

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	5831
Number of Logic Elements/Cells	74637
Total RAM Bits	3170304
Number of I/O	268
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc6slx75t-2fgg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1: Absolute Maximum Ratings⁽¹⁾ (Cont'd)

Symbol	Description								
				DC	-0.60 to 4.10	V			
			Commercial	20% overshoot duration	-0.75 to 4.25	V			
			-	8% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V			
				DC	-0.60 to 3.95	V			
		All user and dedicated	Industrial	20% overshoot duration	-0.75 to 4.15	V			
				4% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V			
				DC	-0.60 to 3.95	V			
			Expanded (Q)	20% overshoot duration	-0.75 to 4.15	V			
V_{IN} and $V_{TS}^{(3)}$	I/O input voltage or voltage applied to 3-state output, relative to GND ⁽⁴⁾			4% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V			
		Restricted to maximum of 100 user I/Os	Commercial	20% overshoot duration	-0.75 to 4.35	V			
				15% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V			
				10% overshoot duration	-0.75 to 4.45	V			
			Industrial	20% overshoot duration	-0.75 to 4.25	V			
				10% overshoot duration	-0.75 to 4.35	V			
				8% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V			
				20% overshoot duration	-0.75 to 4.25	V			
			Expanded (Q)	10% overshoot duration	-0.75 to 4.35	V			
				8% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V			
T _{STG}	Storage temperature (ambi	ent)			-65 to 150	°C			
	Maximum soldering temper (TQG144, CPG196, CSG2		+260	°C					
T _{SOL}	Maximum soldering temper	ature ⁽⁶⁾ (Pb-free packag	jes: FGG484, F	GG676, and FGG900)	+250	°C			
	Maximum soldering temper	ature ⁽⁶⁾ (Pb packages: C	S484, FT256, F	G484, FG676, and FG900)	+220	°C			
Тj	Maximum junction tempera	ture ⁽⁶⁾			+125	°C			

Notes:

1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

2. When programming eFUSE, $V_{FS} \le V_{CCAUX}$. Requires up to 40 mA current. For read mode, V_{FS} can be between GND and 3.45 V.

3. I/O absolute maximum limit applied to DC and AC signals. Overshoot duration is the percentage of a data period that the I/O is stressed beyond 3.45V.

4. For I/O operation, refer to UG381: Spartan-6 FPGA SelectIO Resources User Guide.

5. Maximum percent overshoot duration to meet 4.40V maximum.

6. For soldering guidelines and thermal considerations, see <u>UG385</u>: *Spartan-6 FPGA Packaging and Pinout Specification*.

Table 3: eFUSE Programming Conditions⁽¹⁾

Symbol	Description	Min	Тур	Max	Units
V _{FS} ⁽²⁾	External voltage supply	3.2	3.3	3.4	V
I _{FS}	V _{FS} supply current	-	-	40	mA
V _{CCAUX}	Auxiliary supply voltage relative to GND	3.2	3.3	3.45	V
R _{FUSE} ⁽³⁾	External resistor from R _{FUSE} pin to GND	1129	1140	1151	Ω
V _{CCINT}	Internal supply voltage relative to GND	1.14	1.2	1.26	V
tj	Temperature range	15	-	85	°C

Notes:

These specifications apply during programming of the eFUSE AES key. Programming is only supported through JTAG. The AES key is only supported in the following devices: LX75, LX75T, LX100, LX100T, LX150, and LX150T. 1.

2.

When programming eFUSE, V_{FS} must be less than or equal to V_{CCAUX} . When not programming or when eFUSE is not used, Xilinx recommends connecting V_{FS} to GND. However, V_{FS} can be between GND and 3.45 V. An R_{FUSE} resistor is required when programming the eFUSE AES key. When not programming or when eFUSE is not used, Xilinx recommends connecting the R_{FUSE} pin to V_{CCAUX} or GND. However, R_{FUSE} can be unconnected. З.

Quiescent Current

Typical values for quiescent supply current are specified at nominal voltage, 25° C junction temperatures (T_j). Quiescent supply current is specified by speed grade for Spartan-6 devices. Xilinx recommends analyzing static power consumption using the XPOWERTM Estimator (XPE) tool (download at <u>http://www.xilinx.com/power</u>) for conditions other than those specified in Table 5.

	Description			Speed Grade				
Symbol		Device	-3	-3N	-2	-1L	Units	
ICCINTQ	Quiescent V _{CCINT} supply current	LX4	4.0	4.0	4.0	2.4	mA	
		LX9	4.0	4.0	4.0	2.4	mA	
		LX16	6.0	6.0	6.0	4.0	mA	
		LX25	11.0	11.0	11.0	6.6	mA	
		LX25T	11.0	11.0	11.0	N/A	mA	
		LX45	15.0	15.0	15.0	9.0	mA	
		LX45T	15.0	15.0	15.0	N/A	mA	
		LX75	29.0	29.0	29.0	17.4	mA	
		LX75T	29.0	29.0	29.0	N/A	mA	
		LX100	36.0	36.0	36.0	21.6	mA	
		LX100T	36.0	36.0	36.0	N/A	mA	
		LX150	51.0	51.0	51.0	31.0	mA	
		LX150T	51.0	51.0	51.0	N/A	mA	
Iccoq	Quiescent V _{CCO} supply current	LX4	1.0	1.0	1.0	1.0	mA	
		LX9	1.0	1.0	1.0	1.0	mA	
		LX16	2.0	2.0	2.0	2.0	mA	
		LX25	2.0	2.0	2.0	2.0	mA	
		LX25T	2.0	2.0	2.0	N/A	mA	
		LX45	3.0	3.0	3.0	3.0	mA	
		LX45T	3.0	3.0	3.0	N/A	mA	
		LX75	4.0	4.0	4.0	4.0	mA	
		LX75T	4.0	4.0	4.0	N/A	mA	
		LX100	5.0	5.0	5.0	5.0	mA	
		LX100T	5.0	5.0	5.0	N/A	mA	
		LX150	7.0	7.0	7.0	7.0	mA	

Table 5: Typical Quiescent Supply Current

LX150T

7.0

7.0

7.0

N/A

mΑ

Symbol	Description	Device		Unite			
Symbol			-3	-3N	-2	-1L	Units
I _{CCAUXQ}	Quiescent V _{CCAUX} supply current	LX4	2.5	2.5	2.5	2.5	mA
		LX9	2.5	2.5	2.5	2.5	mA
		LX16	3.0	3.0	3.0	3.0	mA
		LX25	4.0	4.0	4.0	4.0	mA
		LX25T	4.0	4.0	4.0	N/A	mA
		LX45	5.0	5.0	5.0	5.0	mA
		LX45T	5.0	5.0	5.0	N/A	mA
		LX75	7.0	7.0	7.0	7.0	mA
		LX75T	7.0	7.0	7.0	N/A	mA
		LX100	9.0	9.0	9.0	9.0	mA
		LX100T	9.0	9.0	9.0	N/A	mA
		LX150	12.0	12.0	12.0	12.0	mA
		LX150T	12.0	12.0	12.0	N/A	mA

Table 5: Typical Quiescent Supply Current (Cont'd)

Notes:

 Typical values are specified at nominal voltage, 25°C junction temperatures (Tj). Industrial (I) grade devices have the same typical values as commercial (C) grade devices at 25°C, but higher values at 100°C. Use the XPE tool to calculate 100°C values. Nominal V_{CCINT} is 1.20V; use the XPE tool to calculate 1.23V values for the nominal V_{CCINT} of the extended performance range.

2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.

3. If differential signaling is used, more accurate quiescent current estimates can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools.

Table 6: Power Supply Ramp Time

Symbol	Description	Speed Grade	Ramp Time	Units
V _{CCINTR}	Internal supply voltage ramp time	-3, -3N, -2	0.20 to 50.0	ms
		-1L	0.20 to 40.0	ms
V _{CCO2} ⁽¹⁾	Output drivers bank 2 supply voltage ramp time	All	0.20 to 50.0	ms
V _{CCAUXR}	Auxiliary supply voltage ramp time	All	0.20 to 50.0	ms

Notes:

1. The minimum V_{CCO2} for power-on reset and configuration is 1.65V.

 Spartan-6 FPGAs require a certain amount of supply current during power-on to insure proper device initialization. The actual current consumed depends on the power-on ramp rate of the power supply. Use the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools to estimate current drain on these supplies. Spartan-6 devices do not have a required power-on sequence.

www.xilinx.com

I/O Standard		V _{CCO} for Driver	S
	V, Min	V, Nom	V, Max
LVDS_33	3.0	3.3	3.45
LVDS_25	2.25	2.5	2.75
BLVDS_25	2.25	2.5	2.75
MINI_LVDS_33	3.0	3.3	3.45
MINI_LVDS_25	2.25	2.5	2.75
LVPECL_33 ⁽¹⁾		N/A–Inputs Only	,
LVPECL_25		N/A–Inputs Only	/
RSDS_33	3.0	3.3	3.45
RSDS_25	2.25	2.5	2.75
TMDS_33 ⁽¹⁾	3.14	3.3	3.45
PPDS_33	3.0	3.3	3.45
PPDS_25	2.25	2.5	2.75
DISPLAY_PORT	2.3	2.5	2.7
DIFF_MOBILE_DDR	1.7	1.8	1.9
DIFF_HSTL_I	1.4	1.5	1.6
DIFF_HSTL_II	1.4	1.5	1.6
DIFF_HSTL_III	1.4	1.5	1.6
DIFF_HSTL_I_18	1.7	1.8	1.9
DIFF_HSTL_II_18	1.7	1.8	1.9
DIFF_HSTL_III_18	1.7	1.8	1.9
DIFF_SSTL3_I	3.0	3.3	3.45
DIFF_SSTL3_II	3.0	3.3	3.45
DIFF_SSTL2_I	2.3	2.5	2.7
DIFF_SSTL2_II	2.3	2.5	2.7
DIFF_SSTL18_I	1.7	1.8	1.9
DIFF_SSTL18_II	1.7	1.8	1.9
DIFF_SSTL15_II	1.425	1.5	1.575

Table 8: Recommended Operating Conditions for User I/Os Using Differential Signal Standards

Notes:

1. LVPECL_33 and TMDS_33 inputs require V_{CCAUX} = 3.3V nominal.

eFUSE Read Endurance

Table 11 lists the minimum guaranteed number of read cycle operations for Device DNA and for the AES eFUSE key. For more information, see UG380: Spartan-6 FPGA Configuration User Guide.

Table 11: eFUSE Read Endurance

Symbol	Description		Speed Grade			
Symbol			-3N	-2	-1L	(Min)
DNA_CYCLES	Number of DNA_PORT READ operations or JTAG ISC_DNA read command operations. Unaffected by SHIFT operations.		30,000,000		Read Cycles	
AES_CYCLES	Number of JTAG FUSE_KEY or FUSE_CNTL read command operations. Unaffected by SHIFT operations.		30,00	0,000		Read Cycles

GTP Transceiver Specifications

GTP transceivers are available in the Spartan-6 LXT devices. See <u>DS160</u>: Spartan-6 Family Overview for more information.

GTP Transceiver DC Characteristics

Table 12: Absolute Maximum Ratings for GTP Transceivers⁽¹⁾

Symbol	Description	MIn	Max	Units
MGTAVCC	Analog supply voltage for the GTP transmitter and receiver circuits relative to GND	-0.5	1.32	V
MGTAVTTTX	Analog supply voltage for the GTP transmitter termination circuit relative to GND	-0.5	1.32	V
MGTAVTTRX	Analog supply voltage for the GTP receiver termination circuit relative to GND	-0.5	1.32	V
MGTAVCCPLL	Analog supply voltage for the GTP transmitter and receiver PLL circuits relative to GND	-0.5	1.32	V
MGTAVTTRCAL	Analog supply voltage for the resistor calibration circuit of the GTP transceiver bank (top or bottom)	-0.5	1.32	V
V _{IN}	Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input voltage	-0.5	1.32	V
V _{MGTREFCLK}	Reference clock absolute input voltage	-0.5	1.32	V

Notes:

1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

Table 13: Recommended Operating Conditions for GTP Transceivers⁽¹⁾⁽²⁾⁽³⁾

Symbol	Description		Тур	Max	Units
MGTAVCC	Analog supply voltage for the GTP transmitter and receiver circuits relative to GND	1.14	1.20	1.26	V
MGTAVTTTX	Analog supply voltage for the GTP transmitter termination circuit relative to GND	1.14	1.20	1.26	V
MGTAVTTRX	Analog supply voltage for the GTP receiver termination circuit relative to GND	1.14	1.20	1.26	V
MGTAVCCPLL	Analog supply voltage for the GTP transmitter and receiver PLL circuits relative to GND	1.14	1.20	1.26	V
MGTAVTTRCAL	Analog supply voltage for the resistor calibration circuit of the GTP transceiver bank (top or bottom)	1.14	1.20	1.26	V

Notes:

1. Each voltage listed requires the filter circuit described in UG386: Spartan-6 FPGA GTP Transceivers User Guide.

2. Voltages are specified for the temperature range of $T_i = -40^{\circ}C$ to +125°C.

3. The voltage level of MGTAVCCPLL must not exceed the voltage level of MGTAVCC +10mV. The voltage level of MGTAVCC must not exceed the voltage level of MGTAVCCPLL.

GTP Transceiver DC Input and Output Levels

Table 16 summarizes the DC output specifications of the GTP transceivers in Spartan-6 FPGAs. Figure 1 shows the singleended output voltage swing. Figure 2 shows the peak-to-peak differential output voltage.

Consult UG386: Spartan-6 FPGA GTP Transceivers User Guide for further details.

Table 16: GTP Transceiver DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Мах	Units
DV _{PPIN}	Differential peak-to-peak input voltage	External AC coupled	140	_	2000	mV
V _{IN}	Absolute input voltage	DC coupled MGTAVTTRX = 1.2V	-400	_	MGTAVTTRX	mV
V _{CMIN}	Common mode input voltage	DC coupled MGTAVTTRX = 1.2V	_	3/4 MGTAVTTRX	_	mV
DV _{PPOUT}	Differential peak-to-peak output voltage ⁽¹⁾	Transmitter output swing is set to maximum setting	-	_	1000	mV
V _{SEOUT}	Single-ended output voltage swi	ng ⁽¹⁾	-	_	500	mV
V _{CMOUTDC}	Common mode output voltage	Equation based	ſ	MGTAVTTTX – V _S	_{EOUT} /2	mV
R _{IN}	Differential input resistance		80	100	130	Ω
R _{OUT}	Differential output resistance	Differential output resistance		100	130	Ω
T _{OSKEW}	Transmitter output skew		-	_	15	ps
C _{EXT}	Recommended external AC cou	pling capacitor ⁽²⁾	75	100	200	nF

Notes:

1. The output swing and preemphasis levels are programmable using the attributes discussed in UG386: Spartan-6 FPGA GTP Transceivers User Guide and can result in values lower than reported in this table.

2. Other values can be used as appropriate to conform to specific protocols and standards.

Figure 1: Single-Ended Peak-to-Peak Voltage

Figure 2: Differential Peak-to-Peak Voltage

 Table 17 summarizes the DC specifications of the clock input of the GTP transceiver. Consult UG386: Spartan-6 FPGA GTP

 Transceivers User Guide for further details.

	· · ·				
Symbol	DC Parameter	Min	Тур	Max	Units
V _{IDIFF}	Differential peak-to-peak input voltage	200	800	2000	mV
R _{IN}	Differential input resistance	80	100	120	Ω
C _{EXT}	Required external AC coupling capacitor	-	100	_	nF

Table 17: GTP Transceiver Clock DC Input Level Specification

GTP Transceiver Switching Characteristics

Consult UG386: Spartan-6 FPGA GTP Transceivers User Guide for further information.

Table 18: GTP Transceiver Performance

Symbol	Description		Unite			
Symbol	Description	-3	-3N	-2	-1L	Units
F _{GTPMAX}	Maximum GTP transceiver data rate	3.2	3.2	2.7	N/A	Gb/s
F _{GTPRANGE1}	GTP transceiver data rate range when PLL_TXDIVSEL_OUT = 1	1.88 to 3.2	1.88 to 3.2	1.88 to 2.7	N/A	Gb/s
F _{GTPRANGE2}	GTP transceiver data rate range when PLL_TXDIVSEL_OUT = 2	0.94 to 1.62	0.94 to 1.62	0.94 to 1.62	N/A	Gb/s
F _{GTPRANGE3}	GTP transceiver data rate range when PLL_TXDIVSEL_OUT = 4	0.6 to 0.81	0.6 to 0.81	0.6 to 0.81	N/A	Gb/s
F _{GPLLMAX}	Maximum PLL frequency	1.62	1.62	1.62	N/A	GHz
F _{GPLLMIN}	Minimum PLL frequency	0.94	0.94	0.94	N/A	GHz

Table 19: GTP Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics

Symbol	Description		Unito			
Symbol	Description		-3N	-2	-1L	Units
F _{GTPDRPCLK}	GTP transceiver DCLK (DRP clock) maximum frequency	125	125	100	N/A	MHz

Table 20: GTP Transceiver Reference Clock Switching Characteristics

Symbol	Description	Conditions	All L	Unite		
Symbol	Description	Conditions	Min	Тур	Max	Units
F _{GCLK}	Reference clock frequency range		60	_	160	MHz
T _{RCLK}	Reference clock rise time	20% - 80%	_	200	_	ps
T _{FCLK}	Reference clock fall time	80% – 20%	_	200	_	ps
T _{DCREF}	Reference clock duty cycle	Transceiver PLL only	45	50	55	%
T _{LOCK}	Clock recovery frequency acquisition time	Initial PLL lock	_	-	1	ms
T _{PHASE}	Clock recovery phase acquisition time	Lock to data after PLL has locked to the reference clock	_	_	200	μs

Figure 3: Reference Clock Timing Parameters

www.xilinx.com

Table 26: Spartan-6 Device Speed Grade Designations

Switching Characteristics

All values represented in this data sheet are based on these speed specifications: v1.20 for -3, -3N, and -2; and v1.08 for -1L. Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as

follows:

Advance

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some underreporting might still occur.

Preliminary

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Production

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

All specifications are always representative of worst-case supply voltage and junction temperature conditions.

Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device.

The -1L speed grade refers to the lower-power Spartan-6 devices. The -3N speed grade refers to the Spartan-6 devices that do not support MCB functionality.

Table 26 correlates the current status of each Spartan-6device on a per speed grade basis.

Dovico	Speed Grade Designations					
Device	Advance	Preliminary	Production			
XC6SLX4 ⁽¹⁾			-3, -2, -1L			
XC6SLX9			-3, -3N, -2, -1L			
XC6SLX16			-3, -3N, -2, -1L			
XC6SLX25			-3, -3N, -2, -1L			
XC6SLX25T			-3, -3N, -2			
XC6SLX45			-3, -3N, -2, -1L			
XC6SLX45T			-3, -3N, -2			
XC6SLX75			-3, -3N, -2, -1L			
XC6SLX75T			-3, -3N, -2			
XC6SLX100			-3, -3N, -2, -1L			
XC6SLX100T			-3, -3N, -2			
XC6SLX150			-3, -3N, -2, -1L			
XC6SLX150T			-3, -3N, -2			
XA6SLX4			-3, -2			
XA6SLX9			-3, -2			
XA6SLX16			-3, -2			
XA6SLX25			-3, -2			
XA6SLX25T			-3, -2			
XA6SLX45			-3, -2			
XA6SLX45T			-3, -2			
XA6SLX75			-3, -2			
XA6SLX75T			-3, -2			
XA6SLX100			-2			
XQ6SLX75			-2, -1L			
XQ6SLX75T			-3, -2			
XQ6SLX150			-2, -1L			
XQ6SLX150T			-3, -2			

Notes:

1. The XC6SLX4 is not available in the -3N speed grade.

Testing of Switching Characteristics

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Spartan-6 devices.

Production Silicon and ISE Software Status

In some cases, a particular family member (and speed grade) is released to production before a speed specification is released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent speed specification releases. Table 27 lists the production released Spartan-6 family member, speed grade, and the minimum corresponding supported speed specification version and ISE® software revisions. The ISE software and speed specifications listed are the minimum releases required for production. All subsequent releases of software and speed specifications are valid.

Speed Grade Designations ⁽²⁾					
Device	-3 ⁽³⁾	-3N	-2 ⁽⁴⁾	-1L	
XC6SLX4	ISE 12.4 v1.15	N/A	ISE 12.3 v1.12 ⁽⁵⁾	ISE 13.2 v1.07	
XC6SLX9	ISE 12.4 v1.15	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.3 v1.12 ⁽⁵⁾	ISE 13.2 v1.07	
XC6SLX16	ISE 12.1 v1.08	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 11.5 v1.06	ISE 13.2 v1.07	
XC6SLX25	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.2 v1.07	
XC6SLX25T	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	N/A	
XC6SLX45	ISE 12.1 v1.08	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 11.5 v1.07	ISE 13.1 v1.06	
XC6SLX45T	ISE 12.1 v1.08	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.1 v1.08	N/A	
XC6SLX75	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.2 v1.07	
XC6SLX75T	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	N/A	
XC6SLX100	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 v1.06	
XC6SLX100T	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	N/A	
XC6SLX150	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 v1.06	
XC6SLX150T	ISE 12.2 v1.11 ⁽⁶⁾	ISE 13.1 Update v1.18 ⁽⁷⁾	ISE 12.2 v1.11 ⁽⁶⁾	N/A	
XA6SLX4	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A	
XA6SLX9	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A	
XA6SLX16	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A	
XA6SLX25	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A	
XA6SLX25T	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A	
XA6SLX45	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A	
XA6SLX45T	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A	
XA6SLX75	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A	
XA6SLX75T	ISE 13.2 v1.19	N/A	ISE 13.2 v1.19	N/A	
XA6SLX100	N/A	N/A	ISE 13.3 v1.20	N/A	

|--|

Table	32:	Output Delay	Measurement	Methodology	(Cont'd)
					(

Description	I/O Standard Attribute	R _{REF} (Ω)	C _{REF} ⁽¹⁾ (pF)	V _{MEAS} (V)	V _{REF} (V)
SSTL, Class II, 2.5V	SSTL2_II	25	0	V _{REF}	1.25
SSTL, Class II, 1.5V	SSTL15_II	25	0	V _{REF}	0.75
LVDS (Low-Voltage Differential Signaling), 2.5V & 3.3V	LVDS_25, LVDS_33	100	0	0 ⁽³⁾	-
BLVDS (Bus LVDS), 2.5V	BLVDS_25	Note 4	0	0(3)	-
Mini-LVDS, 2.5V & 3.3V	MINI_LVDS_25, MINI_LVDS_33	100	0	0(3)	-
RSDS (Reduced Swing Differential Signaling), 2.5V & 3.3V	RSDS_25, RSDS_33	100	0	0(3)	-
TMDS (Transition Minimized Differential Signaling), 3.3V	TMDS_33	Note 5	0	0(3)	-
PPDS (Point-to-Point Differential Signaling, 2.5V & 3.3V	PPDS_25, PPDS_33	100	0	0(3)	Ι

Notes:

1. C_{REF} is the capacitance of the probe, nominally 0 pF.

2. Per PCI specifications.

3. The value given is the differential output voltage.

4. See the BLVDS Output Termination section in UG381, Spartan-6 FPGA SelectIO Resources User Guide.

5. See the TMDS_33 Termination section in UG381, Spartan-6 FPGA SelectIO Resources User Guide.

Simultaneously Switching Outputs

Due to package electrical parasitics, a given package supports a limited number of simultaneous switching outputs (SSOs) when using fast, high-drive outputs. Table 33 and Table 34 provide guidelines for the recommended maximum allowable number of SSOs. These guidelines describe the maximum number of user I/O pins of an output signal standard that should simultaneously switch in the same direction, while maintaining a safe level of switching noise for that particular signal standard. Meeting these guidelines for the stated test conditions ensures that the FPGA operates free from the adverse effects of GND and power bounce.

For each device/package combination, Table 33 provides the number of equivalent V_{CCO} /GND pairs per bank. For each output signal standard and drive strength, Table 34 recommends the maximum number of SSOs, switching in the same direction, allowed per V_{CCO} /GND pair within an I/O bank. The guidelines are categorized by package style, slew rate, and output drive current. The number of SSOs are also specified by I/O bank. Multiply the appropriate numbers from each table to calculate the maximum number of SSOs allowed within an I/O bank. The guidelines assume that all pins within a bank use the same I/O standard. Exceeding these SSO guidelines can result in increased power or GND bounce, degraded signal integrity, or increased system jitter. For a given I/O standard, if the SSO limit per pair in Table 34 is greater than the maximum I/O per pair in Table 33, then there is no SSO limit for the exclusive use of that I/O standard.

The recommended maximum SSO values assume that the FPGA is soldered on a printed circuit board and that the board uses sound design practices. Due to the additional inductance introduced by the socket, the SSO values do not apply for FPGAs mounted in sockets. The SSO values assume that the V_{CCAUX} is powered at 3.3V. Setting V_{CCAUX} to 2.5V provides better SSO characteristics. For more detail, see <u>UG381</u>: *Spartan-6 FPGA SelectIO Resources User Guide*.

Table 44: DSP48A1 Switching Characteristics (Cont'd)

Symbol	Description	Pre-	Post-	Speed Grade				Unite	
Symbol		adder	Multiplier	adder	-3	-3N	-2	-1L	Units
T _{DSPDCK_OPMODE_PREG} / T _{DSPCKD_OPMODE_PREG}	OPMODE input to P register CLK	Yes	Yes	Yes	6.21/ 0.84	7.27/ 0.84	7.27/ -0.84	10.43/ -0.84	ns
		No	Yes	Yes	1.69/ 0.87	1.98/ 0.87	1.98/ -0.87	3.62/ 0.87	ns
		No	No	Yes	2.09/ 0.22	2.30/ 0.22	2.30/ 0.22	3.79/ 0.22	ns
Clock to Out from Output Reg	ister Clock to Output Pin								
T _{DSPCKO_P_PREG}	CLK (PREG) to P output	N/A	N/A	N/A	1.20	1.34	1.34	1.90	ns
Clock to Out from Pipeline Re	gister Clock to Output Pins								
T _{DSPCKO_P_MREG}	CLK (MREG) to P output	N/A	N/A	Yes	3.38	3.95	3.95	5.83	ns
Clock to Out from Input Regis	ter Clock to Output Pins		1				r	r	
T _{DSPCKO_P_A1REG}	CLK (A1REG) to P output	N/A	Yes	Yes	5.02	5.87	5.87	9.65	ns
T _{DSPCKO_P_B1REG}	CLK (B1REG) to P output	N/A	Yes	Yes	5.02	5.87	5.87	9.63	ns
T _{DSPCKO_P_CREG}	CLK (CREG) to P output	N/A	N/A	Yes	3.12	3.64	3.64	5.24	ns
T _{DSPCKO_P_DREG}	CLK (DREG) to P output	Yes	Yes	Yes	6.77	7.92	7.92	12.53	ns
Combinatorial Delays from Inp	out Pins to Output Pins		•	-					
T _{DSPDO_A_P}	A input to P output	N/A	No	Yes	2.85	3.33	3.33	4.73	ns
		N/A	Yes	No ⁽²⁾	3.35	3.93	3.93	6.74	ns
		N/A	Yes	Yes	4.56	5.22	5.22	8.94	ns
T _{DSPDO_B_P}	B input to P output	Yes	No	No ⁽²⁾	3.22	3.76	3.76	5.55	ns
		Yes	Yes	No ⁽²⁾	6.01	6.54	6.54	9.76	ns
		Yes	Yes	Yes	6.27	7.34	7.34	11.96	ns
T _{DSPDO_C_P}	C input to P output	N/A	N/A	Yes	2.69	3.15	3.15	4.68	ns
T _{DSPDO_D_P}	D input to P output	Yes	Yes	Yes	6.31	7.38	7.38	11.81	ns
T _{DSPDO_OPMODE_P}	OPMODE input to P output	Yes	Yes	Yes	6.43	7.52	7.52	11.84	ns
		No	Yes	Yes	4.84	5.66	5.66	9.25	ns
		No	No	Yes	3.11	3.49	3.49	5.03	ns
Maximum Frequency	•	+			+	+	•	•	•
F _{MAX}	All registers used	Yes	Yes	Yes	390	333	333	213	MHz

Notes:

1. A Yes signifies that the component is in the path. A No signifies that the component is being bypassed. N/A signifies not applicable because no path exists.

2. Implemented in the post-adder by adding to zero.

Speed Grade										
Symbol	Description	-3 -3N -2 -1L					L	Units		
		Min	Max	Min	Max	Min	Мах	Min	Max	
Output Frequency Ranges	(DCM_CLKGEN)	4						4		
CLKOUT_FREQ_FX	Frequency for the CLKFX and CLKFX180 outputs	5	375	5	375	5	333	5	200	MHz
CLKOUT_FREQ_FXDV	Frequency for the CLKFXDV output	0.15625	187.5	0.15625	187.5	0.15625	166.5	0.15625	100	MHz
Output Clock Jitter ⁽²⁾⁽³⁾										
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and CLKFX180 outputs.		Тур	ical = ±[C).2% of	CLKFX p	eriod +	100]		ps
CLKOUT_PER_JITT_FXDV	Period jitter at the CLKFXDV output.		Тур	ical = ±[C).2% of	CLKFX p	eriod +	100]		ps
	CLKFX period change in free running oscillator mode at the same temperature. FCLKFX > 50 MHz		I	Maximun	1 = ±3%	of CLKF	-X peric	od		ps
CLNFX_FREEZE_VAR	CLKFX period change in free running oscillator mode at the same temperature. FCLKFX < 50 MHz		Maximum = ±5% of CLKFX period					ps		
CLKFX_FREEZE_TEMP _SLOPE	CLKFX period will change in free_oscillator mode over temperature. Add to CLKFX_FREEZE_VAR to determine total CLKFX period change. Percentage change for CLKFX period over 1°C.	Maximum = 0.1						%/°C		
Duty Cycle ⁽⁴⁾⁽⁵⁾										
CLKOUT_DUTY_CYCLE_ FX	Duty cycle precision for the CLKFX and CLKFX180 outputs, including the BUFGMUX and clock tree duty-cycle distortion	tputs, nd tion					ps			
CLKOUT_DUTY_CYCLE_ FXDV	Duty cycle precision for the CLKFXDV outputs, including the BUFGMUX and clock tree duty-cycle distortion	Maximum = ±[1% of CLKFX period + 350]						ps		
Lock Time										
LOCK_FX ⁽²⁾	The time from deassertion at the DCM's Reset input to the rising transition at its LOCKED output. The DFS asserts LOCKED when the CLKFX, CLKFX180, and CLKFXDV signals are valid. Lock time requires CLKFX_DIVIDE < $F_{IN}/(0.50 \text{ MHz})$	_	50	_	50	_	50	_	50	ms
	when: $F_{CLKIN} > 50$ MHz	_	5	_	5	_	5	_	5	ms

Table 57: Switching Characteristics for the Digital Frequency Synthesizer DFS (DCM_CLKGEN)⁽¹⁾

Table 59: Switching Characteristics for the Phase-Shift Clock in Variable Phase Mode⁽¹⁾

Symbol	Description	Amount of Phase Shift	Units
Phase Shifting Range			
MAY STEDS(2)	When CLKIN < 60 MHz, the maximum allowed number of DCM_DELAY_STEP steps for a given CLKIN clock period, where T = CLKIN clock period in ns. When using CLKIN_DIVIDE_BY_2 = TRUE, double the clock-effective clock period.	±(INTEGER(10 x (TCLKIN – 3 ns)))	steps
MAA_STEPS	When CLKIN \geq 60 MHz, the maximum allowed number of DCM_DELAY_STEP steps for a given CLKIN clock period, where T = CLKIN clock period in ns. When using CLKIN_DIVIDE_BY_2 = TRUE, double the clock-effective clock period.	±(INTEGER(15 x (TCLKIN – 3 ns)))	steps
FINE_SHIFT_RANGE_MIN	Minimum guaranteed delay for variable phase shifting.	±(MAX_STEPS x DCM_DELAY_STEP_MIN)	ps
FINE_SHIFT_RANGE_MAX	Maximum guaranteed delay for variable phase shifting	±(MAX_STEPS x DCM_DELAY_STEP_MAX)	ps

Notes:

1. The values in this table are based on the operating conditions described in Table 53 and Table 58.

2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM has no initial fixed-phase shifting, that is, the PHASE_SHIFT attribute is set to 0.

3. The DCM_DELAY_STEP values are provided at the end of Table 54.

Table 60: Miscellaneous DCM Timing Parameters⁽¹⁾

Symbol	Description	Min	Max	Units
DCM_RST_PW_MIN	Minimum duration of a RST pulse width	3	-	CLKIN cycles

Notes:

1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). The DCM DFS outputs (CLKFX, CLKFXDV, CLKFX180) are unaffected.

Table 61: Frequency Synthesis

Attribute	Min	Мах
CLKFX_MULTIPLY (DCM_SP)	2	32
CLKFX_DIVIDE (DCM_SP)	1	32
CLKDV_DIVIDE (DCM_SP)	1.5	16
CLKFX_MULTIPLY (DCM_CLKGEN)	2	256
CLKFX_DIVIDE (DCM_CLKGEN)	1	256
CLKFXDV_DIVIDE (DCM_CLKGEN)	2	32

Table 62: DCM Switching Characteristics

Symbol	Description	Speed Grade				Unite
Symbol	Description	-3	-3N	-2	-1L	Units
T _{DMCCK_PSEN} / T _{DMCKC_PSEN}	PSEN Setup/Hold	1.50/ 0.00	1.50/ 0.00	1.50/ 0.00	1.50/ 0.00	ns
T _{DMCCK_PSINCDEC} / T _{DMCKC_PSINCDEC}	PSINCDEC Setup/Hold	1.50/ 0.00	1.50/ 0.00	1.50/ 0.00	1.50/ 0.00	ns
T _{DMCKO_PSDONE}	Clock to out of PSDONE	1.50	1.50	1.50	1.50	ns

Spartan-6 Device Pin-to-Pin Output Parameter Guidelines

All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are listed in Table 63 through Table 69. Values are expressed in nanoseconds unless otherwise noted.

Table	63:	Global	Clock I	nput to	Output	Delay	Without	DCM	or PLL

Symbol	Description	Device		Unito			
			-3	-3N	-2	-1L	Units
LVCMOS25 Global (Clock Input to Output Delay using Output Flip-Flo	pp, 12mA, Fast Sle	w Rate, w	vithout DCN	I or PLL		
TICKOF	Global Clock and OUTFF without DCM or PLL	XC6SLX4	6.12	N/A	7.68	9.41	ns
		XC6SLX9	6.12	6.51	7.68	9.41	ns
		XC6SLX16	5.98	6.42	7.48	9.10	ns
		XC6SLX25	6.20	6.69	7.84	9.44	ns
		XC6SLX25T	6.20	6.69	7.84	N/A	ns
		XC6SLX45	6.37	6.88	8.10	9.61	ns
		XC6SLX45T	6.37	6.88	8.10	N/A	ns
		XC6SLX75	6.39	6.99	8.16	10.18	ns
		XC6SLX75T	6.39	6.99	8.16	N/A	ns
		XC6SLX100	6.59	7.18	8.41	10.31	ns
		XC6SLX100T	6.59	7.18	8.41	N/A	ns
		XC6SLX150	6.98	7.68	8.80	10.62	ns
		XC6SLX150T	6.98	7.68	8.80	N/A	ns
		XA6SLX4	6.44	N/A	7.68	N/A	ns
		XA6SLX9	6.44	N/A	7.68	N/A	ns
		XA6SLX16	6.30	N/A	7.48	N/A	ns
		XA6SLX25	6.52	N/A	7.84	N/A	ns
		XA6SLX25T	6.52	N/A	7.84	N/A	ns
		XA6SLX45	6.69	N/A	8.12	N/A	ns
		XA6SLX45T	6.69	N/A	8.12	N/A	ns
		XA6SLX75	6.89	N/A	8.16	N/A	ns
		XA6SLX75T	6.89	N/A	8.16	N/A	ns
		XA6SLX100	N/A	N/A	8.36	N/A	ns
		XQ6SLX75	N/A	N/A	8.16	10.18	ns
		XQ6SLX75T	6.89	N/A	8.16	N/A	ns
		XQ6SLX150	N/A	N/A	8.80	10.62	ns
		XQ6SLX150T	7.61	N/A	8.80	N/A	ns

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Symbol	Description	Device	Speed Grade					
			-3	-3N	-2	-1L	Units	
LVCMOS25 Global	Clock Input to Output Delay using Output Flip-Flo	Flop, 12mA, Fast Slew Rate, with PLL in Source-Synchronous Mor						
T _{ICKOFPLL_0}	Global Clock and OUTFF with PLL	XC6SLX4	5.49	N/A	7.44	8.55	ns	
		XC6SLX9	5.49	6.29	7.44	8.55	ns	
		XC6SLX16	5.23	5.77	6.79	8.21	ns	
		XC6SLX25	5.00	5.35	6.10	8.54	ns	
		XC6SLX25T	5.00	5.35	6.10	N/A	ns	
		XC6SLX45	5.59	6.03	7.02	8.39	ns	
		XC6SLX45T	5.59	6.03	7.02	N/A	ns	
		XC6SLX75	4.96	5.41	6.22	8.32	ns	
		XC6SLX75T	4.96	5.41	6.22	N/A	ns	
		XC6SLX100	4.97	5.42	6.21	9.08	ns	
		XC6SLX100T	5.01	5.42	6.21	N/A	ns	
		XC6SLX150	4.59	5.06	5.86	8.13	ns	
		XC6SLX150T	4.59	5.06	5.86	N/A	ns	
		XA6SLX4	5.79	N/A	7.32	N/A	ns	
		XA6SLX9	5.79	N/A	7.32	N/A	ns	
		XA6SLX16	5.56	N/A	6.66	N/A	ns	
		XA6SLX25	5.40	N/A	5.97	N/A	ns	
		XA6SLX25T	5.40	N/A	6.07	N/A	ns	
		XA6SLX45	5.89	N/A	6.90	N/A	ns	
		XA6SLX45T	5.89	N/A	6.90	N/A	ns	
		XA6SLX75	5.27	N/A	6.12	N/A	ns	
		XA6SLX75T	5.27	N/A	6.12	N/A	ns	
		XA6SLX100	N/A	N/A	6.80	N/A	ns	
		XQ6SLX75	N/A	N/A	6.12	8.32	ns	
		XQ6SLX75T	5.27	N/A	6.12	N/A	ns	
		XQ6SLX150	N/A	N/A	5.88	8.13	ns	
		XQ6SLX150T	5.21	N/A	5.88	N/A	ns	

Table 67: Global Clock Input to Output Delay With PLL in Source-Synchronous Mode

Notes:

Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. PLL output jitter is included in the timing calculation. 1.

2.

Gumbal	Description	Dovice	Speed Grade				
Symbol		Device	-3	-3N	-2	-1L	Units
Input Setup and Ho	old Time Relative to Global Clock In	put Signal for LV	CMOS25 Sta	andard. ⁽¹⁾			
T _{PSDCM0} / T _{PHDCM0}	No Delay Global Clock and IFF ⁽²⁾	XC6SLX4	0.71/0.65	N/A	0.72/1.22	1.58/1.18	ns
	with DCM in Source-Synchronous	XC6SLX9	0.71/0.69	0.71/1.19	0.72/1.36	1.58/1.18	ns
		XC6SLX16	0.86/0.52	0.92/0.57	1.04/0.60	1.02/1.06	ns
		XC6SLX25	0.84/0.58	0.90/0.59	1.01/0.59	1.58/1.07	ns
		XC6SLX25T	0.84/0.58	0.90/0.59	1.01/0.59	N/A	ns
		XC6SLX45	0.85/0.70	0.90/0.76	0.98/0.79	1.34/1.34	ns
		XC6SLX45T	0.85/0.70	0.90/0.76	0.98/0.79	N/A	ns
		XC6SLX75	1.00/0.62	1.06/0.63	1.15/0.63	1.65/1.46	ns
		XC6SLX75T	1.00/0.71	1.06/0.72	1.15/0.72	N/A	ns
		XC6SLX100	0.81/0.68	0.81/0.69	0.94/0.69	1.42/2.07	ns
		XC6SLX100T	0.81/0.68	0.81/0.69	0.94/0.69	N/A	ns
		XC6SLX150	0.68/0.98	0.69/0.99	0.79/0.99	1.45/1.60	ns
		XC6SLX150T	0.68/0.98	0.69/0.99	0.79/0.99	N/A	ns
		XA6SLX4	0.81/0.74	N/A	0.72/1.36	N/A	ns
		XA6SLX9	0.81/0.74	N/A	0.72/1.36	N/A	ns
		XA6SLX16	1.01/0.56	N/A	1.04/0.60	N/A	ns
		XA6SLX25	0.94/0.76	N/A	1.06/0.77	N/A	ns
		XA6SLX25T	0.94/0.76	N/A	1.14/0.77	N/A	ns
		XA6SLX45	0.86/0.74	N/A	0.98/0.78	N/A	ns
		XA6SLX45T	0.86/0.74	N/A	0.98/0.78	N/A	ns
		XA6SLX75 1.02/0.71	N/A	1.15/0.72	N/A	ns	
		XA6SLX75T	1.02/0.71	N/A	1.15/0.72	N/A	ns
		XA6SLX100	N/A	N/A	1.37/0.75	N/A	ns
		XQ6SLX75	N/A	N/A	1.15/0.72	1.65/1.46	ns
		XQ6SLX75T	1.02/0.71	N/A	1.15/0.72	N/A	ns
		XQ6SLX150	N/A	N/A	0.79/1.15	1.45/1.60	ns
		XQ6SLX150T	0.73/1.15	N/A	0.79/1.15	N/A	ns

Table 73: Global Clock Setup and Hold With DCM in Source-Synchronous Mode

Notes:

 Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. These measurements include DCM CLK0 jitter.

2. IFF = Input Flip-Flop or Latch

3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Querra ha a l	Description	Dovico	Speed Grade				
Symbol		Device	-3	-3N	-2	-1L	Units
Input Setup and H	old Time Relative to Global Clock In	put Signal for LV	CMOS25 Sta	ndard. ⁽¹⁾			
T _{PSPLL} / T _{PHPLL}	No Delay Global Clock and IFF ⁽²⁾	XC6SLX4	1.37/0.25	N/A	1.52/0.41	2.07/0.69	ns
	with PLL in System-Synchronous	XC6SLX9	1.37/0.21	1.48/0.21	1.52/0.26	2.07/0.69	ns
		XC6SLX16	1.33/-0.03	1.53/-0.02	1.60/-0.02	1.57/0.48	ns
		XC6SLX25	1.65/0.28	1.71/0.28	1.91/0.28	2.44/0.76	ns
		XC6SLX25T	1.65/0.28	1.71/0.28	1.91/0.28	N/A	ns
		XC6SLX45	1.55/0.18	1.64/0.18	1.75/0.18	2.02/0.90	ns
		XC6SLX45T	1.55/0.18	1.64/0.18	1.75/0.18	N/A	ns
		XC6SLX75	1.77/0.21	1.89/0.21	2.13/0.21	2.46/0.53	ns
		XC6SLX75T	1.77/0.21	1.89/0.21	2.13/0.21	N/A	ns
		XC6SLX100	1.44/0.32	1.52/0.32	1.70/0.32	1.78/0.86	ns
		XC6SLX100T	1.44/0.32	1.52/0.32	1.70/0.32	N/A	ns
		XC6SLX150	1.39/0.49	1.48/0.49	1.67/0.49	1.94/0.94	ns
		XC6SLX150T	1.39/0.49	1.48/0.49	1.67/0.49	N/A	ns
		XA6SLX4	1.61/0.10	N/A	1.64/0.28	N/A	ns
		XA6SLX9	1.61/0.10	N/A	1.64/0.28	N/A	ns
		XA6SLX16	1.89/-0.08	N/A	1.72/-0.08	N/A	ns
		XA6SLX25	1.85/0.16	N/A	2.08/0.16	N/A	ns
		XA6SLX25T	1.85/0.16	N/A	2.17/0.16	N/A	ns
		XA6SLX45	1.58/0.07	N/A	1.87/0.03	N/A	ns
		XA6SLX45T	1.58/0.07	N/A	1.87/0.03	N/A	ns
		XA6SLX75	1.80/0.06	N/A	2.25/0.06	N/A	ns
		XA6SLX75T	1.80/0.06	N/A	2.25/0.06	N/A	ns
		XA6SLX100	N/A	N/A	2.34/0.14	N/A	ns
		XQ6SLX75	N/A	N/A	2.25/0.06	2.46/0.53	ns
		XQ6SLX75T	1.80/0.06	N/A	2.25/0.06	N/A	ns
		XQ6SLX150	N/A	N/A	1.79/0.37	1.94/0.94	ns
		XQ6SLX150T	1.43/0.37	N/A	1.79/0.37	N/A	ns

Table 74: Global Clock Setup and Hold With PLL in System-Synchronous Mode

Notes:

 Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. These measurements include PLL CLKOUT0 jitter.

2. IFF = Input Flip-Flop or Latch

3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Symbol	Description	Device	Speed Grade				Unite
			-3	-3N	-2	-1L	Units
Example Data Input the LVCMOS25 star	Set-Up and Hold Times Relative to a ndard.	Forwarded Clock	Input Pin, ⁽¹⁾ l	Jsing DCM, F	PLL, and Glol	oal Clock Buf	fer for
TPSDCMPLL_0	No Delay Global Clock and IFF ⁽²⁾	XC6SLX4	0.43/1.07	N/A	0.43/1.43	1.10/1.67	ns
PHDCMPLL_0	Mode and PLL in DCM2PLL Mode.	XC6SLX9	0.43/1.03	0.45/1.14	0.45/1.43	1.10/1.67	ns
		XC6SLX16	0.74/0.93	0.74/1.12	0.74/1.21	0.77/1.35	ns
		XC6SLX25	0.67/1.02	0.76/1.11	0.84/1.18	1.23/1.46	ns
	XC6SLX25T	0.67/1.02	0.76/1.11	0.84/1.18	N/A	ns	
	XC6SLX45	0.65/0.99	0.65/1.04	0.71/1.12	1.18/1.58	ns	
		XC6SLX45T	0.65/1.00	0.65/1.04	0.71/1.12	N/A	ns
		XC6SLX75	0.86/1.01	0.88/1.06	0.94/1.14	1.29/1.67	ns
		XC6SLX75T	0.86/1.01	0.88/1.06	0.94/1.14	N/A	ns
		XC6SLX100	0.50/1.10	0.56/1.10	0.61/1.17	0.84/2.24	ns
		XC6SLX100T	0.50/1.10	0.56/1.10	0.61/1.17	N/A	ns
		XC6SLX150	0.45/1.28	0.47/1.28	0.52/1.28	1.27/1.56	ns
		XC6SLX150T	0.45/1.28	0.47/1.28	0.52/1.28	N/A	ns
		XA6SLX4	0.74/1.00	N/A	0.74/1.43	N/A	ns
		XA6SLX9	0.74/1.00	N/A	0.74/1.43	N/A	ns
		XA6SLX16	1.81/1.15	N/A	1.81/1.03	N/A	ns
		XA6SLX25	0.89/1.01	N/A	0.96/1.05	N/A	ns
		XA6SLX25T	0.89/1.01	N/A	1.04/1.15	N/A	ns
		XA6SLX45	0.69/0.95	N/A	0.83/0.96	N/A	ns
		XA6SLX45T	0.69/0.95	N/A	0.83/0.96	N/A	ns
		XA6SLX75	0.88/0.94	N/A	1.06/0.96	N/A	ns
		XA6SLX75T	0.88/0.94	N/A	1.06/0.96	N/A	ns
		XA6SLX100	N/A	N/A	1.55/1.33	N/A	ns
		XQ6SLX75	N/A	N/A	1.06/0.96	1.29/1.67	ns
		XQ6SLX75T	0.88/0.94	N/A	1.06/0.96	N/A	ns
		XQ6SLX150	N/A	N/A	0.64/1.30	1.27/1.56	ns
		XQ6SLX150T	0.58/1.30	N/A	0.64/1.30	N/A	ns

Table 77: Global Clock Setup and Hold With DCM and PLL in Source-Synchronous Mode

Notes:

Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. The timing values were measured using the fine-phase adjustment feature of the DCM. These measurements include CMT jitter; DCM CLK0 driving PLL, PLL CLKOUT0 driving BUFG. Package skew is not included in these measurements. 1.

2. IFF = Input Flip-Flop

www.xilinx.com

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials, or to advise you of any corrections or update. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.