND                                                                                                              | $V_{CCAUX} = 2.5$ | V <sup>(5)</sup>                    | 2.375 | 2.5  | 2.625                  | V     |
|                                       | Auxiliary supply voltage relative to GIVD                                                                                                             | $V_{CCAUX} = 3.3$ | V                                   | 3.15  | 3.3  | 3.45                   | V     |
| V <sub>CCO</sub> <sup>(6)(7)(8)</sup> | Output supply voltage relative to GND                                                                                                                 |                   |                                     | 1.1   | I    | 3.45                   | V     |
|                                       | Input voltage relative to GND                                                                                                                         | All I/O           | Commercial temperature (C)          | -0.5  | _    | 4.0                    | V     |
| V                                     |                                                                                                                                                       | standards         | Industrial temperature (I)          | -0.5  | Ι    | 3.95                   | V     |
| V IN                                  |                                                                                                                                                       | (except PCI)      | Expanded (Q) temperature            | -0.5  | Ι    | 3.95                   | V     |
|                                       |                                                                                                                                                       | PCI I/O stand     | CI I/O standard <sup>(9)</sup>      |       |      | V <sub>CCO</sub> + 0.5 | V     |
| I <sub>IN</sub> <sup>(10)</sup>       | Maximum current through pin using PCI I/O standard when forward biasing the clamp diode. <sup>(9)</sup> Commercial (C) and Industrial temperature (I) |                   |                                     |       | -    | 10                     | mA    |
|                                       |                                                                                                                                                       | -                 | Ι                                   | 7     | mA   |                        |       |
| V <sub>BATT</sub> <sup>(11)</sup>     | Battery voltage relative to GND, $T_i = 0^{\circ}C$ to +85°C (LX75, LX75T, LX100, LX100T, LX150, and LX150T only)                                     |                   |                                     |       |      | 3.6                    | v     |
|                                       |                                                                                                                                                       | Commercial (      | C) range                            | 0     | -    | 85                     | °C    |
| Тj                                    | Junction temperature operating range                                                                                                                  | Industrial tem    | ndustrial temperature (I) range     |       |      | 100                    | °C    |
| ,                                     |                                                                                                                                                       | Expanded (Q       | Expanded (Q) temperature range      |       |      | 125                    | °C    |

#### Notes:

- 1. All voltages are relative to ground.
- See Interface Performances for Memory Interfaces in Table 25. The extended performance range is specified for designs not using the standard V<sub>CCINT</sub> voltage range. The standard V<sub>CCINT</sub> voltage range is used for:
  - Designs that do not use an MCB
  - LX4 devices
  - Devices in the TQG144 or CPG196 packages
  - Devices with the -3N speed grade
- 3. Recommended maximum voltage droop for  $V_{CCAUX}$  is 10 mV/ms.
- 4. During configuration, if  $V_{CCO_2}$  is 1.8V, then  $V_{CCAUX}$  must be 2.5V.
- The -1L devices require V<sub>CCAUX</sub> = 2.5V when using the LVDS\_25, LVDS\_33, BLVDS\_25, LVPECL\_25, RSDS\_25, RSDS\_33, PPDS\_25, and PPDS\_33 I/O standards on inputs. LVPECL\_33 is not supported in the -1L devices.
- 6. Configuration data is retained even if V<sub>CCO</sub> drops to 0V.
- 7. Includes  $V_{CCO}$  of 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.
- 8. For PCI systems, the transmitter and receiver should have common supplies for V<sub>CCO</sub>.
- 9. Devices with a -1L speed grade do not support Xilinx PCI IP.
- 10. Do not exceed a total of 100 mA per bank.
- 11. V<sub>BATT</sub> is required to maintain the battery backed RAM (BBR) AES key when V<sub>CCAUX</sub> is not applied. Once V<sub>CCAUX</sub> is applied, V<sub>BATT</sub> can be unconnected. When BBR is not used, Xilinx recommends connecting to V<sub>CCAUX</sub> or GND. However, V<sub>BATT</sub> can be unconnected.

|                             | V          | ID         | VI     | СМ                  | ٧c      | D          | V <sub>OCM</sub>         |                          | V <sub>OH</sub>        | V <sub>OL</sub>        |
|-----------------------------|------------|------------|--------|---------------------|---------|------------|--------------------------|--------------------------|------------------------|------------------------|
| I/O Standard                | mV,<br>Min | mV,<br>Max | V, Min | V, Max              | mV, Min | mV,<br>Max | V, Min                   | V, Max                   | V, Min                 | V, Max                 |
| LVDS_33 <sup>(2)(3)</sup>   | 100        | 600        | 0.3    | 2.35                | 247     | 454        | 1.125                    | 1.375                    | _                      | —                      |
| LVDS_25 <sup>(2)(3)</sup>   | 100        | 600        | 0.3    | 2.35                | 247     | 454        | 1.125                    | 1.375                    | _                      | _                      |
| BLVDS_25 <sup>(2)(3)</sup>  | 100        | -          | 0.3    | 2.35                | 240     | 460        | Typical 5                | 0% V <sub>CCO</sub>      | _                      | _                      |
| MINI_LVDS_33                | 200        | 600        | 0.3    | 1.95                | 300     | 600        | 1.0                      | 1.4                      | -                      | _                      |
| MINI_LVDS_25                | 200        | 600        | 0.3    | 1.95                | 300     | 600        | 1.0                      | 1.4                      | -                      | _                      |
| LVPECL_33 <sup>(2)(3)</sup> | 100        | 1000       | 0.3    | 2.8 <sup>(1)</sup>  |         |            | Inp                      | uts only                 | 1                      | 1                      |
| LVPECL_25 <sup>(2)(3)</sup> | 100        | 1000       | 0.3    | 1.95                |         |            | Inp                      | uts only                 |                        |                        |
| RSDS_33 <sup>(2)(3)</sup>   | 100        | _          | 0.3    | 1.5                 | 100     | 400        | 1.0                      | 1.4                      | _                      | _                      |
| RSDS_25 <sup>(2)(3)</sup>   | 100        | -          | 0.3    | 1.5                 | 100     | 400        | 1.0                      | 1.4                      | _                      | _                      |
| TMDS_33                     | 150        | 1200       | 2.7    | 3.23 <sup>(1)</sup> | 400     | 800        | V <sub>CCO</sub> - 0.405 | V <sub>CCO</sub> - 0.190 | -                      | _                      |
| PPDS_33 <sup>(2)(3)</sup>   | 100        | 400        | 0.2    | 2.3                 | 100     | 400        | 0.5                      | 1.4                      | -                      | _                      |
| PPDS_25 <sup>(2)(3)</sup>   | 100        | 400        | 0.2    | 2.3                 | 100     | 400        | 0.5                      | 1.4                      | _                      | _                      |
| DISPLAY_PORT                | 190        | 1260       | 0.3    | 2.35                | -       | _          | Typical 5                | 0% V <sub>CCO</sub>      | -                      | _                      |
| DIFF_MOBILE_DDR             | 100        | -          | 0.78   | 1.02                | _       | _          | _                        | _                        | 90% V <sub>CCO</sub>   | 10% V <sub>CCO</sub>   |
| DIFF_HSTL_I                 | 100        | -          | 0.68   | 0.9                 | _       | _          | _                        | _                        | $V_{CCO} - 0.4$        | 0.4                    |
| DIFF_HSTL_II                | 100        | -          | 0.68   | 0.9                 | -       | _          | -                        | _                        | $V_{CCO} - 0.4$        | 0.4                    |
| DIFF_HSTL_III               | 100        | _          | 0.68   | 0.9                 | -       | _          | _                        | _                        | V <sub>CCO</sub> - 0.4 | 0.4                    |
| DIFF_HSTL_I_18              | 100        | -          | 0.8    | 1.1                 | _       | _          | _                        | _                        | $V_{CCO} - 0.4$        | 0.4                    |
| DIFF_HSTL_II_18             | 100        | -          | 0.8    | 1.1                 | -       | _          | -                        | _                        | $V_{CCO} - 0.4$        | 0.4                    |
| DIFF_HSTL_III_18            | 100        | _          | 0.8    | 1.1                 | -       | _          | _                        | _                        | V <sub>CCO</sub> - 0.4 | 0.4                    |
| DIFF_SSTL3_I                | 100        | -          | 1.0    | 1.9                 | _       | _          | _                        | _                        | V <sub>TT</sub> + 0.6  | V <sub>TT</sub> – 0.6  |
| DIFF_SSTL3_II               | 100        | -          | 1.0    | 1.9                 | _       | _          | _                        | _                        | V <sub>TT</sub> + 0.8  | V <sub>TT</sub> – 0.8  |
| DIFF_SSTL2_I                | 100        | _          | 1.0    | 1.5                 | -       | _          | _                        | _                        | V <sub>TT</sub> + 0.61 | V <sub>TT</sub> – 0.61 |
| DIFF_SSTL2_II               | 100        | -          | 1.0    | 1.5                 | _       | _          | _                        | _                        | V <sub>TT</sub> + 0.81 | V <sub>TT</sub> – 0.81 |
| DIFF_SSTL18_I               | 100        | -          | 0.7    | 1.1                 | _       | _          | _                        | _                        | V <sub>TT</sub> + 0.47 | V <sub>TT</sub> – 0.47 |
| DIFF_SSTL18_II              | 100        | _          | 0.7    | 1.1                 | -       | _          | -                        | _                        | V <sub>TT</sub> + 0.6  | V <sub>TT</sub> – 0.6  |
| DIFF_SSTL15_II              | 100        | _          | 0.55   | 0.95                | _       | _          | _                        | _                        | V <sub>TT</sub> + 0.4  | V <sub>TT</sub> – 0.4  |

## Table 10: Differential I/O Standard DC Input and Output Levels

#### Notes:

1. LVPECL\_33 and TMDS\_33 maximum V<sub>ICM</sub> is the lower of V (maximum) or V<sub>CCAUX</sub> – (V<sub>ID</sub>/2)

When V<sub>CCAUX</sub> = 3.3V, the DCD can be higher than 5% for V<sub>ICM</sub> < 0.7V when using these I/O standards: LVDS\_25, LVDS\_33, BLVDS\_25, LVPECL\_25, LVPECL\_33, RSDS\_25, RSDS\_33, PPDS\_25, and PPDS\_33.</li>

3. The -1L devices require V<sub>CCAUX</sub> = 2.5V when using the LVDS\_25, LVDS\_33, BLVDS\_25, LVPECL\_25, RSDS\_25, RSDS\_33, PPDS\_25, and PPDS\_33 I/O standards on inputs. LVPECL\_33 is not supported in the -1L devices.

| Symbol             | Description                 | Conditiona       |        | Unito  |      |     |     |
|--------------------|-----------------------------|------------------|--------|--------|------|-----|-----|
| Symbol             |                             | Conditions       | -3     | -3N    | -2   | -1L |     |
| F <sub>TXOUT</sub> | TXOUTCLK maximum frequency  |                  | 320    | 320    | 270  | N/A | MHz |
| F <sub>RXREC</sub> | RXRECCLK maximum frequency  |                  | 320    | 320    | 270  | N/A | MHz |
| T <sub>RX</sub>    | RXUSRCLK maximum frequency  | 320              | 320    | 270    | N/A  | MHz |     |
| T <sub>RX2</sub>   | RXUSRCLK2 maximum frequency | 1 byte interface | 156.25 | 156.25 | 125  | N/A | MHz |
|                    |                             | 2 byte interface | 160    | 160    | 125  | N/A | MHz |
|                    |                             | 4 byte interface | 80     | 80     | 67.5 | N/A | MHz |
| T <sub>TX</sub>    | TXUSRCLK maximum frequency  |                  | 320    | 320    | 270  | N/A | MHz |
| T <sub>TX2</sub>   | TXUSRCLK2 maximum frequency | 1 byte interface | 156.25 | 156.25 | 125  | N/A | MHz |
|                    |                             | 2 byte interface | 160    | 160    | 125  | N/A | MHz |
|                    |                             | 4 byte interface | 80     | 80     | 67.5 | N/A | MHz |

### Table 21: GTP Transceiver User Clock Switching Characteristics<sup>(1)</sup>

#### Notes:

1. Clocking must be implemented as described in UG386: Spartan-6 FPGA GTP Transceivers User Guide.

#### Table 22: GTP Transceiver Transmitter Switching Characteristics

| Symbol                       | Description                         | Condition  | Min | Тур | Max  | Units |
|------------------------------|-------------------------------------|------------|-----|-----|------|-------|
| T <sub>RTX</sub>             | TX Rise time                        | 20%-80%    | -   | 140 | -    | ps    |
| T <sub>FTX</sub>             | TX Fall time                        | 80%–20%    | _   | 120 | -    | ps    |
| T <sub>LLSKEW</sub>          | TX lane-to-lane skew <sup>(1)</sup> |            | -   | -   | 400  | ps    |
| V <sub>TXOOBVDPP</sub>       | Electrical idle amplitude           |            | _   | -   | 20   | mV    |
| T <sub>TXOOBTRANSITION</sub> | Electrical idle transition time     | -          | -   | 50  | ns   |       |
| T <sub>J3.125</sub>          | Total Jitter <sup>(2)</sup>         | 3.125 Gb/s | -   | -   | 0.35 | UI    |
| D <sub>J3.125</sub>          | Deterministic Jitter <sup>(2)</sup> |            | -   | -   | 0.15 | UI    |
| T <sub>J2.5</sub>            | Total Jitter <sup>(2)</sup>         | 2.5 Gb/s   | -   | -   | 0.33 | UI    |
| D <sub>J2.5</sub>            | Deterministic Jitter <sup>(2)</sup> |            | -   | -   | 0.15 | UI    |
| T <sub>J1.62</sub>           | Total Jitter <sup>(2)</sup>         | 1.62 Gb/s  | -   | -   | 0.20 | UI    |
| D <sub>J1.62</sub>           | Deterministic Jitter <sup>(2)</sup> |            | -   | -   | 0.10 | UI    |
| T <sub>J1.25</sub>           | Total Jitter <sup>(2)</sup>         | 1.25 Gb/s  | -   | -   | 0.20 | UI    |
| D <sub>J1.25</sub>           | Deterministic Jitter <sup>(2)</sup> |            | -   | -   | 0.10 | UI    |
| T <sub>J614</sub>            | Total Jitter <sup>(2)</sup>         | 614 Mb/s   | -   | -   | 0.10 | UI    |
| D <sub>J614</sub>            | Deterministic Jitter <sup>(2)</sup> |            | -   | -   | 0.05 | UI    |

#### Notes:

1. Using same REFCLK input with TXENPMAPHASEALIGN enabled for up to four consecutive GTP transceiver sites.

2. Using PLL\_DIVSEL\_FB = 2, INTDATAWIDTH = 1. These values are NOT intended for protocol specific compliance determinations.

Table 26: Spartan-6 Device Speed Grade Designations

# **Switching Characteristics**

All values represented in this data sheet are based on these speed specifications: v1.20 for -3, -3N, and -2; and v1.08 for -1L. Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as

follows:

## Advance

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some underreporting might still occur.

## Preliminary

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

## Production

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

All specifications are always representative of worst-case supply voltage and junction temperature conditions.

Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device.

The -1L speed grade refers to the lower-power Spartan-6 devices. The -3N speed grade refers to the Spartan-6 devices that do not support MCB functionality.

Table 26 correlates the current status of each Spartan-6device on a per speed grade basis.

| Dovico                 | Speed   | d Grade Design | ations           |
|------------------------|---------|----------------|------------------|
| Device                 | Advance | Preliminary    | Production       |
| XC6SLX4 <sup>(1)</sup> |         |                | -3, -2, -1L      |
| XC6SLX9                |         |                | -3, -3N, -2, -1L |
| XC6SLX16               |         |                | -3, -3N, -2, -1L |
| XC6SLX25               |         |                | -3, -3N, -2, -1L |
| XC6SLX25T              |         |                | -3, -3N, -2      |
| XC6SLX45               |         |                | -3, -3N, -2, -1L |
| XC6SLX45T              |         |                | -3, -3N, -2      |
| XC6SLX75               |         |                | -3, -3N, -2, -1L |
| XC6SLX75T              |         |                | -3, -3N, -2      |
| XC6SLX100              |         |                | -3, -3N, -2, -1L |
| XC6SLX100T             |         |                | -3, -3N, -2      |
| XC6SLX150              |         |                | -3, -3N, -2, -1L |
| XC6SLX150T             |         |                | -3, -3N, -2      |
| XA6SLX4                |         |                | -3, -2           |
| XA6SLX9                |         |                | -3, -2           |
| XA6SLX16               |         |                | -3, -2           |
| XA6SLX25               |         |                | -3, -2           |
| XA6SLX25T              |         |                | -3, -2           |
| XA6SLX45               |         |                | -3, -2           |
| XA6SLX45T              |         |                | -3, -2           |
| XA6SLX75               |         |                | -3, -2           |
| XA6SLX75T              |         |                | -3, -2           |
| XA6SLX100              |         |                | -2               |
| XQ6SLX75               |         |                | -2, -1L          |
| XQ6SLX75T              |         |                | -3, -2           |
| XQ6SLX150              |         |                | -2, -1L          |
| XQ6SLX150T             |         |                | -3, -2           |

#### Notes:

1. The XC6SLX4 is not available in the -3N speed grade.

## **Testing of Switching Characteristics**

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Spartan-6 devices.

### Table 27: Spartan-6 Device Production Software and Speed Specification Release<sup>(1)</sup> (Cont'd)

| Device     | Speed Grade Designations <sup>(2)</sup> |     |                   |                |  |  |  |  |  |
|------------|-----------------------------------------|-----|-------------------|----------------|--|--|--|--|--|
|            | -3 <sup>(3)</sup>                       | -3N | -2 <sup>(4)</sup> | -1L            |  |  |  |  |  |
| XQ6SLX75   | N/A                                     | N/A | ISE 13.2 v1.19    | ISE 13.2 v1.07 |  |  |  |  |  |
| XQ6SLX75T  | ISE 13.2 v1.19                          | N/A | ISE 13.2 v1.19    | N/A            |  |  |  |  |  |
| XQ6SLX150  | N/A                                     | N/A | ISE 13.2 v1.19    | ISE 13.2 v1.07 |  |  |  |  |  |
| XQ6SLX150T | ISE 13.2 v1.19                          | N/A | ISE 13.2 v1.19    | N/A            |  |  |  |  |  |

#### Notes:

- 1. ISE 13.3 software with v1.20 for -3, -3N, and -2; and v1.08 for -1L speed specification reflects the changes outlined in XCN11028: Spartan-6 FPGA Speed File Changes.
- 2. As marked with an N/A, LXT devices and all XA devices are not available with a -1L speed grade; LX4 devices and all XA and XQ devices are not available with a -3N speed grade.
- 3. Improved -3 specifications reflected in this data sheet require ISE 12.4 software with v1.15 speed specification.
- 4. Improved -2 specifications reflected in this data sheet require ISE 12.4 software and the *12.4 Speed Files Patch* which contains the v1.17 speed specification available on the <u>Xilinx Download Center</u>.
- 5. ISE 12.3 software with v1.12 speed specification is available using ISE 12.3 software and the *12.3 Speed Files Patch* available on the Xilinx Download Center.
- 6. ISE 12.2 software with v1.11 speed specification is available using ISE 12.2 software and the *12.2 Speed Files Patch* available on the Xilinx Download Center.
- ISE 13.1 software with v1.18 speed specification is available using ISE 13.1 software and the 13.1 Update available on the Xilinx Download Center. See XCN11012: Speed File Change for -3N Devices.

## IOB Pad Input/Output/3-State Switching Characteristics

Table 28 (for commercial (XC) Spartan-6 devices) and Table 29 (for Automotive XA Spartan-6 and Defense-grade Spartan-6Q devices) summarizes the values of standard-specific data input delays, output delays terminating at pads (based on standard), and 3-state delays.

- T<sub>IOPI</sub> is described as the delay from IOB pad through the input buffer to the I-pin of an IOB pad. The delay varies depending on the capability of the SelectIO input buffer.
- T<sub>IOOP</sub> is described as the delay from the O pin to the IOB pad through the output buffer of an IOB pad. The delay varies depending on the capability of the SelectIO output buffer.
- T<sub>IOTP</sub> is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is disabled. The delay varies depending on the SelectIO capability of the output buffer.

See the TRACE report for further information on delays when using an I/O standard with UNTUNED termination on inputs or outputs.

#### Table 28: IOB Switching Characteristics for the Commercial (XC) Spartan-6 Devices

|                          | T <sub>IOPI</sub> |      |      |                    | T <sub>IOOP</sub> |      |      |                    | T <sub>IOTP</sub> |      |      |                    |    |
|--------------------------|-------------------|------|------|--------------------|-------------------|------|------|--------------------|-------------------|------|------|--------------------|----|
| I/O Standard             | Speed Grade       |      |      |                    | Speed Grade       |      |      | Speed Grade        |                   |      |      | Units              |    |
|                          | -3                | -3N  | -2   | -1L <sup>(1)</sup> | -3                | -3N  | -2   | -1L <sup>(1)</sup> | -3                | -3N  | -2   | -1L <sup>(1)</sup> |    |
| LVDS_33                  | 1.17              | 1.29 | 1.42 | 1.68               | 1.55              | 1.69 | 1.89 | 2.42               | 3000              | 3000 | 3000 | 3000               | ns |
| LVDS_25                  | 1.01              | 1.13 | 1.26 | 1.57               | 1.65              | 1.79 | 1.99 | 2.47               | 3000              | 3000 | 3000 | 3000               | ns |
| BLVDS_25                 | 1.02              | 1.14 | 1.27 | 1.57               | 1.72              | 1.86 | 2.06 | 2.68               | 1.72              | 1.86 | 2.06 | 2.68               | ns |
| MINI_LVDS_33             | 1.17              | 1.29 | 1.42 | 1.68               | 1.57              | 1.71 | 1.91 | 2.41               | 3000              | 3000 | 3000 | 3000               | ns |
| MINI_LVDS_25             | 1.01              | 1.13 | 1.26 | 1.57               | 1.65              | 1.79 | 1.99 | 2.47               | 3000              | 3000 | 3000 | 3000               | ns |
| LVPECL_33                | 1.18              | 1.30 | 1.43 | 1.68               | N/A               | N/A  | N/A  | N/A                | N/A               | N/A  | N/A  | N/A                | ns |
| LVPECL_25                | 1.02              | 1.14 | 1.27 | 1.57               | N/A               | N/A  | N/A  | N/A                | N/A               | N/A  | N/A  | N/A                | ns |
| RSDS_33 (point to point) | 1.17              | 1.29 | 1.42 | 1.68               | 1.57              | 1.71 | 1.91 | 2.42               | 3000              | 3000 | 3000 | 3000               | ns |
| RSDS_25 (point to point) | 1.01              | 1.13 | 1.26 | 1.56               | 1.65              | 1.79 | 1.99 | 2.47               | 3000              | 3000 | 3000 | 3000               | ns |
| TMDS_33                  | 1.21              | 1.33 | 1.46 | 1.71               | 1.54              | 1.68 | 1.88 | 2.50               | 3000              | 3000 | 3000 | 3000               | ns |

## Table 34: SSO Limit per V<sub>CCO</sub>/GND Pair (Cont'd)

|                  | I/O Standard                  |       |         | SSO Limit per V <sub>CCO</sub> /GND Pair |                                           |                                          |                                             |  |  |
|------------------|-------------------------------|-------|---------|------------------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------------|--|--|
| v <sub>cco</sub> |                               | Drive | Slew    | All TQG14<br>CSG225, FT<br>LX devices    | 4, CPG196,<br>Г(G)256, and<br>a in CSG324 | All CS(G)48<br>FG(G)676, F<br>LXT device | 4, FG(G)484,<br>G(G)900, and<br>s in CSG324 |  |  |
|                  |                               |       |         | Bank 0/2                                 | Bank 1/3                                  | Bank 0/2                                 | Bank 1/3/4/5                                |  |  |
|                  |                               |       | Fast    | 39                                       | 46                                        | 39                                       | 47                                          |  |  |
|                  |                               | 2     | Slow    | 65                                       | 75                                        | 65                                       | 74                                          |  |  |
|                  |                               |       | QuietIO | 80                                       | 80                                        | 80                                       | 85                                          |  |  |
|                  |                               |       | Fast    | 22                                       | 25                                        | 22                                       | 25                                          |  |  |
|                  |                               | 4     | Slow    | 38                                       | 36                                        | 38                                       | 29                                          |  |  |
|                  |                               |       | QuietIO | 45                                       | 40                                        | 45                                       | 35                                          |  |  |
|                  |                               |       | Fast    | 16                                       | 18                                        | 16                                       | 17                                          |  |  |
|                  |                               | 6     | Slow    | 27                                       | 25                                        | 27                                       | 19                                          |  |  |
|                  |                               |       | QuietIO | 30                                       | 28                                        | 30                                       | 23                                          |  |  |
|                  |                               |       | Fast    | 13                                       | 15                                        | 13                                       | 14                                          |  |  |
|                  | LVCMOS18, LVCMOS18_JEDEC      | 8     | Slow    | 16                                       | 18                                        | 16                                       | 16                                          |  |  |
|                  |                               |       | QuietIO | 25                                       | 22                                        | 25                                       | 18                                          |  |  |
|                  |                               | 12    | Fast    | 5                                        | 7                                         | 5                                        | 5                                           |  |  |
|                  |                               |       | Slow    | 7                                        | 8                                         | 7                                        | 6                                           |  |  |
|                  |                               |       | QuietIO | 11                                       | 10                                        | 11                                       | 8                                           |  |  |
|                  |                               | 16    | Fast    | 4                                        | 5                                         | 4                                        | 4                                           |  |  |
| 1.8V             |                               |       | Slow    | 7                                        | 8                                         | 7                                        | 5                                           |  |  |
|                  |                               |       | QuietIO | 11                                       | 10                                        | 11                                       | 8                                           |  |  |
|                  |                               |       | Fast    | N/A                                      | 5                                         | N/A                                      | 3                                           |  |  |
|                  |                               | 24    | Slow    | N/A                                      | 8                                         | N/A                                      | 8                                           |  |  |
|                  |                               |       | QuietIO | N/A                                      | 10                                        | N/A                                      | 8                                           |  |  |
|                  | HSTL_I_18                     |       |         | 9                                        | 10                                        | 9                                        | 9                                           |  |  |
|                  | HSTL_II_18                    |       |         | N/A                                      | 5                                         | N/A                                      | 6                                           |  |  |
|                  | HSTL_III_18                   |       |         | 9                                        | 10                                        | 9                                        | 11                                          |  |  |
|                  | DIFF_HSTL_I_18                |       |         | 27                                       | 30                                        | 27                                       | 27                                          |  |  |
|                  | DIFF_HSTL_II_18               |       |         | N/A                                      | 15                                        | N/A                                      | 18                                          |  |  |
|                  | DIFF_HSTL_III_18              |       |         | 27                                       | 30                                        | 27                                       | 33                                          |  |  |
|                  | MOBILE_DDR <sup>(3)</sup>     |       |         | 12                                       | 14                                        | 12                                       | 14                                          |  |  |
|                  | DIFF_MOBILE_DDR (3)           |       |         | 36                                       | 42                                        | 36                                       | 42                                          |  |  |
|                  | SSTL_18_I <sup>(3)</sup>      |       |         | 9                                        | 10                                        | 9                                        | 10                                          |  |  |
|                  | SSTL_18_II <sup>(3)</sup>     |       |         | N/A                                      | 5                                         | N/A                                      | 4                                           |  |  |
|                  | DIFF_SSTL_18_I <sup>(3)</sup> |       |         | 27                                       | 30                                        | 27                                       | 30                                          |  |  |
|                  | DIFF_SSTL_18_II (3)           |       | N/A     | 15                                       | N/A                                       | 12                                       |                                             |  |  |