
E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

D	e	ta	il	ls

Details	
Product Status	Active
Number of LABs/CLBs	3411
Number of Logic Elements/Cells	43661
Total RAM Bits	2138112
Number of I/O	358
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc6slx45-2fg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1: Absolute Maximum Ratings⁽¹⁾ (Cont'd)

Symbol	Description					
	DC					V
			Commercial	20% overshoot duration	-0.75 to 4.25	V
				8% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V
				DC	-0.60 to 3.95	V
		All user and dedicated I/Os	Industrial	20% overshoot duration	-0.75 to 4.15	V
				4% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V
			Expanded (Q)	DC	-0.60 to 3.95	V
V _{IN} and V _{TS} ⁽³⁾				20% overshoot duration	-0.75 to 4.15	V
	I/O input voltage or voltage applied to 3-state output,			4% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V
	relative to GND ⁽⁴⁾			20% overshoot duration	-0.75 to 4.35	V
			Commercial Industrial	15% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V
				10% overshoot duration	-0.75 to 4.45	V
		Restricted to maximum of 100 user I/Os		20% overshoot duration	-0.75 to 4.25	V
				10% overshoot duration	-0.75 to 4.35	V
				8% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V
				20% overshoot duration	-0.75 to 4.25	V
			Expanded (Q)	10% overshoot duration	-0.75 to 4.35	V
				8% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V
T _{STG}	Storage temperature (ambi	ent)			-65 to 150	°C
	Maximum soldering temper (TQG144, CPG196, CSG2			+260	°C	
T _{SOL}	Maximum soldering temper	ature ⁽⁶⁾ (Pb-free packag	jes: FGG484, F	GG676, and FGG900)	+250	°C
	Maximum soldering temper	ature ⁽⁶⁾ (Pb packages: C	S484, FT256, F	G484, FG676, and FG900)	+220	°C
T _i	Maximum junction tempera	+125	°C			

Notes:

1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

2. When programming eFUSE, $V_{FS} \le V_{CCAUX}$. Requires up to 40 mA current. For read mode, V_{FS} can be between GND and 3.45 V.

3. I/O absolute maximum limit applied to DC and AC signals. Overshoot duration is the percentage of a data period that the I/O is stressed beyond 3.45V.

4. For I/O operation, refer to UG381: Spartan-6 FPGA SelectIO Resources User Guide.

5. Maximum percent overshoot duration to meet 4.40V maximum.

6. For soldering guidelines and thermal considerations, see <u>UG385</u>: *Spartan-6 FPGA Packaging and Pinout Specification*.

Table 3: eFUSE Programming Conditions⁽¹⁾

Symbol	Description	Min	Тур	Max	Units
V _{FS} ⁽²⁾	External voltage supply	3.2	3.3	3.4	V
I _{FS}	V _{FS} supply current	-	-	40	mA
V _{CCAUX}	Auxiliary supply voltage relative to GND	3.2	3.3	3.45	V
R _{FUSE} ⁽³⁾	External resistor from R _{FUSE} pin to GND	1129	1140	1151	Ω
V _{CCINT}	Internal supply voltage relative to GND	1.14	1.2	1.26	V
tj	Temperature range	15	—	85	°C

Notes:

These specifications apply during programming of the eFUSE AES key. Programming is only supported through JTAG. The AES key is only supported in the following devices: LX75, LX75T, LX100, LX100T, LX150, and LX150T. 1.

2.

When programming eFUSE, V_{FS} must be less than or equal to V_{CCAUX} . When not programming or when eFUSE is not used, Xilinx recommends connecting V_{FS} to GND. However, V_{FS} can be between GND and 3.45 V. An R_{FUSE} resistor is required when programming the eFUSE AES key. When not programming or when eFUSE is not used, Xilinx recommends connecting the R_{FUSE} pin to V_{CCAUX} or GND. However, R_{FUSE} can be unconnected. З.

Symbol	D	Min	Тур	Мах	Units	
V _{DRINT}	Data retention V _{CCINT} voltage (below w	0.8	-	-	V	
V _{DRAUX}	Data retention V _{CCAUX} voltage (below which configuration data might be lost)				-	V
	V _{REF} leakage current per pin for commercial (C) and industrial (I) devices				10	μA
I _{REF}	V _{REF} leakage current per pin for expan	-15	-	15	μA	
ار	Input or output leakage current per pin (sample-tested) for commercial (C) and industrial (I) devices				10	μA
-	Input or output leakage current per pin (sample-tested) for expanded (Q) devices				15	μA
I	All pins except PROGRAM_B, DONE, and Leakage current on pins during hot				20	μA
I _{HS}	socketing with FPGA unpowered	I _{HS} + I _R		J	μA	
C _{IN} ⁽¹⁾	Die input capacitance at the pad	-	_	10	pF	
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 3.3V$ or $V_{CCAUX} = 3.3V$				500	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 2.5V$ or $V_{CCAUX} = 2.5V$				350	μA
I _{RPU}	Pad pull-up (when selected) @ $V_{IN} = 0^{10}$	60	_	200	μA	
	Pad pull-up (when selected) @ $V_{IN} = 0^{10}$	40	-	150	μA	
	Pad pull-up (when selected) @ $V_{IN} = 0^{10}$	12	-	100	μA	
	Pad pull-down (when selected) @ V _{IN} =	200	_	550	μA	
I _{RPD}	Pad pull-down (when selected) @ $V_{IN} = V_{CCO}$, $V_{CCAUX} = 2.5V$				400	μA
I _{BATT} (2)	Battery supply current		-	-	150	nA
R _{DT} ⁽³⁾	Resistance of optional input differential	termination circuit, $V_{CCAUX} = 3.3V$	-	100	_	Ω
	Thevenin equivalent resistance of programmable input termination to V _{CCO} (UNTUNED_SPLIT_25) for commercial (C) and industrial (I) devices				55	Ω
	Thevenin equivalent resistance of progr (UNTUNED_SPLIT_25) for expanded (20	25	55	Ω
P (5)	Thevenin equivalent resistance of progr (UNTUNED_SPLIT_50) for commercial	rammable input termination to V _{CCO} I (C) and industrial (I) devices	39	50	72	Ω
R _{IN_TERM} ⁽⁵⁾	Thevenin equivalent resistance of progr (UNTUNED_SPLIT_50) for expanded (rammable input termination to V _{CCO} Q) devices	32	50	74	Ω
	Thevenin equivalent resistance of progr (UNTUNED_SPLIT_75) for commercial	rammable input termination to V _{CCO} I (C) and industrial (I) devices	56	75	109	Ω
	Thevenin equivalent resistance of progr (UNTUNED_SPLIT_75) for expanded (47	75	115	Ω	
	Thevenin equivalent resistance of progr	rammable output termination (UNTUNED_25)	11	25	52	Ω
R _{OUT_TERM}	Thevenin equivalent resistance of progr	rammable output termination (UNTUNED_50)	21	50	96	Ω
	Thevenin equivalent resistance of progr	rammable output termination (UNTUNED_75)	29	75	145	Ω

Table 4: DC Characteristics Over Recommended Operating Conditions

Notes:

1. The C_{IN} measurement represents the die capacitance at the pad, not including the package.

2. Maximum value specified for worst case process at 25°C. LX75, LX75T, LX100, LX100T, LX150, and LX150T only.

3. Refer to IBIS models for R_{DT} variation and for values at V_{CCAUX} = 2.5V. IBIS values for R_{DT} are valid for all temperature ranges.

4. V_{CCO2} is not required for data retention. The minimum V_{CCO2} for power-on reset and configuration is 1.65V.

5. Termination resistance to a $V_{CCO}/2$ level.

I/O Standard	V _{CCO} for Drivers					
I/O Standard	V, Min	V, Nom	V, Max			
LVDS_33	3.0	3.3	3.45			
LVDS_25	2.25	2.5	2.75			
BLVDS_25	2.25	2.5	2.75			
MINI_LVDS_33	3.0	3.3	3.45			
MINI_LVDS_25	2.25	2.5	2.75			
LVPECL_33 ⁽¹⁾		N/A–Inputs Only				
LVPECL_25		N/A–Inputs Only				
RSDS_33	3.0	3.3	3.45			
RSDS_25	2.25	2.5	2.75			
TMDS_33 ⁽¹⁾	3.14	3.3	3.45			
PPDS_33	3.0	3.3	3.45			
PPDS_25	2.25	2.5	2.75			
DISPLAY_PORT	2.3	2.5	2.7			
DIFF_MOBILE_DDR	1.7	1.8	1.9			
DIFF_HSTL_I	1.4	1.5	1.6			
DIFF_HSTL_II	1.4	1.5	1.6			
DIFF_HSTL_III	1.4	1.5	1.6			
DIFF_HSTL_I_18	1.7	1.8	1.9			
DIFF_HSTL_II_18	1.7	1.8	1.9			
DIFF_HSTL_III_18	1.7	1.8	1.9			
DIFF_SSTL3_I	3.0	3.3	3.45			
DIFF_SSTL3_II	3.0	3.3	3.45			
DIFF_SSTL2_I	2.3	2.5	2.7			
DIFF_SSTL2_II	2.3	2.5	2.7			
DIFF_SSTL18_I	1.7	1.8	1.9			
DIFF_SSTL18_II	1.7	1.8	1.9			
DIFF_SSTL15_II	1.425	1.5	1.575			

Table 8: Recommended Operating Conditions for User I/Os Using Differential Signal Standards

Notes:

1. LVPECL_33 and TMDS_33 inputs require V_{CCAUX} = 3.3V nominal.

I/O Standard	mV, Min	mV,				DD	Vo	•	V _{OH}	V _{OL}
		Max	V, Min	V, Max	mV, Min	mV, Max	V, Min	V, Max	V, Min	V, Max
LVDS_33 ⁽²⁾⁽³⁾	100	600	0.3	2.35	247	454	1.125	1.375	_	—
LVDS_25 ⁽²⁾⁽³⁾	100	600	0.3	2.35	247	454	1.125	1.375	_	_
BLVDS_25 ⁽²⁾⁽³⁾	100	-	0.3	2.35	240	460	Typical 5	0% V _{CCO}	_	_
MINI_LVDS_33	200	600	0.3	1.95	300	600	1.0	1.4	-	_
MINI_LVDS_25	200	600	0.3	1.95	300	600	1.0	1.4	-	_
LVPECL_33 ⁽²⁾⁽³⁾	100	1000	0.3	2.8 ⁽¹⁾			Inp	uts only		L
LVPECL_25 ⁽²⁾⁽³⁾	100	1000	0.3	1.95			Inp	uts only		
RSDS_33 ⁽²⁾⁽³⁾	100	-	0.3	1.5	100	400	1.0	1.4	-	-
RSDS_25 ⁽²⁾⁽³⁾	100	-	0.3	1.5	100	400	1.0	1.4	_	_
TMDS_33	150	1200	2.7	3.23 ⁽¹⁾	400	800	V _{CCO} - 0.405	V _{CCO} – 0.190	-	_
PPDS_33 ⁽²⁾⁽³⁾	100	400	0.2	2.3	100	400	0.5	1.4	_	_
PPDS_25 ⁽²⁾⁽³⁾	100	400	0.2	2.3	100	400	0.5	1.4	_	_
DISPLAY_PORT	190	1260	0.3	2.35	-	_	Typical 5	0% V _{CCO}	_	_
DIFF_MOBILE_DDR	100	-	0.78	1.02	-	-	-	-	90% V _{CCO}	10% V _{CCC}
DIFF_HSTL_I	100	_	0.68	0.9	-	_	-	_	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_II	100	-	0.68	0.9	-	_	-	-	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_III	100	-	0.68	0.9	-	-	-	-	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_I_18	100	-	0.8	1.1	-	-	-	-	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_II_18	100	-	0.8	1.1	-	_	-	-	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_III_18	100	-	0.8	1.1	-	_	-	-	$V_{CCO} - 0.4$	0.4
DIFF_SSTL3_I	100	_	1.0	1.9	-	_	-	_	V _{TT} + 0.6	V _{TT} – 0.6
DIFF_SSTL3_II	100	-	1.0	1.9	-	_	-	-	V _{TT} + 0.8	V _{TT} – 0.8
DIFF_SSTL2_I	100	-	1.0	1.5	-	_	_	-	V _{TT} + 0.61	V _{TT} – 0.61
DIFF_SSTL2_II	100	-	1.0	1.5	_	_	_	_	V _{TT} + 0.81	V _{TT} – 0.81
DIFF_SSTL18_I	100	-	0.7	1.1	-	_	_	_	V _{TT} + 0.47	V _{TT} – 0.47
DIFF_SSTL18_II	100	-	0.7	1.1	-	_	_	_	V _{TT} + 0.6	V _{TT} – 0.6
DIFF_SSTL15_II	100	-	0.55	0.95	-	_	_	_	V _{TT} + 0.4	V _{TT} – 0.4

Table 10: Differential I/O Standard DC Input and Output Levels

Notes:

1. LVPECL_33 and TMDS_33 maximum V_{ICM} is the lower of V (maximum) or V_{CCAUX} – (V_{ID}/2)

When V_{CCAUX} = 3.3V, the DCD can be higher than 5% for V_{ICM} < 0.7V when using these I/O standards: LVDS_25, LVDS_33, BLVDS_25, LVPECL_25, LVPECL_33, RSDS_25, RSDS_33, PPDS_25, and PPDS_33.

3. The -1L devices require V_{CCAUX} = 2.5V when using the LVDS_25, LVDS_33, BLVDS_25, LVPECL_25, RSDS_25, RSDS_33, PPDS_25, and PPDS_33 I/O standards on inputs. LVPECL_33 is not supported in the -1L devices.

Performance Characteristics

This section provides the performance characteristics of some common functions and designs implemented in Spartan-6 devices. The numbers reported here are worst-case values; they have all been fully characterized. These values are subject to the same guidelines as the Switching Characteristics, page 19.

Table 25: Interface Performances

Description I/O Resource			Data	Speed Grade				Units
Description	I/O Resource	Buffer	Width	-3	-3N	-2	-1L	Units
Networking Applications ⁽¹⁾								
SDR LVDS transmitter or receiver	IOB SDR register	BUFG	—	400	400	375	250	Mb/s
DDR LVDS transmitter or receiver	ODDR2/IDDR2 register	2 BUFGs	_	800	800	750	500	Mb/s
			2	500	500	500	250	Mb/s
SDR LVDS transmitter	OSERDES2	BUFPLL	3	750	750	750	375	Mb/s
			4-8	1080	1050	950	500	Mb/s
			2	500	500	500	250	Mb/s
DDR LVDS transmitter	OSERDES2	2 BUFIO2s	3	750	750	750	375	Mb/s
			4-8	1080	1050	950	500	Mb/s
			2	500	500	500	—	Mb/s
SDR LVDS receiver	ISERDES2 in RETIMED mode	BUFPLL	3	750	750	750	—	Mb/s
			4-8	1080	1050	950	—	Mb/s
			2	500	500	500	—	Mb/s
DDR LVDS receiver	ISERDES2 in RETIMED mode	2 BUFIO2s	3	750	750	750	—	Mb/s
			4-8	1080	1050	950	—	Mb/s
Memory Interfaces (Implemented	using the Spartan-6 FPGA Men	nory Controll	er Block)	(2)				
Standard Performance (Standard	V _{CCINT})							
DDR				400	Note 4	400	350	Mb/s
DDR2				667	Note 4	625	400	Mb/s
DDR3				800	Note 4	667	—	Mb/s
LPDDR (Mobile_DDR)				400	Note 4	400	350	Mb/s
Extended Performance (Requires	Extended Performance V _{CCINT}	(3)						
DDR2				800	Note 4	667	_	Mb/s

Notes:

1. Refer to XAPP1064, Source-Synchronous Serialization and Deserialization (up to 1050 Mb/s) and UG381, Spartan-6 FPGA SelectIO Resources User Guide.

2. Refer to UG388, Spartan-6 FPGA Memory Controller User Guide.

3. Extended Memory Controller block performance for DDR2 can be achieved using the extended performance V_{CCINT} range from Table 2.

4. The LX4 device, all devices in the TQG144 and CPG196 packages, and the -3N speed grade do not support a Memory Controller Block.

Table 26: Spartan-6 Device Speed Grade Designations

Switching Characteristics

All values represented in this data sheet are based on these speed specifications: v1.20 for -3, -3N, and -2; and v1.08 for -1L. Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as

follows:

Advance

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some underreporting might still occur.

Preliminary

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Production

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

All specifications are always representative of worst-case supply voltage and junction temperature conditions.

Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device.

The -1L speed grade refers to the lower-power Spartan-6 devices. The -3N speed grade refers to the Spartan-6 devices that do not support MCB functionality.

Table 26 correlates the current status of each Spartan-6device on a per speed grade basis.

Dovice	Speed Grade Designations					
Device	Advance	Preliminary	Production			
XC6SLX4 ⁽¹⁾			-3, -2, -1L			
XC6SLX9			-3, -3N, -2, -1L			
XC6SLX16			-3, -3N, -2, -1L			
XC6SLX25			-3, -3N, -2, -1L			
XC6SLX25T			-3, -3N, -2			
XC6SLX45			-3, -3N, -2, -1L			
XC6SLX45T			-3, -3N, -2			
XC6SLX75			-3, -3N, -2, -1L			
XC6SLX75T			-3, -3N, -2			
XC6SLX100			-3, -3N, -2, -1L			
XC6SLX100T			-3, -3N, -2			
XC6SLX150			-3, -3N, -2, -1L			
XC6SLX150T			-3, -3N, -2			
XA6SLX4			-3, -2			
XA6SLX9			-3, -2			
XA6SLX16			-3, -2			
XA6SLX25			-3, -2			
XA6SLX25T			-3, -2			
XA6SLX45			-3, -2			
XA6SLX45T			-3, -2			
XA6SLX75			-3, -2			
XA6SLX75T			-3, -2			
XA6SLX100			-2			
XQ6SLX75			-2, -1L			
XQ6SLX75T			-3, -2			
XQ6SLX150			-2, -1L			
XQ6SLX150T			-3, -2			

Notes:

1. The XC6SLX4 is not available in the -3N speed grade.

Testing of Switching Characteristics

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Spartan-6 devices.

Production Silicon and ISE Software Status

In some cases, a particular family member (and speed grade) is released to production before a speed specification is released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent speed specification releases. Table 27 lists the production released Spartan-6 family member, speed grade, and the minimum corresponding supported speed specification version and ISE® software revisions. The ISE software and speed specifications listed are the minimum releases required for production. All subsequent releases of software and speed specifications are valid.

Devies	Speed Grade Designations ⁽²⁾							
Device	-3 ⁽³⁾	-3N	-2 ⁽⁴⁾	-1L				
XC6SLX4	ISE 12.4 v1.15	N/A	ISE 12.3 v1.12 ⁽⁵⁾	ISE 13.2 v1.07				
XC6SLX9	ISE 12.4 v1.15	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.3 v1.12 ⁽⁵⁾	ISE 13.2 v1.07				
XC6SLX16	ISE 12.1 v1.08	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 11.5 v1.06	ISE 13.2 v1.07				
XC6SLX25	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.2 v1.07				
XC6SLX25T	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	N/A				
XC6SLX45	ISE 12.1 v1.08	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 11.5 v1.07	ISE 13.1 v1.06				
XC6SLX45T	ISE 12.1 v1.08	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.1 v1.08	N/A				
XC6SLX75	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.2 v1.07				
XC6SLX75T	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	N/A				
XC6SLX100	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 v1.06				
XC6SLX100T	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	N/A				
XC6SLX150	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 v1.06				
XC6SLX150T	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	N/A				
XA6SLX4	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A				
XA6SLX9	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A				
XA6SLX16	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A				
XA6SLX25	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A				
XA6SLX25T	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A				
XA6SLX45	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A				
XA6SLX45T	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A				
XA6SLX75	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A				
XA6SLX75T	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A				
XA6SLX100	N/A	N/A	ISE 13.3 v1.20	N/A				

Table 27: Spartan-6 Device Production Software and Speed Specification Release ⁽¹⁾	Table	27: Spartan-6	6 Device Productio	on Software and S	Speed Specificati	on Release ⁽¹⁾
---	-------	---------------	--------------------	-------------------	-------------------	---------------------------

Table 29: IOB Switching Characteristics for the Automotive XA Spartan-6 and the Spartan-6Q Devices⁽¹⁾ (Cont'd)

	T _{li}	OPI	Т	ООР	T _{li}		
I/O Standard	Speed	Grade	Speed Grade		Speed Grade		Units
	-3	-2	-3	-2	-3	-2	
DIFF_SSTL3_I	1.26	1.44	1.95	2.15	1.95	2.15	ns
DIFF_SSTL3_II	1.26	1.44	1.94	2.14	1.94	2.14	ns
DIFF_SSTL2_I	1.09	1.27	1.94	2.14	1.94	2.14	ns
DIFF_SSTL2_II	1.09	1.27	1.90	2.10	1.90	2.10	ns
DIFF_SSTL18_I	1.04	1.22	1.86	2.06	1.86	2.06	ns
DIFF_SSTL18_II	1.05	1.23	1.82	2.02	1.82	2.02	ns
DIFF_SSTL15_II	1.01	1.19	1.81	2.01	1.81	2.01	ns
DIFF_MOBILE_DDR	1.04	1.22	1.89	2.09	1.89	2.09	ns
LVTTL, QUIETIO, 2 mA	1.42	1.60	5.64	5.84	5.64	5.84	ns
LVTTL, QUIETIO, 4 mA	1.42	1.60	4.46	4.66	4.46	4.66	ns
LVTTL, QUIETIO, 6 mA	1.42	1.60	3.92	4.12	3.92	4.12	ns
LVTTL, QUIETIO, 8 mA	1.42	1.60	3.37	3.57	3.37	3.57	ns
LVTTL, QUIETIO, 12 mA	1.42	1.60	3.42	3.62	3.42	3.62	ns
LVTTL, QUIETIO, 16 mA	1.42	1.60	3.09	3.29	3.09	3.29	ns
LVTTL, QUIETIO, 24 mA	1.42	1.60	2.83	3.03	2.83	3.03	ns
LVTTL, Slow, 2 mA	1.42	1.60	4.58	4.78	4.58	4.78	ns
LVTTL, Slow, 4 mA	1.42	1.60	3.38	3.58	3.38	3.58	ns
LVTTL, Slow, 6 mA	1.42	1.60	2.95	3.15	2.95	3.15	ns
LVTTL, Slow, 8 mA	1.42	1.60	2.73	2.93	2.73	2.93	ns
LVTTL, Slow, 12 mA	1.42	1.60	2.72	2.92	2.72	2.92	ns
LVTTL, Slow, 16 mA	1.42	1.60	2.53	2.73	2.53	2.73	ns
LVTTL, Slow, 24 mA	1.42	1.60	2.42	2.62	2.42	2.62	ns
LVTTL, Fast, 2 mA	1.42	1.60	4.04	4.24	4.04	4.24	ns
LVTTL, Fast, 4 mA	1.42	1.60	2.66	2.86	2.66	2.86	ns
LVTTL, Fast, 6 mA	1.42	1.60	2.58	2.78	2.58	2.78	ns
LVTTL, Fast, 8 mA	1.42	1.60	2.46	2.66	2.46	2.66	ns
LVTTL, Fast, 12 mA	1.42	1.60	1.97	2.17	1.97	2.17	ns
LVTTL, Fast, 16 mA	1.42	1.60	1.97	2.17	1.97	2.17	ns
LVTTL, Fast, 24 mA	1.42	1.60	1.97	2.17	1.97	2.17	ns
LVCMOS33, QUIETIO, 2 mA	1.41	1.59	5.65	5.85	5.65	5.85	ns
LVCMOS33, QUIETIO, 4 mA	1.41	1.59	4.20	4.40	4.20	4.40	ns
LVCMOS33, QUIETIO, 6 mA	1.41	1.59	3.65	3.85	3.65	3.85	ns
LVCMOS33, QUIETIO, 8 mA	1.41	1.59	3.51	3.71	3.51	3.71	ns
LVCMOS33, QUIETIO, 12 mA	1.41	1.59	3.09	3.29	3.09	3.29	ns
LVCMOS33, QUIETIO, 16 mA	1.41	1.59	2.91	3.11	2.91	3.11	ns
LVCMOS33, QUIETIO, 24 mA	1.41	1.59	2.73	2.93	2.73	2.93	ns
LVCMOS33, Slow, 2 mA	1.41	1.59	4.59	4.79	4.59	4.79	ns
LVCMOS33, Slow, 4 mA	1.41	1.59	3.14	3.34	3.14	3.34	ns

Description	I/O Standard Attribute	R _{REF} (Ω)	C _{REF} ⁽¹⁾ (pF)	V _{MEAS} (V)	V _{REF} (V)
SSTL, Class II, 2.5V	SSTL2_II	25	0	V_{REF}	1.25
SSTL, Class II, 1.5V	SSTL15_II	25	0	V_{REF}	0.75
LVDS (Low-Voltage Differential Signaling), 2.5V & 3.3V	LVDS_25, LVDS_33	100	0	0 <mark>(3)</mark>	-
BLVDS (Bus LVDS), 2.5V	BLVDS_25	Note 4	0	0 <mark>(3)</mark>	-
Mini-LVDS, 2.5V & 3.3V	MINI_LVDS_25, MINI_LVDS_33	100	0	0 <mark>(3)</mark>	-
RSDS (Reduced Swing Differential Signaling), 2.5V & 3.3V	RSDS_25, RSDS_33	100	0	0 <mark>(3)</mark>	-
TMDS (Transition Minimized Differential Signaling), 3.3V	TMDS_33	Note 5	0	0 <mark>(3)</mark>	-
PPDS (Point-to-Point Differential Signaling, 2.5V & 3.3V	PPDS_25, PPDS_33	100	0	0 ⁽³⁾	_

Notes:

1. C_{REF} is the capacitance of the probe, nominally 0 pF.

2. Per PCI specifications.

3. The value given is the differential output voltage.

4. See the BLVDS Output Termination section in UG381, Spartan-6 FPGA SelectIO Resources User Guide.

5. See the TMDS_33 Termination section in UG381, Spartan-6 FPGA SelectIO Resources User Guide.

Simultaneously Switching Outputs

Due to package electrical parasitics, a given package supports a limited number of simultaneous switching outputs (SSOs) when using fast, high-drive outputs. Table 33 and Table 34 provide guidelines for the recommended maximum allowable number of SSOs. These guidelines describe the maximum number of user I/O pins of an output signal standard that should simultaneously switch in the same direction, while maintaining a safe level of switching noise for that particular signal standard. Meeting these guidelines for the stated test conditions ensures that the FPGA operates free from the adverse effects of GND and power bounce.

For each device/package combination, Table 33 provides the number of equivalent V_{CCO} /GND pairs per bank. For each output signal standard and drive strength, Table 34 recommends the maximum number of SSOs, switching in the same direction, allowed per V_{CCO} /GND pair within an I/O bank. The guidelines are categorized by package style, slew rate, and output drive current. The number of SSOs are also specified by I/O bank. Multiply the appropriate numbers from each table to calculate the maximum number of SSOs allowed within an I/O bank. The guidelines assume that all pins within a bank use the same I/O standard. Exceeding these SSO guidelines can result in increased power or GND bounce, degraded signal integrity, or increased system jitter. For a given I/O standard, if the SSO limit per pair in Table 34 is greater than the maximum I/O per pair in Table 33, then there is no SSO limit for the exclusive use of that I/O standard.

The recommended maximum SSO values assume that the FPGA is soldered on a printed circuit board and that the board uses sound design practices. Due to the additional inductance introduced by the socket, the SSO values do not apply for FPGAs mounted in sockets. The SSO values assume that the V_{CCAUX} is powered at 3.3V. Setting V_{CCAUX} to 2.5V provides better SSO characteristics. For more detail, see <u>UG381</u>: *Spartan-6 FPGA SelectIO Resources User Guide*.

Table 34: SSO Limit per V_{CCO}/GND Pair (Cont'd)

			SSO Limit per V _{CCO} /GND Pair					
v _{cco}	I/O Standard	Drive	Slew	All TQG144, CPG196, CSG225, FT(G)256, and LX devices in CSG324		FG(G)676, F	84, FG(G)484, G(G)900, and s in CSG324	
				Bank 0/2	Bank 1/3	Bank 0/2	Bank 1/3/4/5	
			Fast	33	40	33	41	
		2	Slow	57	62	57	56	
			QuietIO	70	67	70	66	
			Fast	19	21	19	21	
		4	Slow	30	30	30	24	
			QuietIO	38	33	38	30	
			Fast	14	16	14	16	
		6	Slow	18	19	18	17	
	LVCMOS15, LVCMOS15_JEDEC 8 12		QuietIO	27	24	27	21	
			Fast	11	13	11	12	
		8	Slow	16	16	16	14	
		QuietIO	23	20	23	17		
1.5V		12	Fast	N/A	5	N/A	4	
1.50			Slow	N/A	8	N/A	5	
			QuietIO	N/A	10	N/A	9	
			Fast	N/A	5	N/A	4	
		16	Slow	N/A	8	N/A	8	
			QuietIO	N/A	10	N/A	9	
	HSTL_I			9	10	9	10	
	HSTL_II			N/A	5	N/A	6	
	HSTL_III			7	9	7	9	
	DIFF_HSTL_I	DIFF_HSTL_I			30	27	30	
	DIFF_HSTL_II			N/A	15	N/A	18	
	DIFF_HSTL_III			21	27	21	27	
	SSTL_15_II ⁽³⁾			N/A	5	N/A	4	
	DIFF_SSTL_15_II ⁽³⁾			N/A	15	N/A	12	

Configuration Switching Characteristics

Table 47: Configuration Switching Characteristics⁽¹⁾

0 salad	Description		Speed Grade				
Symbol			-3N	-2	-1L	Units	
Power-up Timing Cha	racteristics						
T _{PL} ⁽²⁾	PROGRAM_B Latency	4	4	4	5	ms, Max	
T _{POR} ⁽²⁾	Power-on reset (50 ms ramp time) ⁽³⁾	5/30	5/34	5/40	5/40	ms, Min/Max	
	Power-on reset (10 ms ramp time)	5/25	5/29	5/35	5/40	ms, Min/Max	
T _{PROGRAM}	PROGRAM_B Pulse Width	500	500	500	500	ns, Min	
Slave Serial Mode Pro	ogramming Switching	J.		I	1		
T _{DCCK} /T _{CCKD}	DIN Setup/Hold, slave mode	6.0/1.0	6.0/1.0	6.0/1.0	8.0/2.0	ns, Min	
T _{CCO}	CCLK to DOUT	12	12	12	17	ns, Max	
F _{SCCK}	Slave mode external CCLK	80	80	80	50	MHz, Max	
	de Programming Switching						
T _{SMDCCK} /T _{SMCCKD}	SelectMAP Data Setup/Hold	6.0/1.0	6.0/1.0	6.0/1.0	8.0/2.0	ns, Min	
T _{SMCSCCK} /T _{SMCCKCS}	CSI_B Setup/Hold	7.0/0.0	7.0/0.0	7.0/0.0	9.0/2.0	ns, Min	
Т _{SMWCCK} /Т _{SMCCKW}	RDWR_B Setup/Hold	17.0/1.0	17.0/1.0	17.0/1.0	27.0/2.0	ns, Min	
T _{SMCKCSO}	CSO_B clock to out	16	16	16	26	ns, Max	
T _{SMCO}	CCLK to DATA out in readback	13	13	13	25	ns, Max	
T _{SMCKBY}	CCLK to BUSY out in readback	12	12	12	17	ns, Max	
	Maximum CCLK frequency (LX4, LX9, LX16, LX25, LX25T, LX45, LX45T, LX75, and LX75T only)	50	50	50	25	MHz, Max	
F _{SMCCK}	Maximum CCLK frequency (LX100 and LX100T in x8 mode, LX150, and LX150T only)	40	40	40	20	MHz, Max	
	Maximum CCLK frequency (LX100 and LX100T in x16 mode only)	35	35	35	20	MHz, Max	
	Maximum Readback CCLK frequency, including block RAM (LX4, LX9, LX16, LX25, LX25T, LX45, LX45T, LX75, and LX75T only)	20	20	20	4	MHz, Max	
F _{RBCCK}	Maximum Readback CCLK frequency, ignoring block RAM (POST_CRC) (LX4, LX9, LX16, LX25, LX25T, LX45, LX45T, LX75, and LX75T only)	50	50	50	30	MHz, Max	
	Maximum Readback CCLK frequency, including block RAM (LX100, LX100T, LX150, and LX150T only)	12	12	12	4	MHz, Max	
	Maximum Readback CCLK frequency, ignoring block RAM (POST_CRC) (LX100, LX100T, LX150, and LX150T only)	35	35	35	20	MHz, Max	
Boundary-Scan Port	Timing Specifications						
T _{TAPTCK}	TMS and TDI Setup time before TCK	10	10	10	17	ns, Min	
T _{TCKTAP}	TMS and TDI Hold time after TCK	5.5	5.5	5.5	5.5	ns, Min	
T _{TCKTDO}	TCK falling edge to TDO output valid	6.5	6.5	6.5	8	ns, Max	
Т _{ТСКН}	TCK clock minimum High time	12	12	12	21	ns, Min	
T _{TCKL}	TCK clock minimum Low time	12	12	12	21	ns, Min	
F _{TCK}	Maximum configuration TCK clock frequency	33	33	33	18	MHz, Max	
F _{TCKB}	Maximum boundary-scan TCK clock frequency	33	33	33	18	MHz, Max	
F _{TCKAES}	Maximum AES key TCK clock frequency	2	2	2	2	MHz, Max	

Symbol	Description		Units			
Symbol	Description		-3N	-2	-1L	Units
BPI Master Flash Mo	ode Programming Switching ⁽⁴⁾					
T _{BPICCO} ⁽⁵⁾	A[25:0], FCS_B, FOE_B, FWE_B, LDC outputs valid after CCLK falling edge	15	15	15	20	ns, Max
T _{BPIICCK}	Master BPI CCLK (output) delay	10/100	10/100	10/100	10/130	µs, Min/Max
T _{BPIDCC} /T _{BPICCD}	Setup/Hold on D[15:0] data input pins	5.0/1.0	5.0/1.0	5.0/1.0	6.0/2.0	ns, Min
SPI Master Flash Mo	ode Programming Switching ⁽⁶⁾		1	1	ł	1
before/after the rising CCLK edge		5.0/1.0	5.0/1.0	5.0/1.0	7.0/1.0	ns, Min
T _{SPIICCK}	Master SPI CCLK (output) delay	0.4/7.0	0.4/7.0	0.4/7.0	0.4/10.0	µs, Min/Max
T _{SPICCM}	MOSI clock to out	13	13	13	19	ns, Max
T _{SPICCFC}	CSO_B clock to out	16	16	16	26	ns, Max
CCLK Output (Maste	er Modes)		1	1	ł	1
T _{MCCKL}	Master CCLK clock duty cycle Low		%, Min/Max			
Т _{МССКН}	Master CCLK clock duty cycle High		%, Min/Max			
F _{MCCK}	Maximum frequency, serial mode (Master Serial/SPI) All devices	40	40	40	30	MHz, Max
	Maximum frequency, parallel mode (Master SelectMAP/BPI) LX9, LX16, LX25, LX25T, LX45, LX45T, LX75, and LX75T	40	40	40	25	MHz, Max
	Maximum frequency, parallel mode (Master SelectMAP/BPI) LX100 and LX100T in x8 mode, LX150, and LX150T	40	40	40	20	MHz, Max
	Maximum frequency, parallel mode (Master SelectMAP/BPI) LX100 and LX100T in x16 mode	35	35	35	20	MHz, Max
F _{MCCKTOL}	Frequency Tolerance, master mode	±50	±50	±50	±50	%
CCLK Input (Slave M	Aodes)		1	1	ł	1
T _{SCCKL}	Slave CCLK clock minimum Low time	5	5	5	8	ns, Min
Т _{SCCKH}	Slave CCLK clock minimum High time	5	5	5	8	ns, Min
USERCCLK Input		·				
TUSERCCLKL	USERCCLK clock minimum Low time	12	12	12	16	ns, Min
T _{USERCCLKH}	USERCCLK clock minimum High time	12	12	12	16	ns, Min
FUSERCCLK	Maximum USERCCLK frequency	40	40	40	30	MHz, Max

Table 47: Configuration Switching Characteristics⁽¹⁾ (Cont'd)

Notes:

1. Maximum frequency and setup/hold timing parameters are for 3.3V and 2.5V configuration voltages.

2. To support longer delays in configuration, use the design solutions described in UG380: Spartan-6 FPGA Configuration User Guide.

3. Table 6 specifies the power supply ramp time.

- 4. BPI mode is not supported in:
- LX4, LX25, or LX25T devices
 - LX9 devices in the TQG144 package
 - LX9 or LX16 devices in the CPG196 package.

5. Only during configuration, the last edge is determined by a weak pull-up/pull-down resistor in the I/O.

Defense-grade Spartan-6Q -2Q devices configure in single default SPI Master (x1) mode at T_j = -55°C. During operation and when using all other configuration functions, the minimum operating temperature is -40°C.

Table 56: Switching Characteristics for the Digital Freque	<pre>icy Synthesizer (DFS) for DCM_SP⁽¹⁾</pre>
	Speed Grade

Speed Grade										
Symbol	Description		-3	-3N		-2		-1L		Unite
			Max	Min	Max	Min	Max	Min	Max	
Output Frequency Ranges					1		1	1	ļ	
CLKOUT_FREQ_FX	Frequency for the CLKFX and CLKFX180 outputs	5	375	5	375	5	333	5	200	MHz
Output Clock Jitter ⁽²⁾⁽³⁾	L	L.	1		1		1	1	1	
	Period jitter at the CLKFX and CLKFX180 outputs. When CLKIN < 20 MHz			Use	the Clo	cking V	lizard			ps
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and CLKFX180 outputs. When CLKIN > 20 MHz		Туріс	al = ±(⁻	1% of C	LKFX I	period +	100)		ps
Duty Cycle ⁽⁴⁾⁽⁵⁾	L	1								
CLKOUT_DUTY_CYCLE_FX	Duty cycle precision for the CLKFX and CLKFX180 outputs including the BUFGMUX and clock tree duty-cycle distortion							ps		
Phase Alignment ⁽⁵⁾		1								
CLKOUT_PHASE_FX	Phase offset between the DFS CLKFX output and the DLL CLK0 output when both the DFS and DLL are used	_	±200	_	±200	_	±200	_	±250	ps
CLKOUT_PHASE_FX180	Phase offset between the DFS CLKFX180 output and the DLL CLK0 output when both the DFS and DLL are used	It and the DLL CLK0 Maximum $= \pm (1\% \text{ of CLKEX partial } 200)$					<u> </u>	ps		
LOCKED Time	L	L.								
	When FCLKIN < 50 MHz, the time from deassertion at the DCM's reset input to the rising transition at its LOCKED output. The DFS asserts LOCKED when the CLKFX and CLKFX180 signals are valid. When using both the DLL and the DFS, use the longer locking time.	_	5	_	5	_	5	_	5	ms
LOCK_FX ⁽²⁾	When FCLKIN > 50 MHz, the time from deassertion at the DCM's reset input to the rising transition at its LOCKED output. The DFS asserts LOCKED when the CLKFX and CLKFX180 signals are valid. When using both the DLL and the DFS, use the longer locking time.	_	0.45	_	0.45	_	0.45	_	0.60	ms

Notes:

1. The values in this table are based on the operating conditions described in Table 2 and Table 55.

2. For optimal jitter tolerance and a faster LOCK time, use the CLKIN_PERIOD attribute.

4. The CLKFX, CLKFXDV, and CLKFX180 outputs have a duty cycle of approximately 50%.

Some duty cycle and alignment specifications include a percentage of the CLKFX output frequency is 100 MHz, the equivalent CLKFX period is 10 ns, and 1% of 10 ns is 0.1 ns or 100 ps. Accordingly, the maximum jitter is ±(100 ps + 200 ps) = ±300 ps.

www.xilinx.com

Output jitter is characterized with no input jitter. Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply, and PCB design. The actual maximum output jitter depends on the system application.

Spartan-6 Device Pin-to-Pin Output Parameter Guidelines

All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are listed in Table 63 through Table 69. Values are expressed in nanoseconds unless otherwise noted.

Table 63: Global Clock Input to Output Delay Without DCM or PLL

Symbol	Description	Device		Speed	l Grade		- Units
Symbol		Device	-3	-3N	-2	-1L	- Units
LVCMOS25 Globa	al Clock Input to Output Delay using Output Flip-Flo	p, 12mA, Fast Sle	ew Rate, и	vithout DCN	I or PLL		
T _{ICKOF}	Global Clock and OUTFF without DCM or PLL	XC6SLX4	6.12	N/A	7.68	9.41	ns
		XC6SLX9	6.12	6.51	7.68	9.41	ns
		XC6SLX16	5.98	6.42	7.48	9.10	ns
		XC6SLX25	6.20	6.69	7.84	9.44	ns
		XC6SLX25T	6.20	6.69	7.84	N/A	ns
		XC6SLX45	6.37	6.88	8.10	9.61	ns
		XC6SLX45T	6.37	6.88	8.10	N/A	ns
		XC6SLX75	6.39	6.99	8.16	10.18	ns
		XC6SLX75T	6.39	6.99	8.16	N/A	ns
		XC6SLX100	6.59	7.18	8.41	10.31	ns
		XC6SLX100T	6.59	7.18	8.41	N/A	ns
		XC6SLX150	6.98	7.68	8.80	10.62	ns
		XC6SLX150T	6.98	7.68	8.80	N/A	ns
		XA6SLX4	6.44	N/A	7.68	N/A	ns
		XA6SLX9	6.44	N/A	7.68	N/A	ns
		XA6SLX16	6.30	N/A	7.48	N/A	ns
		XA6SLX25	6.52	N/A	7.84	N/A	ns
		XA6SLX25T	6.52	N/A	7.84	N/A	ns
		XA6SLX45	6.69	N/A	8.12	N/A	ns
		XA6SLX45T	6.69	N/A	8.12	N/A	ns
		XA6SLX75	6.89	N/A	8.16	N/A	ns
		XA6SLX75T	6.89	N/A	8.16	N/A	ns
		XA6SLX100	N/A	N/A	8.36	N/A	ns
		XQ6SLX75	N/A	N/A	8.16	10.18	ns
		XQ6SLX75T	6.89	N/A	8.16	N/A	ns
		XQ6SLX150	N/A	N/A	8.80	10.62	ns
		XQ6SLX150T	7.61	N/A	8.80	N/A	ns

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Symbol	Description	Device		Speed Grade		Speed Grade			
Symbol	Description	Device	-3	-3N	-2	-1L	Unite		
Input Setup and He	old Time Relative to Global Clock In	put Signal for LV	CMOS25 Sta	Indard. <mark>(1)</mark>					
T _{PSDCM} / T _{PHDCM}	No Delay Global Clock and IFF ⁽²⁾	XC6SLX4	1.54/0.06	N/A	1.75/0.12	2.84/0.27	ns		
	with DCM in System-Synchronous Mode	XC6SLX9	1.54/0.06	1.63/0.12	1.75/0.12	2.84/0.27	ns		
		XC6SLX16	1.72/-0.18	1.87/-0.17	2.13/-0.17	2.31/0.26	ns		
		XC6SLX25	1.70/-0.03	1.78/-0.02	2.00/-0.02	2.88/0.20	ns		
		XC6SLX25T	1.70/0.07	1.78/0.08	2.00/0.08	N/A	ns		
		XC6SLX45	1.74/-0.03	1.84/-0.02	2.02/-0.02	2.64/0.52	ns		
		XC6SLX45T	1.74/-0.01	1.84/0.00	2.02/0.00	N/A	ns		
		XC6SLX75	1.86/0.11	1.98/0.12	2.20/0.12	2.96/0.58	ns		
		XC6SLX75T	1.86/0.11	1.98/0.12	2.20/0.12	N/A	ns		
		XC6SLX100	1.64/0.07	1.72/0.08	1.97/0.08	2.70/0.99	ns		
		XC6SLX100T	1.64/0.09	1.72/0.10	1.97/0.10	N/A	ns		
		XC6SLX150	1.53/0.39	1.62/0.40	1.82/0.40	2.75/1.00	ns		
		XC6SLX150T	1.53/0.39	1.62/0.40	1.82/0.40	N/A	ns		
		XA6SLX4	1.65/0.16	N/A	1.75/0.26	N/A	ns		
		XA6SLX9	1.65/0.16	N/A	1.75/0.26	N/A	ns		
		XA6SLX16	1.88/0.02	N/A	2.13/0.03	N/A	ns		
		XA6SLX25	1.80/0.16	N/A	2.05/0.17	N/A	ns		
		XA6SLX25T	1.80/0.16	N/A	2.13/0.17	N/A	ns		
		XA6SLX45	1.75/0.12	N/A	2.02/0.13	N/A	ns		
		XA6SLX45T	1.75/0.12	N/A	2.02/0.13	N/A	ns		
		XA6SLX75	1.87/0.11	N/A	2.20/0.12	N/A	ns		
		XA6SLX75T	1.87/0.11	N/A	2.20/0.12	N/A	ns		
		XA6SLX100	N/A	N/A	2.46/0.24	N/A	ns		
		XQ6SLX75	N/A	N/A	2.20/0.12	2.96/0.58	ns		
		XQ6SLX75T	1.87/0.11	N/A	2.20/0.12	N/A	ns		
		XQ6SLX150	N/A	N/A	1.82/0.56	2.75/1.00	ns		
		XQ6SLX150T	1.65/0.55	N/A	1.82/0.56	N/A	ns		

Table 72: Global Clock Setup and Hold With DCM in System-Synchronous Mode

Notes:

 Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. These measurements include DCM CLK0 jitter.

2. IFF = Input Flip-Flop or Latch

3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Symbol	Description	Device	Speed Grade					
Symbol		Device	-3	-3N	-2	-1L	Unite	
Input Setup and	Hold Time Relative to Global Clock In	put Signal for LV	CMOS25 Sta	ndard. <mark>(1)</mark>	·	·		
T _{PSDCMPLL} /	No Delay Global Clock and IFF ⁽²⁾	XC6SLX4	1.16/0.49	N/A	1.39/0.49	2.36/0.59	ns	
	with DCM in System-Synchronous Mode and PLL in DCM2PLL Mode.	XC6SLX9	1.16/0.44	1.37/0.44	1.39/0.44	2.36/0.59	ns	
		XC6SLX16	1.44/0.08	1.49/-0.04	1.62/-0.04	2.06/0.55	ns	
		XC6SLX25	1.52/0.42	1.65/0.42	1.83/0.42	2.52/0.43	ns	
		XC6SLX25T	1.52/0.42	1.65/0.42	1.83/0.42	N/A	ns	
		XC6SLX45	1.54/0.39	1.59/0.39	1.75/0.39	2.48/0.76	ns	
		XC6SLX45T	1.54/0.39	1.59/0.39	1.75/0.39	N/A	ns	
		XC6SLX75	1.72/0.41	1.80/0.41	1.99/0.41	2.60/0.75	ns	
		XC6SLX75T	1.72/0.41	1.80/0.41	1.99/0.41	N/A	ns	
	XC6SLX100	1.34/0.51	1.46/0.51	1.64/0.51	2.12/0.90	ns		
	XC6SLX100T	1.34/0.51	1.46/0.51	1.64/0.51	N/A	ns		
		XC6SLX150	1.30/0.60	1.40/0.60	1.55/0.60	2.57/0.97	ns	
		XC6SLX150T	1.30/0.60	1.40/0.60	1.55/0.60	N/A	ns	
		XA6SLX4	1.58/0.37	N/A	1.58/0.37	N/A	ns	
		XA6SLX9	1.58/0.37	N/A	1.58/0.37	N/A	ns	
		XA6SLX16	2.67/0.35	N/A	2.67/0.17	N/A	ns	
		XA6SLX25	1.74/0.27	N/A	1.95/0.27	N/A	ns	
		XA6SLX25T	1.74/0.27	N/A	2.03/0.27	N/A	ns	
		XA6SLX45	1.58/0.29	N/A	1.87/0.29	N/A	ns	
		XA6SLX45T	1.58/0.29	N/A	1.87/0.29	N/A	ns	
		XA6SLX75	1.74/0.24	N/A	2.11/0.24	N/A	ns	
		XA6SLX75T	1.74/0.24	N/A	2.11/0.24	N/A	ns	
		XA6SLX100	N/A	N/A	2.64/0.82	N/A	ns	
		XQ6SLX75	N/A	N/A	2.11/0.24	2.60/0.75	ns	
		XQ6SLX75T	1.74/0.24	N/A	2.11/0.24	N/A	ns	
		XQ6SLX150	N/A	N/A	1.67/0.70	2.57/0.97	ns	
		XQ6SLX150T	1.50/0.70	N/A	1.67/0.70	N/A	ns	

Table 76: Global Clock Setup and Hold With DCM and PLL in System-Synchronous Mode

Notes:

Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. These measurements include CMT jitter; DCM CLK0 driving PLL, PLL CLKOUT0 driving BUFG. 1.

2. IFF = Input Flip-Flop or Latch

Use IBIS to determine any duty-cycle distortion incurred using various standards. 3.

Cumbal	Description	Device	Speed Grade					
Symbol		Device	-3	-3N	-2	-1L	- Units	
Example Data Inpu the LVCMOS25 sta	t Set-Up and Hold Times Relative to a ndard.	Forwarded Clock	Input Pin, ⁽¹⁾ (Jsing DCM, F	PLL, and Glob	oal Clock Buf	fer for	
TPSDCMPLL_0/		XC6SLX4	0.43/1.07	N/A	0.43/1.43	1.10/1.67	ns	
T _{PHDCMPLL_0}	with DCM in Source-Synchronous Mode and PLL in DCM2PLL Mode.	XC6SLX9	0.43/1.03	0.45/1.14	0.45/1.43	1.10/1.67	ns	
		XC6SLX16	0.74/0.93	0.74/1.12	0.74/1.21	0.77/1.35	ns	
		XC6SLX25	0.67/1.02	0.76/1.11	0.84/1.18	1.23/1.46	ns	
		XC6SLX25T	0.67/1.02	0.76/1.11	0.84/1.18	N/A	ns	
		XC6SLX45	0.65/0.99	0.65/1.04	0.71/1.12	1.18/1.58	ns	
		XC6SLX45T	0.65/1.00	0.65/1.04	0.71/1.12	N/A	ns	
		XC6SLX75	0.86/1.01	0.88/1.06	0.94/1.14	1.29/1.67	ns	
		XC6SLX75T	0.86/1.01	0.88/1.06	0.94/1.14	N/A	ns	
		XC6SLX100	0.50/1.10	0.56/1.10	0.61/1.17	0.84/2.24	ns	
		XC6SLX100T	0.50/1.10	0.56/1.10	0.61/1.17	N/A	ns	
		XC6SLX150	0.45/1.28	0.47/1.28	0.52/1.28	1.27/1.56	ns	
		XC6SLX150T	0.45/1.28	0.47/1.28	0.52/1.28	N/A	ns	
		XA6SLX4	0.74/1.00	N/A	0.74/1.43	N/A	ns	
		XA6SLX9	0.74/1.00	N/A	0.74/1.43	N/A	ns	
		XA6SLX16	1.81/1.15	N/A	1.81/1.03	N/A	ns	
		XA6SLX25	0.89/1.01	N/A	0.96/1.05	N/A	ns	
		XA6SLX25T	0.89/1.01	N/A	1.04/1.15	N/A	ns	
		XA6SLX45	0.69/0.95	N/A	0.83/0.96	N/A	ns	
		XA6SLX45T	0.69/0.95	N/A	0.83/0.96	N/A	ns	
		XA6SLX75	0.88/0.94	N/A	1.06/0.96	N/A	ns	
		XA6SLX75T	0.88/0.94	N/A	1.06/0.96	N/A	ns	
		XA6SLX100	N/A	N/A	1.55/1.33	N/A	ns	
		XQ6SLX75	N/A	N/A	1.06/0.96	1.29/1.67	ns	
		XQ6SLX75T	0.88/0.94	N/A	1.06/0.96	N/A	ns	
		XQ6SLX150	N/A	N/A	0.64/1.30	1.27/1.56	ns	
		XQ6SLX150T	0.58/1.30	N/A	0.64/1.30	N/A	ns	

Table 77: Global Clock Setup and Hold With DCM and PLL in Source-Synchronous Mode

Notes:

Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. The timing values were measured using the fine-phase adjustment feature of the DCM. These measurements include CMT jitter; DCM CLK0 driving PLL, PLL CLKOUT0 driving BUFG. Package skew is not included in these measurements. 1.

2. IFF = Input Flip-Flop

www.xilinx.com

Symbol	Description	Device	Package ⁽²⁾	Value	Units
T _{PKGSKEW}	Package Skew ⁽¹⁾		CSG324	70	ps
		LX45	CS(G)484	99	ps
			FG(G)484	109	ps
			FG(G)676	138	ps
		LX45T	CSG324	75	ps
			CS(G)484	100	ps
			FG(G)484	95	ps
		LX75	CS(G)484	101	ps
			FG(G)484	107	ps
			FG(G)676	161	ps
		LX75T	CS(G)484	107	ps
			FG(G)484	110	ps
			FG(G)676	134	ps
		LX100	CS(G)484	95	ps
			FG(G)484	155	ps
			FG(G)676	144	ps
		LX100T	CS(G)484	88	ps
			FG(G)484	111	ps
			FG(G)676	147	ps
			FG(G)900	134	ps
		LX150	CS(G)484	84	ps
			FG(G)484	103	ps
			FG(G)676	115	ps
			FG(G)900	121	ps
		LX150T	CS(G)484	83	ps
			FG(G)484	88	ps
			FG(G)676	141	ps
			FG(G)900	120	ps

Table 79: Package Skew (Cont'd)

Notes:

These values represent the worst-case skew between any two SelectIO resources in the package: shortest delay to longest delay from Pad to Ball. 1.

2. Some of the devices are available in both Pb and Pb-free (additional G) packages as standard ordering options. See DS160: Spartan-6 Family Overview for more information.

Table 80: Sample Window

Symbol	Description	Device ⁽¹⁾	Speed Grade				Units
			-3	-3N	-2	-1L	
T _{SAMP}	Sampling Error at Receiver Pins ⁽²⁾	All	510	510	530	740	ps
T _{SAMP_BUFIO2}	Sampling Error at Receiver Pins using BUFIO2 ⁽³⁾	All	430	430	450	590	ps

Notes:

LXT devices are not available with a -1L speed grade. 1.

This parameter indicates the total sampling error of Spartan-6 FPGA DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the DCM to capture the DDR input registers' edges of operation. These measurements include: 2.

- CLK0 DCM jitter

DCM accuracy (phase offset)
 DCM phase shift resolution

These measurements do not include package or clock tree skew.

This parameter indicates the total sampling error of Spartan-6 FPGA DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the BUFIO2 clock network and IODELAY2 to capture the DDR input registers' edges of operation. These measurements do not include package or clock tree skew. З.

Date	Version	Description of Revisions
06/14/10	1.5	In Table 2, added note 5 and added temperature range to V _{FS} and R _{FUSE} . Removed speed grade delineation, revised I _{RPD} description, and updated note 2 in Table 4. Added note 2 to Table 7. Added DIFF_MOBILE_DDR to Table 8 and Table 10. Added note 4 to Table 15. Changed minimum DV _{PPIN} in Table 16. Updated F _{GTPDRPCLK} in Table 19. Increased maximum T _{LLSKEW} in Table 22. Updated descriptions and added data to Table 23. Removed note 1 and added new data to the Networking Applications section in Table 25. Updated Table 26 and Table 27 to the data in ISE v12.1 software with speed specification v1.08. In Table 28, added DIFF_MOBILE_DDR and updated -4 speed grade data. Updated the maximum I/O pairs per bank in Table 33. Updated note 2 on Table 39. Revised the F _{MAX} in Table 44. In Table 47, updated description for T _{SMCKCSO} , revised values for T _{POR} and added Min value, added T _{BPIICCK} and T _{SPIICCK} . Also in Table 47, added device dependencies to F _{SMCCK} and F _{RBCCK} . Updated and added data to Table 63 through Table 78, and Table 81. In Table 79, added data on the XC6SLX45-FG(G)676 and revised the XC6SLX45T and XC6SLX150T values.
		The following changes to this specification are addressed in the product change notice XCN10024, MCB Performance and JTAG Revision Code for Spartan-6 LX16 and LX45 FPGAs.
		In Table 2, revised the V _{CCINT} to add the memory controller block extended performance specifications. In Table 25, changed the standard specifications and added extended performance specifications for the memory controller block and note 2. Added note 4 and updated values in Table 34.
06/24/10	1.6	Production release of XC6SLX45T (-2 and -3 speed grades), XC6SLX16 and XC6SLX45 (-3 speed grade) devices which includes changes to Table 26 and Table 27 (ISE v12.1 software with speed specification v1.08).
		Added the -3N speed grade, which designates Spartan-6 devices that do not support MCB functionality. This includes changes to Table 2 (note 2), Table 25 (note 4), and Switching Characteristics (Table 26).
		Updated Simultaneously Switching Outputs discussion. Added -3 speed grade values for T_{TAP} and F_{MINCAL} values in Table 39. In Table 40, updated T_{RPW} (-2 and -3 speed grade) values and F_{TOG} (-3 speed grade) values. In Table 48, updated T_{GIO} (-2 and -3 speed grade) values. Updated -3 values in spread spectrum section of Table 57.
07/16/10	1.7	Production release of specific devices listed in Table 26 and Table 27 using ISE v12.2 software with speed specification v1.11. Added note 4 advising designers of the patch which contains v1.11. Also updated the -1L speed specification to v1.04. Updated numerous -4 and -1L values. Added -4 T _{TAP} values and F _{MINCAL} to Table 39. Revised T _{CINCK} /T _{CKCIN} in Table 40. In Table 41, revised T _{SHCKO} . In Table 42, revised T _{REG} . Added new -1L values to Table 47. Added and updated values in Table 79.
07/26/10	1.8	Production release of XC6SLX25, XC6SLX25T, XC6SLX100 and XC6SLX100T in the specific speed grades listed in Table 26 and Table 27 using ISE v12.2 software with speed specification v1.11. Added note 7 to Table 2 and moved V_{FS} and R_{FUSE} to a new Table 3. Added I_{HS} and note 4 to Table 4. Added note 1 to Table 28. Added and updated SSO limits per V_{CCO} /GND pairs in Table 34. Added note 3 to Table 47. In Table 54, removed -1L specifications for CLKOUT_PER_JITT_DV1/2 and revised CLKIN_CLKFB_PHASE and CLKOUT_PHASE_DLL values. Updated note 3 in both Table 56 and Table 57.
08/23/10	1.9	Updated values for F _{GTPRANGE1} , F _{GTPRANGE2} , and F _{GPLLMIN} in Table 18. Revised -3 and -4 values in Table 21. Removed the -1L speed grade readback support restriction and note 3 in Table 47.
11/05/10	1.10	Production release of XC6SLX4 and XC6SLX9 in the specific speed grades listed in Table 26 and Table 27 using ISE v12.3 software with speed specification v1.12 for the -2 speed grade available in the 12.3 <i>Speed Files Patch</i> . Added note 3 advising designers of the patch which contains v1.12.
		In Table 2, added note 4. In Table 4, added note 2. In Table 10, added notes 2 and 3. In Table 44, added note 2. In Table 47, updated symbol for T_{SMWCCK}/T_{SMCCKW} , changed -1L values for $T_{USERCCLKH}$ and $T_{USERCCLKL}$, and added and revised the modes for F_{MCCK} and F_{SMCCK} . In Table 53, redefined and expanded description for CLKIN_FREQ_DLL and rewrote note 3. Updated title of Table 58. Also in Table 78, revised T_{DCD_CLK} for XC6SLX150 and XC6SLX150T. Changed description of T_{PSFD}/T_{PHFD} in Table 71.
		For the -1L speed grade, updated data sheet to ISE 12.3 software with speed specification v1.05 which revised the values in the following tables: Table 25, Table 28, Table 35, Table 36, Table 37, Table 40 through Table 43, Table 48 through Table 56, Table 62 through Table 78, Table 80, and Table 81.

www.xilinx.com