



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                             |
|----------------------------|----------------------------------------------------------------------|
| Core Processor             | ST10                                                                 |
| Core Size                  | 16-Bit                                                               |
| Speed                      | 40MHz                                                                |
| Connectivity               | CANbus, EBI/EMI, SSC, UART/USART                                     |
| Peripherals                | POR, PWM, WDT                                                        |
| Number of I/O              | 111                                                                  |
| Program Memory Size        | 256KB (256K x 8)                                                     |
| Program Memory Type        | FLASH                                                                |
| EEPROM Size                | -                                                                    |
| RAM Size                   | 12K x 8                                                              |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V                                                          |
| Data Converters            | A/D 16x10b                                                           |
| Oscillator Type            | Internal                                                             |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                   |
| Mounting Type              | Surface Mount                                                        |
| Package / Case             | 144-BQFP                                                             |
| Supplier Device Package    | •                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/st10f269z2t3 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# ST10F269

| TABLE        | OFC                                 | ONTENTS PA                                                                                                                                                                                                                                                                                                                  | ١GE                                                |
|--------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 16 -         | Real T                              | ime Clock                                                                                                                                                                                                                                                                                                                   | 105                                                |
|              | 16.1 -                              | RTC REGISTERS         16.1.1 -       RTCCON: RTC Control Register         16.1.2 -       RTCPH & RTCPL: RTC PRESCALER Registers         16.1.3 -       RTCDH & RTCDL: RTC DIVIDER Counters         16.1.4 -       RTCH & RTCL: RTC Programmable COUNTER Registers         16.1.5 -       RTCAH & RTCAL: RTC ALARM Registers | . 106<br>. 106<br>. 108<br>. 108<br>. 109<br>. 110 |
| 17 -<br>18 - | 16.2 -<br>Watch<br>Syster<br>18.1 - | PROGRAMMING THE RTC<br>dog Timer<br>n Reset<br>LONG HARDWARE RESET                                                                                                                                                                                                                                                          | .110<br>112<br>114<br>.114                         |
|              |                                     | <ul> <li>18.1.1 - Asynchronous Reset</li> <li>18.1.2 - Synchronous Reset (RSTIN pulse &gt; 1040TCL and RPD pin at high level) .</li> <li>18.1.3 - Exit of Long Hardware Reset</li> </ul>                                                                                                                                    | .114<br>.115<br>.116                               |
|              | 18.2 -                              | SHORT HARDWARE RESET                                                                                                                                                                                                                                                                                                        | .116                                               |
|              | 18.3 -                              | SOFTWARE RESET                                                                                                                                                                                                                                                                                                              | . 117                                              |
|              | 18.4 -                              | WATCHDOG TIMER RESET                                                                                                                                                                                                                                                                                                        | .117                                               |
|              | 18.5 -                              | RSTOUT, RSTIN, BIDIRECTIONAL RESET                                                                                                                                                                                                                                                                                          | . 118<br>. 118<br>. 118<br>. 118<br>. 118          |
| 19 -         | 18.6 -<br>Power                     | RESET CIRCUITRY                                                                                                                                                                                                                                                                                                             | .118<br>122                                        |
|              | 19.1 -                              | IDLE MODE                                                                                                                                                                                                                                                                                                                   | .122                                               |
|              | 19.2 -                              | POWER DOWN MODE         19.2.1 -       Protected Power Down Mode         19.2.2 -       Interruptible Power Down Mode                                                                                                                                                                                                       | . 122<br>. 122<br>. 122                            |
| 20 -         | Specia                              | al Function Register Overview                                                                                                                                                                                                                                                                                               | 125                                                |
|              | 20.1 -                              | IDENTIFICATION REGISTERS                                                                                                                                                                                                                                                                                                    | . 131                                              |
| 21 -         | 20.2 -<br>Electri                   | SYSTEM CONFIGURATION REGISTERS                                                                                                                                                                                                                                                                                              | .132<br>139                                        |
|              | 21.1 -                              | ABSOLUTE MAXIMUM RATINGS                                                                                                                                                                                                                                                                                                    | . 139                                              |
|              | 21.2 -                              | PARAMETER INTERPRETATION                                                                                                                                                                                                                                                                                                    | . 139                                              |
|              | 21.3 -                              | DC CHARACTERISTICS                                                                                                                                                                                                                                                                                                          | . 139<br>. 144<br>. 145                            |
|              | 21.4 -                              | AC CHARACTERISTICS                                                                                                                                                                                                                                                                                                          | 146<br>146<br>146<br>148<br>149<br>149             |



### 5.5.3 - Programming Examples

Most of the microcontroller programs are written in the C language where the data page pointers are automatically set by the compiler. But because the C compiler may use the not allowed direct addressing mode for Flash write addresses, it is necessary to program the organizational Flash accesses (command sequences) with assembler in-line routines which use indirect addressing.

#### Example 1 Performing the command Read/Reset

We assume that in the initialization phase the lowest 32K Bytes of Flash memory (sector 0) have been mapped to segment 1.

According to the usual way of ST10 data addressing with data page pointers, address bit A15 and A14 of a 16-bit command write address select the data page pointer (DPP) which contains the upper 10-bit for building the 24-bit physical data address. Address bit A13...A0 represent the address offset. As the bit A14...A17 are "don't care" when written a Flash command in the Command Interface (CI), we can choose the most convenient DPPx register for address handling.

The following examples are making usage of DPP0. We just have to make sure, that DPP0 points to active Flash memory space.

To be independent of mapping of sector 0 we choose for all DPPs which are used for Flash address handling, to point to segment 2.

For this reason we load DPP0 with value 08h (00 0000 l000b).

| MOV  | R5, #01554h | <pre>;load auxilary register R5 with command address ;(used in command cycle 1)</pre>                                                                |
|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| MOV  | R6, #02AA8h | <pre>;load auxilary register R6 with command address ;(used in command cycle 2)</pre>                                                                |
| SCXT | DPPO, #08h  | ;<br>push data page pointer 0 and load it to point to ;<br>segment 2 $% \left( {\left( {{{\left( {{{\left( {1 \right)}} \right)}} \right)}} \right)$ |
| MOV  | R7, #0A8h   | ;load register R7 with 1st CI enable command                                                                                                         |
| MOV  | [R5], R7    | ;command cycle 1                                                                                                                                     |
| MOV  | R7, #054h   | ;load register R7 with 2cd CI enable command                                                                                                         |
| MOV  | [R6], R7    | ;command cycle 2                                                                                                                                     |
| MOV  | R7, #0F0h   | ;load register R7 with Read/Reset command                                                                                                            |
| MOV  | [R5], R7    | ;command cycle 3. Address is don't care                                                                                                              |
| POP  | DPP0        | ;restore DPP0 value                                                                                                                                  |

In the example above the 16-bit registers R5 and R6 are used as auxiliary registers for indirect addressing.

#### Example 2 Performing a Program Word command

We assume that in the initialization phase the lowest 32K Bytes of Flash memory (sector 0) have been mapped to segment 1. The data to be written is loaded in register R13, the address to be programmed is loaded in register R11/R12 (segment number in R11, segment offset in R12).

| MOV  | R5, #01554h | ;load auxilary register R5 with command address    |
|------|-------------|----------------------------------------------------|
|      |             | ;(used in command cycle 1)                         |
| MOV  | R6, #02AA8h | ;load auxilary register R6 with command address    |
|      |             | ;(used in command cycle 2)                         |
| SXCT | DPPO, #08h  | ; push data page pointer 0 and load it to point to |
|      |             | ;segment 2                                         |
| MOV  | R7, #0A8h   | ;load register R7 with 1st CI enable command       |
| MOV  | [R5], R7    | ;command cycle 1                                   |
| MOV  | R7, #054h   | ;load register R7 with 2cd CI enable command       |
| MOV  | [R6], R7    | ;command cycle 2                                   |
| MOV  | R7, #0A0h   | ;load register R7 with Program Word command        |
| MOV  | [R5], R7    | ;command cycle 3                                   |
| POP  | DPP0        | ;restore DPPO: following addressing to the Flash   |
|      |             | ;will use EXTended instructions                    |
|      |             | ;R11 contains the segment to be programmed         |



#### Example 3 Performing the Block Erase command

We assume that in the initialization phase the lowest 32K Bytes of Flash memory (sector 0) have been mapped to segment 1. The registers R11/R12 contain an address related to the block to be erased (segment number in R11, segment offset in R12, for example R11 = 01h, R12= 4000h will erase the block 1 - first 8K byte block).

| MOV         | R5, #01554h           | ;load auxilary register R5 with command address<br>;(used in command cycle 1)                         |
|-------------|-----------------------|-------------------------------------------------------------------------------------------------------|
| MOV         | R6, #02AA8h           | ; load auxilary register R6 with command address<br>; (used in command cycle 2)                       |
| SXCT        | DPPO, #08h            | ;push data page pointer 0 and load it to point ;to ;segment 2                                         |
| MOV<br>MOV  | R7, #0A8h<br>[R5], R7 | ;load register R7 with 1st CI enable command<br>;command cycle 1                                      |
| MOV         | R7, #054h             | ;load register R7 with 2cd CI enable command                                                          |
| MOV         | [R6], R7<br>R7 #090b  | ; command cycle 2                                                                                     |
| MOV         | [R5], R7              | ; command cycle 3                                                                                     |
| MOV         | R7, #0A8h             | ;load register R7 with 1st CI enable command                                                          |
| MOV         | [R5], R7              | ;command cycle 4                                                                                      |
| MOV         | R7, #054h             | ;load register R7 with 2cd CI enable command                                                          |
| MOV         | [R6], R7              | <pre>;command cycle 5 ;restore DDD0; following addressing to the Flagh</pre>                          |
| POP         | DEE0                  | ;will use EXTended instructions                                                                       |
|             |                       | ;R11 contains the segment of the block to be erased                                                   |
|             |                       | ;R12 contains the segment offset address of the                                                       |
|             |                       | ;block to be erased                                                                                   |
| MOV<br>FYTS | R/, #030n<br>R11 #1   | ;load register R/ with erase confirm code                                                             |
| MOV         | [R12], R7             | ; command cycle 6: the EPC starts execution of                                                        |
|             | ,                     | ;Erasing Command                                                                                      |
| Erase_      | _Polling:             |                                                                                                       |
| EXTS        | R11, #1               | ;use EXTended addressing for next MOV instruction                                                     |
| MOV         | R7, [R12]             | ; read Flash Status register (FSB) in R/<br>; Check if FSB.7 = `1' (i.e. R7.7 = `1')                  |
| JB          | R7.7, Erase_OK        |                                                                                                       |
| TND         |                       | ;Check if FSB.5 = 1 (Erasing Error)                                                                   |
| UND         | K/.5, MIASE_POILING   | ;Programming failed: Flash remains in Write                                                           |
|             |                       | ;Operation.                                                                                           |
|             |                       | ;To go back to normal Read operations, a Read/Reset                                                   |
|             |                       | icommand                                                                                              |
| Frace       | Frror:                | ; must be performed                                                                                   |
| MOV         | R7, #0F0h             | ;load register R7 with Read/Reset command                                                             |
| EXTS        | R11, #1               | ;use EXTended addressing for next MOV instruction                                                     |
| MOV         | [R12], R7             | ;address is don't care for Read/Reset command                                                         |
| •••         |                       | ;here place specific Error handling code                                                              |
| •••         |                       |                                                                                                       |
| •••         |                       |                                                                                                       |
|             |                       | ;When erasing operation finished succesfully,<br>;Flash is set back automatically to normal Read Mode |
| Erase       | _OK:                  |                                                                                                       |
|             |                       |                                                                                                       |



• • • •

#### 5.6 - Bootstrap Loader

The built-in bootstrap loader (BSL) of the ST10F269 provides a mechanism to load the startup program through the serial interface after reset. In this case, no external memory or internal Flash memory is required for the initialization code starting at location 00'0000h (see Figure 5).

The bootstrap loader moves code/data into the internal RAM, but can also transfer data via the serial interface into an external RAM using a second level loader routine. Flash Memory (internal or external) is not necessary, but it may be used to provide lookup tables or "core-code" like a set of general purpose subroutines for I/O operations, number crunching, system initialization, etc.

The bootstrap loader can be used to load the complete application software into ROMless systems, to load temporary software into complete systems for testing or calibration, or to load a programming routine for Flash devices.

The BSL mechanism can be used for standard system startup as well as for special occasions like system maintenance (firmer update) or end-of-line programming or testing.

#### 5.6.1 - Entering the Bootstrap Loader

The ST10F269 enters BSL mode when pin P0L.4 is sampled low at the end of a hardware reset. In this case the built-in bootstrap loader is activated independent of the selected bus mode.

The bootstrap loader code is stored in a special Boot-ROM. No part of the standard mask Memory or Flash Memory area is required for this.

After entering BSL mode and the respective initialization the ST10F269 scans the RXD0 line to receive a zero Byte, one start bit, eight '0' data bits and one stop bit.

From the duration of this zero Byte it calculates the corresponding Baud rate factor with respect to the current CPU clock, initializes the serial interface ASC0 accordingly and switches pin TxD0 to output.

Using this Baud rate, an identification Byte is returned to the host that provides the loaded data.

This identification Byte identifies the device to be booted. The identification byte is D5h for ST10F269.



Figure 5 : Bootstrap Loader Sequence

#### Figure 7 : Memory Configuration after Reset

|                                        | 16M Bytes                              | 16M Bytes                                            | 16M Bytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|----------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                        | Segment Access to:                     | Segment Access to:                                   | Segment Access:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                        | 255<br>external<br>bus<br>disabled<br> | 255<br>255<br>255<br>255<br>255<br>255<br>255<br>255 | 255<br>depends on<br>reset config<br>2<br>EA, Port0<br>1<br>IRAM<br>User<br>Flash<br>EA, Port0<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calcu |  |
|                                        |                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| BSL mode active                        | Yes (P0L.4='0')                        | Yes (P0L.4='0')                                      | No (P0L.4='1')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| EA pin                                 | High                                   | Low                                                  | Access to application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Code fetch from internal<br>Flash area | Test-Flash access                      | Test-Flash access                                    | User Flash access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Data fetch from internal<br>Flash area | User Flash access                      | User Flash access                                    | User Flash access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

## 5.6.3 - Loading the Startup Code

After sending the identification Byte the BSL enters a loop to receive 32 Bytes via ASC0. These Byte are stored sequentially into locations 00'FA40h through 00'FA5Fh of the internal RAM. So up to 16 instructions may be placed into the RAM area. To execute the loaded code the BSL then jumps to location 00'FA40h, which is the first loaded instruction.

The bootstrap loading sequence is now terminated, the ST10F269 remains in BSL mode, however. Most probably the initially loaded routine will load additional code or data, as an average application is likely to require substantially more than 16 instructions. This second receive loop may directly use the pre-initialized interface ASC0 to receive data and store it to arbitrary user-defined locations.

This second level of loaded code may be the final application code. It may also be another, more sophisticated, loader routine that adds a transmission protocol to enhance the integrity of the loaded code or data. It may also contain a code sequence to change the system configuration and enable the bus interface to store the received data into external memory.

This process may go through several iterations or may directly execute the final application. In all cases the ST10F269 will still run in BSL mode, that means with the watchdog timer disabled and limited access to the internal Flash area.

All code fetches from the internal Flash area (00'0000h...00'7FFFh or 01'0000h...01'7FFFh, if mapped to segment 1) are redirected to the special Boot-ROM. Data fetches access will access the internal Boot-ROM of the ST10F269, if any is available, but will return undefined data on ROMless devices.

#### 5.6.4 - Exiting Bootstrap Loader Mode

In order to execute a program in normal mode, the BSL mode must be terminated first. The ST10F269 exits BSL mode upon a software reset (ignores the level on P0L.4) or a hardware reset (P0L.4 must be high). After a reset the ST10F269 will start executing from location 00'0000h of the internal Flash or the external memory, as programmed via pin  $\overline{EA}$ .

| Mnemonic      | Addressing Modes                          | Repeatability |
|---------------|-------------------------------------------|---------------|
| CoMUL         |                                           |               |
| CoMULu        |                                           |               |
| CoMULus       |                                           |               |
| CoMULsu       |                                           |               |
| CoMUL-        |                                           |               |
| CoMULu-       | Rw <sub>n</sub> , Rw <sub>m</sub>         | No            |
| CoMULus-      | [IDX <sub>i</sub> ⊗], [Rw <sub>m</sub> ⊗] | No            |
| CoMULsu-      | κw <sub>n</sub> , [κw <sub>m</sub> ⊗]     |               |
| CoMUL, rnd    |                                           |               |
| CoMULu, rnd   |                                           |               |
| CoMULus, rnd  |                                           |               |
| CoMULsu, rnd  |                                           |               |
| CoMAC         |                                           |               |
| CoMACu        |                                           |               |
| CoMACus       |                                           |               |
| CoMACsu       |                                           |               |
| CoMAC-        |                                           |               |
| CoMACu-       |                                           |               |
| CoMACus-      | Rw <sub>n</sub> , Rw <sub>m</sub>         | No            |
| CoMACsu-      | [IDX <sub>i</sub> ⊗], [Rw <sub>m</sub> ⊗] | Yes           |
| CoMAC, rnd    | Rw <sub>n</sub> , [Rw <sub>m</sub> ⊗]     |               |
| CoMACu, rnd   |                                           |               |
| CoMACus, rnd  |                                           |               |
| CoMACsu, rnd  |                                           |               |
| CoMACR        |                                           |               |
| CoMACRu       |                                           |               |
| CoMACRus      |                                           |               |
| CoMACRsu      |                                           |               |
| CoMACR, rnd   | $Rw_n, Rw_m$                              | No            |
| CoMACRu, rnd  | $[IDX_i \otimes], [RW_n \otimes]$         | No            |
| CoMACRus, rnd |                                           |               |
| CoMACRsu, rnd |                                           |               |
|               | [Rw <sub>m</sub> ⊗]                       | Yes           |
| CoNOP         | [IDX <sub>i</sub> ⊗]                      | Yes           |
|               | [IDX:@] [Rw@]                             | Yes           |
| CONEG         |                                           |               |
| CoNEG rod     |                                           | No            |
| CoRND         |                                           |               |
|               | Pw CoPog                                  | No            |
| CoSTORE       |                                           |               |
|               |                                           | res           |
| CoMOV         | [IDX <sub>i</sub> ⊗], [Rw <sub>m</sub> ⊗] | Yes           |

57

| Mnemonic       | Addressing Modes                                                                                                             | Repeatability  |
|----------------|------------------------------------------------------------------------------------------------------------------------------|----------------|
| CoMACM         |                                                                                                                              |                |
| CoMACMu        |                                                                                                                              |                |
| CoMACMus       |                                                                                                                              |                |
| CoMACMsu       |                                                                                                                              |                |
| CoMACM-        |                                                                                                                              |                |
| CoMACMu-       |                                                                                                                              |                |
| CoMACMus-      |                                                                                                                              |                |
| CoMACMsu-      |                                                                                                                              |                |
| CoMACM, rnd    |                                                                                                                              |                |
| CoMACMu, rnd   |                                                                                                                              |                |
| CoMACMus, rnd  | [ID∧ <sub>i</sub> ⊗], [Kw <sub>m</sub> ⊗]                                                                                    | Yes            |
| CoMACMsu, rnd  |                                                                                                                              |                |
| CoMACMR        |                                                                                                                              |                |
| CoMACMRu       |                                                                                                                              |                |
| CoMACMRus      |                                                                                                                              |                |
| CoMACMRsu      |                                                                                                                              |                |
| CoMACMR, rnd   |                                                                                                                              |                |
| CoMACMRu, rnd  |                                                                                                                              |                |
| CoMACMRus, rnd |                                                                                                                              |                |
| CoMACMRsu, rnd |                                                                                                                              |                |
| CoADD          |                                                                                                                              |                |
| CoADD2         |                                                                                                                              |                |
| CoSUB          |                                                                                                                              |                |
| CoSUB2         |                                                                                                                              | No             |
| CoSUBR         | $[IDA_i \otimes], [IAW_m \otimes]$<br>$RW_m \otimes [RW_m \otimes]$                                                          | Yes            |
| CoSUB2R        |                                                                                                                              |                |
| CoMAX          |                                                                                                                              |                |
| CoMIN          |                                                                                                                              |                |
| CoLOAD         |                                                                                                                              |                |
| CoLOAD-        | Rw <sub>n</sub> , Rw <sub>m</sub>                                                                                            | No             |
| CoLOAD2        | [IDX <sub>i</sub> ⊗], [Rw <sub>m</sub> ⊗]                                                                                    | No             |
| CoLOAD2-       | Rw <sub>n</sub> , [Rw <sub>m</sub> ⊗]                                                                                        | No             |
| CoCMP          |                                                                                                                              |                |
| CoSHL          | Dur                                                                                                                          |                |
| CoSHR          | Kw <sub>m</sub>                                                                                                              | Yes            |
| CoASHR         |                                                                                                                              | Yes            |
| CoASHR, rnd    |                                                                                                                              |                |
| CoABS          | -<br>Rw <sub>n</sub> , Rw <sub>m</sub><br>[IDX <sub>i</sub> ⊗], [Rw <sub>m</sub> ⊗]<br>Rw <sub>n</sub> , [Rw <sub>m</sub> ⊗] | No<br>No<br>No |

# 7 - EXTERNAL BUS CONTROLLER

All of the external memory accesses are performed by the on-chip external bus controller.

The EBC can be programmed to single chip mode when no external memory is required, or to one of four different external memory access modes:

- 16- / 18- / 20- / 24-bit addresses and 16-bit data, demultiplexed
- 16- / 18- / 20- / 24-bit addresses and 16-bit data, multiplexed
- 16- / 18- / 20- / 24-bit addresses and 8-bit data, multiplexed
- 16- / 18- / 20- / 24-bit addresses and 8-bit data, demultiplexed

In demultiplexed bus modes addresses are output on PORT1 and data is input / output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses and data use PORT0 for input / output.

Timing characteristics of the external bus interface (memory cycle time, memory tri-state time, length of ALE and read / write delay) are programmable giving the choice of a wide range of memories and external peripherals.

Up to 4 independent address windows may be defined (using register pairs ADDRSELx / BUSCONx) to access different resources and bus characteristics.

These address windows are arranged hierarchically where BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1.

All accesses to locations not covered by these 4 address windows are controlled by BUSCON0. Up to 5 external  $\overline{CS}$  signals (4 windows plus default) can be generated in order to save external glue logic. Access to very slow memories is supported by a 'Ready' function.

A HOLD / HLDA protocol is available for bus arbitration which shares external resources with other bus masters.

The bus arbitration is enabled by setting bit HLDEN in register PSW. After setting HLDEN once, pins P6.7...P6.5 (BREQ, HLDA, HOLD) are automatically controlled by the EBC. In master mode (default after reset) the HLDA pin is an output. By setting bit DP6.7 to'1' the slave mode is selected where pin HLDA is switched to input. This directly connects the slave controller to another master controller without glue logic.

For applications which require less external memory space, the address space can be restricted to 1M Byte, 256K Bytes or to 64K Bytes.

Port 4 outputs all 8 address lines if an address space of 16M Bytes is used, otherwise four, two or no address lines.

Chip select timing can be made programmable. By default (after reset), the CSx lines change half a CPU clock cycle after the rising edge of ALE. With the CSCFG bit set in the SYSCON register the CSx lines change with the rising edge of ALE. The active level of the READY pin can be set by bit RDYPOL in the BUSCONx registers. When the READY function is enabled for a specific address window, each bus cycle within the window must be terminated with the active level defined by bit RDYPOL in the associated BUSCON register.

# 7.1 - Programmable Chip Select Timing Control

The ST10F269 allows the user to adjust the position of the CSx line changes. By default (after reset), the CSx lines change half a CPU clock cycle (12.5ns at 40MHz of CPU clock on PQFP144 devices and 31.25ns at 32MHz of CPU clock on TQFP144 devices ) after the rising edge of ALE. With the CSCFG bit set in the SYSCON register the CSx lines change with the rising edge of ALE, thus the CSx lines and the address lines change at the same time (see Figure 11).

## 7.2 - READY Programmable Polarity

The active level of the READY pin can be selected by software via the RDYPOL bit in the BUSCONx registers.

When the READY function is enabled for a specific address window, each bus cycle within this window must be terminated with the active level defined by this RDYPOL bit in the associated BUSCON register.

BUSCONx registers are described in Section 20.2 -: System Configuration Registers.

Note ST10F269 as no internal pull-up resistor on READY pin.

| f <sub>CPU</sub> = 32MHz | Timer Input Selection T2I / T3I / T4I |        |        |        |         |         |         |           |
|--------------------------|---------------------------------------|--------|--------|--------|---------|---------|---------|-----------|
|                          | 000b                                  | 001b   | 010b   | 011b   | 100b    | 101b    | 110b    | 111b      |
| Pre-scaler factor        | 8                                     | 16     | 32     | 64     | 128     | 256     | 512     | 1024      |
| Input Freq               | 4MHz                                  | 2MHz   | 1MHz   | 500KHz | 250KHz  | 125KHz  | 62.5KHz | 31.125KHz |
| Resolution               | 250ns                                 | 500ns  | 1µs    | 2μs    | 4μs     | 8µs     | 16µs    | 32µs      |
| Period maximum           | 16.4ms                                | 32.8ms | 65.5ms | 131ms  | 262.1ms | 524.3ms | 1.05s   | 2.1s      |

#### Table 13 : GPT1 Timer Input Frequencies, Resolution and Periods (TQFP144 devices)

#### Figure 15 : Block Diagram of GPT1



## 10.2 - GPT2

The GPT2 module provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD). Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6 which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, or it may be output on a port pin (T6OUT). The overflow / underflow of timer T6 can additionally

be used to clock the CAPCOM timers T0 or T1, and to cause a reload from the CAPREL register. The CAPREL register may capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared after the capture procedure. This allows absolute time differences to be measured or pulse multiplication to be performed without software overhead.

The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is advantageous when T3 operates in Incremental Interface Mode.

Table 14GPT2TimerInputFrequencies,Resolution and Period (PQFP144 devices) andTable 15GPT2TimerInputFrequencies,

57

ST10F269

Resolution and Period (TQFP144 devices) list the timer input frequencies, resolution and periods for each pre-scaler option at 40MHz (or 32MHz) CPU clock. This also applies to the Gated Timer Mode of T6 and to the auxiliary timer T5 in Timer and Gated Timer Mode.

Table 14 : GPT2 Timer Input Frequencies, Resolution and Period (PQFP144 devices)

| f = 40MHz         | Timer Input Selection T5I / T6I |        |        |         |         |          |           |           |
|-------------------|---------------------------------|--------|--------|---------|---------|----------|-----------|-----------|
| 1CPU - 400012     | 000b                            | 001b   | 010b   | 011b    | 100b    | 101b     | 110b      | 111b      |
| Pre-scaler factor | 4                               | 8      | 16     | 32      | 64      | 128      | 256       | 512       |
| Input Freq        | 10MHz                           | 5MHz   | 2.5MHz | 1.25MHz | 625kHz  | 312.5kHz | 156.25kHz | 78.125kHz |
| Resolution        | 100ns                           | 200ns  | 400ns  | 0.8µs   | 1.6µs   | 3.2µs    | 6.4µs     | 12.8µs    |
| Period maximum    | 6.55ms                          | 13.1ms | 26.2ms | 52.4ms  | 104.8ms | 209.7ms  | 419.4ms   | 838.9ms   |

| f <sub>CPU</sub> = 32MHz | Timer Input Selection T5I / T6I |        |        |        |        |         |         |         |
|--------------------------|---------------------------------|--------|--------|--------|--------|---------|---------|---------|
|                          | 000b                            | 001b   | 010b   | 011b   | 100b   | 101b    | 110b    | 111b    |
| Pre-scaler factor        | 4                               | 8      | 16     | 32     | 64     | 128     | 256     | 512     |
| Input Freq               | 8MHz                            | 4MHz   | 2MHz   | 1MHz   | 500KHz | 250KHz  | 125KHz  | 62.5KHz |
| Resolution               | 125ns                           | 250ns  | 500ns  | 1μs    | 2μs    | 4μs     | 8µs     | 16µs    |
| Period maximum           | 8.19ms                          | 16.4ms | 32.8ms | 65.5ms | 131ms  | 262.1ms | 524.3ms | 1.05s   |

57/

#### 12.7.1 - Alternate Functions of Port 4

During external bus cycles that use segmentation (address space above 64K Bytes) a number of Port 4 pins may output the segment address lines. The number of pins that is used for segment address output determines the external address space which is directly accessible. The other pins of Port 4 may be used for general purpose I/O. If segment address lines are selected, the alternate function of Port 4 may be necessary to access external memory directly after reset. For this reason Port 4 will be switched to this alternate function automatically. The number of segment address lines is selected via PORT0 during reset. The selected value can be read from bitfield SALSEL in register RP0H (read only) in order to check the configuration during run time.

The CAN interfaces use 2 or 4 pins of Port 4 to interface each CAN Modules to an external CAN transceiver. In this case the number of possible segment address lines is reduced.

The Table 21 summarizes the alternate functions of Port 4 depending on the number of selected segment address lines (coded via bitfield SALSEL)

| Port 4 | Standard Function<br>SALSEL = 01<br>64K Bytes | Standard Function<br>SALSEL = 01<br>64K BytesAlternate Function<br>SALSEL = 11<br>256K BytesAlternate Function<br>SALSEL = 00<br>1M Byte |                      | Alternate Function<br>SALSEL = 10<br>16M Bytes |
|--------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|
| P4.0   | GPIO                                          | Segment Address A16                                                                                                                      | Segment. Address A16 | Segment Address A16                            |
| P4.1   | GPIO                                          | Segment Address A17                                                                                                                      | Segment Address A17  | Segment Address A17                            |
| P4.2   | GPIO                                          | GPIO                                                                                                                                     | Segment Address A18  | Segment Address A18                            |
| P4.3   | GPIO                                          | GPIO                                                                                                                                     | Segment Address A19  | Segment Address A19                            |
| P4.4   | GPIO/CAN2_RxD                                 | GPIO/CAN2_RxD                                                                                                                            | GPIO/CAN2_RxD        | Segment Address A20                            |
| P4.5   | GPIO/CAN1_RxD                                 | GPIO/CAN1_RxD                                                                                                                            | GPIO/CAN1_RxD        | Segment Address A21                            |
| P4.6   | GPIO/CAN1_TxD                                 | GPIO/CAN1_TxD                                                                                                                            | GPIO/CAN1_TxD        | Segment Address A22                            |
| P4.7   | GPIO/CAN2_TxD                                 | GPIO/CAN2_TxD                                                                                                                            | GPIO/CAN2_TxD        | Segment Address A23                            |

**Table 21 :** Port 4 Alternate Functions

Figure 30 : Port 4 I/O and Alternate Functions



### Figure 33 : Block Diagram of P4.6 and P4.7 Pins



#### 12.8 - Port 5

This 16-bit input port can only read data. There is no output latch and no direction register. Data written to P5 will be lost.

| P5 (F                | FA2h / | / D1h) |       |       |       |         | SF     | R         |      |      |      | Reset Value: XXXXh           3         2         1         0           6.4         P5.3         P5.2         P5.1         P5.0 |      |      |      |
|----------------------|--------|--------|-------|-------|-------|---------|--------|-----------|------|------|------|--------------------------------------------------------------------------------------------------------------------------------|------|------|------|
| 15                   | 14     | 13     | 12    | 11    | 10    | 9       | 8      | 7         | 6    | 5    | 4    | 3                                                                                                                              | 2    | 1    | 0    |
| P5.15                | P5.14  | P5.13  | P5.12 | P5.11 | P5.10 | P5.9    | P5.8   | P5.7      | P5.6 | P5.5 | P5.4 | P5.3                                                                                                                           | P5.2 | P5.1 | P5.0 |
| R                    | R      | R      | R     | R     | R     | R       | R      | R         | R    | R    | R    | R                                                                                                                              | R    | R    | R    |
| P5.y Port Data Regis |        |        |       |       |       | 5 Bit y | / (Rea | d only    | )    |      |      |                                                                                                                                |      |      |      |
| 80/184               |        |        |       |       |       |         |        | <b>57</b> |      |      |      |                                                                                                                                |      |      |      |

The chip select lines of Port 6 have an internal weak pull-up device. This device is switched on during reset. This feature is implemented to drive the chip select lines high during reset in order to avoid multiple chip selection.

After reset the  $\overline{CS}$  function must be used, if selected so. In this case there is no possibility to program any port latches before. Thus the

alternate function  $(\overline{CS})$  is selected automatically in this case.

Note: The open drain output option can only be selected via software earliest during the initialization routine; at least signal CS0 will be in push/pull output driver mode directly after reset.





<u>لرکا</u>





#### 13 - A/D CONVERTER

A 10-bit A/D converter with 16 multiplexed input channels and a sample and hold circuit is integrated on-chip. The sample time (for loading the capacitors) and the conversion time is programmable and can be adjusted to the external circuitry.

To remove high frequency components from the analog input signal, a low-pass filter must be connected at the ADC input.

Overrun error detection / protection is controlled by the ADDAT register. Either an interrupt request is generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended until the previous result has been read. For applications which require less than 16 analog input channels, the remaining channel inputs can be used as digital input port pins. The A/D converter of the ST10F269 supports different conversion modes:

- Single channel single conversion: the analog level of the selected channel is sampled once and converted. The result of the conversion is stored in the ADDAT register.
- Single channel continuous conversion: the analog level of the selected channel is repeatedly sampled and converted. The result of the conversion is stored in the ADDAT register.
- Auto scan single conversion: the analog level of the selected channels are sampled once and

converted. After each conversion the result is stored in the ADDAT register. The data can be transferred to the RAM by interrupt software management or using the powerful Peripheral Event Controller (PEC) data transfer.

- Auto scan continuous conversion: the analog level of the selected channels are repeatedly sampled and converted. The result of the conversion is stored in the ADDAT register. The data can be transferred to the RAM by interrupt software management or using the PEC data transfer.
- Wait for ADDAT read mode: when using continuous modes, in order to avoid to overwrite the result of the current conversion by the next one, the ADWR bit of ADCON control register must be activated. Then, until the ADDAT register is read, the new result is stored in a temporary buffer and the conversion is on hold.
- Channel injection mode: when using continuous modes, a selected channel can be converted in between without changing the current operating mode. The 10-bit data of the conversion are stored in ADRES field of ADDAT2. The current continuous mode remains active after the single conversion is completed

| ADCTC | Conversion (                               | Clock t <sub>CC</sub>       | 10070 | Sample Clock t <sub>SC</sub> |                             |  |  |
|-------|--------------------------------------------|-----------------------------|-------|------------------------------|-----------------------------|--|--|
|       | TCL <sup>1</sup> = 1/2 x f <sub>XTAL</sub> | At f <sub>CPU</sub> = 40MHz | ADSIC | t <sub>SC</sub> =            | At f <sub>CPU</sub> = 40MHz |  |  |
| 00    | TCL x 24                                   | 0.3µs                       | 00    | t <sub>CC</sub>              | 0.3μs <sup>2</sup>          |  |  |
| 01    | Reserved, do not use                       | Reserved                    | 01    | t <sub>CC</sub> x 2          | 0.6μs <sup>2</sup>          |  |  |
| 10    | TCL x 96                                   | 1.2 μs                      | 10    | t <sub>CC</sub> x 4          | 1.2μs <sup>2</sup>          |  |  |
| 11    | TCL x 48                                   | 0.6 µs                      | 11    | t <sub>CC</sub> x 8          | 2.4µs <sup>2</sup>          |  |  |

 Table 26 : ADC Sample Clock and Conversion Clock (PQFP144 devices)

Notes: 1. Section 21.4.5 -: Direct Drive for TCL definition. 2. t<sub>CC</sub> = TCL x 24

 $2. t_{CC} = TCL x$ 

#### **Baud Rate Generation**

The Baud rate generator is clocked by f<sub>CPU</sub>/2. The timer is counting downwards and can be started or stopped through the global enable bit SSCEN in register SSCCON. Register SSCBR is the dual-function Baud Rate Generator/Reload register. Reading SSCBR, while the SSC is enabled, returns the content of the timer. Reading SSCBR, while the SSC is disabled, returns the programmed reload value. In this mode the desired reload value can be written to SSCBR.

Note Never write to SSCBR, while the SSC is enabled.

The formulas below calculate the resulting Baud rate for a given reload value and the required reload value for a given Baud rate:

Baud rate<sub>SSC</sub> = 
$$\frac{f_{CPU}}{2 \times [(SSCBR) + 1]}$$
  
SSCBR =  $\left(\frac{f_{CPU}}{2 \times Baud rate_{SSC}}\right) - 1$ 

(SSCBR) represents the content of the reload register, taken as unsigned 16-bit integer.

Table 32 lists some possible Baud rates against the required reload values and the resulting bit times for a 40MHz CPU clock.

| Values (PQFP144 devices) |          |              |  |  |  |  |  |  |  |
|--------------------------|----------|--------------|--|--|--|--|--|--|--|
| Baud Rate                | Bit Time | Reload Value |  |  |  |  |  |  |  |

Table 32 : Synchronous Baud Rate and Reload

| Baud Rate                        | Bit Time | Reload Value |
|----------------------------------|----------|--------------|
| Reserved use a reload value > 0. |          |              |
| 10M Baud                         | 100ns    | 0001h        |
| 5M Baud                          | 200ns    | 0003h        |
| 2.5M Baud                        | 400ns    | 0007h        |
| 1M Baud                          | 1µs      | 0013h        |
| 100K Baud                        | 10µs     | 00C7h        |
| 10K Baud                         | 100µs    | 07CFh        |
| 1K Baud                          | 1ms      | 4E1Fh        |
| 306 Baud                         | 3.26ms   | FF4Eh        |

Table 33 lists some possible Baud rates against the required reload values and the resulting bit times for a 32MHz CPU clock. **Table 33 :** Synchronous Baud Rate and ReloadValues (TQFP144 devices)

| Baud Rate                        | Bit Time | Reload Value |
|----------------------------------|----------|--------------|
| Reserved use a reload value > 0. |          |              |
| 8MBaud                           | 125ns    | 0001h        |
| 4MBaud                           | 250ns    | 0003h        |
| 2MBaud                           | 500ns    | 0007h        |
| 1MBaud                           | 1µs      | 000Fh        |
| 500KBaud                         | 2μs      | 001Fh        |
| 100KBaud                         | 10µs     | 009Fh        |
| 10KBaud                          | 100µs    | 030Ch        |
| 1K Baud                          | 1ms      | 3E7Fh        |
| 244.14 Baud                      | 5.24ms   | FFFFh        |

# 20 - SPECIAL FUNCTION REGISTER OVERVIEW

## ST10F269

| BUSCON4 (FF1Ah / 8Dh) |        |        |         |        |    | Ş       | SFR     |   |    |    | Reset Value: 000 |       |   |    |    | 00h |
|-----------------------|--------|--------|---------|--------|----|---------|---------|---|----|----|------------------|-------|---|----|----|-----|
|                       | 15     | 14     | 13      | 12     | 11 | 10      | 9       | 8 | 7  | 6  | 5                | 4     | 3 | 2  | 1  | 0   |
|                       | CSWEN4 | CSREN4 | RDYPOL4 | RDYEN4 | -  | BUSACT4 | ALECTL4 | - | BT | ŕΡ | MTTC4            | RWDC4 |   | MC | тс |     |
|                       | RW     | RW     | RW      | RW     |    | RW      | RW      |   | R۱ | V  | RW               | RW    |   | R١ | N  |     |

Notes: 1. BTYP (bit 6 and 7) are set according to the configuration of the bit I6 and I7 of PORT0 latched at the end of the reset sequence. 2. BUSCON0 is initialized with 0000h, if EA pin is high during reset. If EA pin is low during reset, bit BUSACT0 and ALECTRL0 are set ('1') and bit field BTYP is loaded with the bus configuration selected via PORT0.

| МСТС    | Memory Cycle Time Control (Number of memory cycle time wait states)                                                               |
|---------|-----------------------------------------------------------------------------------------------------------------------------------|
|         | 0 0 0 0: 15 wait states (Nber = 15 - [MCTC])                                                                                      |
|         |                                                                                                                                   |
|         | 1 1 1 1: No wait state                                                                                                            |
| RWDCx   | Read/Write Delay Control for BUSCONx                                                                                              |
|         | '0': With read/write delay: activate command 1 TCL after falling edge of ALE                                                      |
|         | '1': No read/write delay: activate command with falling edge of ALE                                                               |
| MTTCx   | Memory Tristate Time Control                                                                                                      |
|         | '0': 1 wait state                                                                                                                 |
|         | '1': No wait state                                                                                                                |
| ВТҮР    | External Bus Configuration                                                                                                        |
|         | 0 0: 8-bit Demultiplexed Bus                                                                                                      |
|         | 0 1: 8-bit Multiplexed Bus                                                                                                        |
|         | 1 0: 16-bit Demultiplexed Bus                                                                                                     |
|         | 1 1: 16-bit Multiplexed Bus                                                                                                       |
|         | Note: For BUSCON0, BTYP bit-field is defined via PORT0 during reset.                                                              |
| ALECTLx | ALE Lengthening Control                                                                                                           |
|         | '0': Normal ALE signal                                                                                                            |
|         | '1': Lengthened ALE signal                                                                                                        |
| BUSACTx | Bus Active Control                                                                                                                |
|         | '0': External bus disabled                                                                                                        |
|         | '1': External bus enabled (within the respective address window, see ADDRSEL)                                                     |
| RDYENx  | READY Input Enable                                                                                                                |
|         | '0': External bus cycle is controlled by bit field MCTC only                                                                      |
|         | '1': External bus cycle is controlled by the $\overline{READY}$ input signal                                                      |
| RDYPOLx | Ready Active Level Control                                                                                                        |
|         | '0': Active level on the $\overline{\text{READY}}$ pin is low, bus cycle terminates with a '0' on READY pin,                      |
|         | '1': Active level on the $\overline{\text{READY}}$ pin is high, bus cycle terminates with a '1' on $\overline{\text{READY}}$ pin. |
| CSRENx  | Read Chip Select Enable                                                                                                           |
|         | '0': The CS signal is independent of the read command ( $\overline{RD}$ )                                                         |
|         | '1': The CS signal is generated for the duration of the read command                                                              |
| CSWENx  | Write Chip Select Enable                                                                                                          |
|         | '0': The CS signal is independent of the write command (WR,WRL,WRH)                                                               |
|         | '1': The $\overline{CS}$ signal is generated for the duration of the write command                                                |



# **20 - SPECIAL FUNCTION REGISTER OVERVIEW**

# ST10F269

| EXIC  | ON (F1  | <b>C0h</b> / | E0h                     |          |           |           | ES            | SFR        |              |           |           |          | Reset '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Value:    | 0000h |  |  |
|-------|---------|--------------|-------------------------|----------|-----------|-----------|---------------|------------|--------------|-----------|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|--|--|
| 15    | 14      | 13           | 12                      | 11       | 10        | 9         | 8             | 7          | 6            | 5         | 4         | 3        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1         | 0     |  |  |
| EX    | I7ES    | ΕX           | KI6ES                   | EX       | I5ES      | EXI       | 4ES           | EXI        | 3ES          | EXI       | 2ES       | EXI      | 1ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EXI       | 0ES   |  |  |
| RW RW |         |              |                         | R        | RW        | R         | W             | R          | W            | R         | W         | R        | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R         | W     |  |  |
| EXIxE | ES(x=7  | .0)          | Extern                  | al Inter | rupt x E  | dge Se    | election      | n Field (  | x=70)        |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |       |  |  |
|       |         |              | 0 0:                    | Fast ex  | ternal in | terrupts  | s disabl      | ed: stan   | dard mo      | de        |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |       |  |  |
|       |         |              |                         | EXxIN    | pin not t | aken in   | accour        | nt for en  | tering/ex    | titing Po | ower Do   | own mo   | de.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |       |  |  |
|       |         |              | 0 1:                    | Interrup | ot on po  | sitive ec | lge (ris      | ing)       |              |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |       |  |  |
|       |         |              |                         | Enter P  | ower Do   | own mo    | de if EX      | KilN = '0  | ', exit if I | EXxIN     | = '1' (re | ferred a | ıs 'high'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | active le | evel) |  |  |
|       |         |              | 1 0:                    | Interrup | ot on neg | gative e  | dge (fa       | lling)     |              |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |       |  |  |
|       |         |              |                         | Enter P  | ower Do   | own mo    | de if EX      | KilN = '1  | ', exit if I | EXxIN :   | = '0' (re | ferred a | is 'low' a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | active le | vel)  |  |  |
|       |         |              | 1 1:                    | Interrup | ot on any | y edge (  | rising o      | or falling | )            |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |       |  |  |
|       |         |              |                         | Always   | enter P   | ower Do   | own mo        | de, exit   | if EXxIN     | l level c | hanged    | ł.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |       |  |  |
| EXISE | EL (F10 | DAh /        | EDh)                    |          |           |           | ES            | SFR        |              |           |           |          | Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Value:    | 0000h |  |  |
| 15    | 14      | 13           | 12                      | 11       | 10        | 9         | 8             | 7          | 6            | 5         | 4         | 3        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1         | 0     |  |  |
| EX    | I7SS    | ΕX           | (I6SS                   | EX       | I5SS      | EXI       | 4SS           | EXI        | 3SS          | EXI       | 2SS       | EXI      | 1SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EXI       | 0SS   |  |  |
| F     | RW      | I            | RW                      | F        | RW        | R         | W             | R          | W            | R         | W         | R        | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R         | W     |  |  |
| EXIxS | SS      |              | Extern                  | al Inter | rupt x S  | Source    | Selecti       | on (x=7    | 0)           |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |       |  |  |
|       |         |              | '00':                   | Input fr | om asso   | ciated I  | Port 2 p      | oin.       |              |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |       |  |  |
|       |         |              | '01':                   | Input fr | om "alte  | rnate so  | ource".       |            |              |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |       |  |  |
|       |         |              | '10':                   | Input fr | om Port   | 2 pin O   | Red w         | ith "alter | nate sou     | urce".    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |       |  |  |
|       |         |              | '11':                   | Input fr | om Port   | 2 pin A   | NDed          | with "alte | ernate so    | ource".   |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |       |  |  |
| 1     |         |              |                         |          |           | _         |               |            |              |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |       |  |  |
|       | EX      | IXSS         |                         |          |           | Por       | t 2 pin       |            |              |           | P         | Iterna   | 3       2       1       0         3       2       1       0         EXI1ES       EXI0ES       RW         RW       RW       RW         n mode.       RW       RW         red as 'high' active level)       red as 'low' active level)         Reset Value: 0000h       3       2       1       0         EXI1SS       EXI0SS       RW       RW         RW       RW       RW       RW         RW       RW       RW       RW         GEXI1SS       EXI0SS       RW       RW         RTCSI       CAN1_RxD       CAN2_RxD       RTCSI         RTCAI       Ot used (zero)       Ot used (zero)       Ot used (zero)         Reset Value:00h       3       2       1       0         A       2       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       < |           |       |  |  |
|       |         | 0            |                         |          |           | F         | 2.8           |            |              |           |           | CAN      | 1_RxD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |       |  |  |
|       |         | 1            |                         |          |           | ۲<br>م    | 2.9           |            |              |           |           | CAN      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |       |  |  |
|       |         | 2            |                         |          |           | P         | 2.10          |            |              |           |           | רא<br>דס | RW       RW         RW       RW         an mode.       ed as 'high' active level)         ed as 'low' active level)       ed as 'low' active level)         red as 'low' active level)       EXI0SS         RW       RW         RW       RW         RW       RW         rmate Source       CAN1_RxD         CAN1_RxD       CAN2_RxD         RTCSI       RTCAI         t used (zero)       Exect Value:00h         3       2       1         Q       1       0         L       GLVL         RW       RW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |       |  |  |
|       | /       | 3<br>7       |                         |          |           | P2 -      | 2.11<br>12 15 |            |              |           |           |          | 3       2       1       0         EXI1ES       EXI0ES         RW       RW         RW       RW         n mode.       red as 'high' active level)         red as 'low' active level)       Reset Value: 0000h         3       2       1       0         EXI1SS       EXI0SS         RW       RW         RW       RW         RW       RW         Exnocs       Annow         CAN1_RxD       CAN1_RxD         CAN1_RxD       CAN2_RxD         RTCSI       Totused (zero)         Reset Value:00h       3         3       2       1         All colused (zero)       CAN1_RXD                                                                                                                                                                                                                                                                                                                                                                                                                         |           |       |  |  |
|       | 4       | /            |                         |          |           | ΓΖ.       | 1215          |            |              |           |           | NOLUS    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )         |       |  |  |
| XP3IC | C (F19E | Eh / C       | <b>Fh)</b> <sup>1</sup> |          |           |           | ES            | SFR        |              |           |           |          | Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Value     | :00h  |  |  |
| 15    | 14      | 13           | 12                      | 11       | 10        | 9         | 8             | 7          | 6            | 5         | 4         | 3        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1         | 0     |  |  |
| -     | -       | -            | -                       | -        | -         | -         | -             | XP3IR      | XP3IE        |           | XP3       | ILVL     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GL        | VL    |  |  |
| •     |         | -            |                         | ·        |           |           |               | RW         | RW           |           | RW        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | RW    |  |  |

Note: 1. XP3IC register has the same bit field as xxIC interrupt registers



| Symbol                | Parameter                                         |   | Maximun<br>3            | n CPU Clock =<br>32MHz  | Variable CPU Clock<br>1/2 TCL = 1 to 32MHz |                            |    |  |
|-----------------------|---------------------------------------------------|---|-------------------------|-------------------------|--------------------------------------------|----------------------------|----|--|
| -                     |                                                   |   | Minimum                 | Maximum                 | Minimum                                    | Maximum                    |    |  |
| t <sub>44</sub><br>CC | Address float after RdCS,<br>WrCS (with RW delay) | 1 | -                       | 0                       | _                                          | 0                          | ns |  |
| t <sub>45</sub><br>CC | Address float after RdCS,<br>WrCS (no RW delay)   | 1 | _                       | 15.625                  | _                                          | TCL                        | ns |  |
| t <sub>46</sub><br>SR | RdCS to Valid Data In<br>(with RW delay)          |   | -                       | 7.25 + t <sub>C</sub>   | _                                          | 2TCL - 24 + t <sub>C</sub> | ns |  |
| t <sub>47</sub><br>SR | RdCS to Valid Data In<br>(no RW delay)            |   | -                       | 22.875 + t <sub>C</sub> | _                                          | 3TCL - 24 + t <sub>C</sub> | ns |  |
| t <sub>48</sub><br>CC | RdCS, WrCS Low Time<br>(with RW delay)            |   | 21.25 + t <sub>C</sub>  | _                       | 2TCL - 10 + t <sub>C</sub>                 | _                          | ns |  |
| t <sub>49</sub><br>CC | RdCS, WrCS Low Time<br>(no RW delay)              |   | 36.875 + t <sub>C</sub> | _                       | 3TCL - 10 + t <sub>C</sub>                 | _                          | ns |  |
| t <sub>50</sub><br>CC | Data valid to WrCS                                |   | 17.25 + t <sub>C</sub>  | _                       | 2TCL - 14+ t <sub>C</sub>                  | -                          | ns |  |
| t <sub>51</sub><br>SR | Data hold after RdCS                              |   | 0                       | _                       | 0                                          | _                          | ns |  |
| t <sub>52</sub><br>SR | Data float after RdCS                             | 1 | _                       | 11.25 + t <sub>F</sub>  | _                                          | 2TCL - 20 + t <sub>F</sub> | ns |  |
| t <sub>54</sub><br>CC | Address hold after<br>RdCS, WrCS                  |   | 11.25 + t <sub>F</sub>  | _                       | 2TCL - 20 + t <sub>F</sub>                 | _                          | ns |  |
| t <sub>56</sub><br>CC | Data hold after WrCS                              |   | 11.25 + t <sub>F</sub>  | _                       | 2TCL - 20 + t <sub>F</sub>                 | _                          | ns |  |

1. Partially tested, guaranted by design characterization.



# ERRATA SHEET

# ST10F269Zxxx-D LIMITATIONS AND CORRECTIONS

#### 1 - DESCRIPTION

This Errata sheet describes the functional and electrical problems known in the D revision of the ST10F269Zxxx.

The revision number can be found in the third line on the ST10F269 package. It looks like: 'xxxxxxxx D' where "D" identifies the revision number.

#### **2 - FUNCTIONAL PROBLEMS**

The following malfunctions are known in this step:

#### 2.1 - PWRDN.1 - Execution of PWRDN Instruction

When instruction PWRDN is executed while pin  $\overline{\text{NMI}}$  is at a high level (if PWRDCFG bit is clear in SYSCON register) or while at least one of the port 2 pins used to exit from power-down mode (if PWRD-CFG bit is set in SYSCON register) is at the active level, power down mode is not entered, and the PWRDN instruction is ignored.

However, under the conditions described below, the PWRDN instruction is not ignored, and no further instructions are fetched from external memory, i.e. the CPU is in a quasi-idle state.

This problem only occurs in the following situations:

- a) The instructions following the PWRDN instruction are located in an external memory, and a multiplexed bus configuration with memory tristate waitstate (bit MT-TCx = 0) is used.
   Or
- b) The instruction preceeding the PWRDN instruction writes to external memory or an XPeripheral (XRAM,CAN), and the instructions following the PWRDN instruction are located in external memory. In this case, the problem occurs for any bus configuration.

**Note:** The on-chip peripherals are still working correctly, in particular the Watchdog Timer, if not disabled, resets the device upon an overflow. Interrupts and PEC transfers, however, cannot be processed. In case NMI is asserted low while the device is in this quasi-idle state, power-down mode is entered.

No problem occurs if the  $\overline{\text{NMI}}$  pin is low (if PWRDCFG = 0) or if all P2 pins used to exit from power-down mode are at inactive level (if PWRDCFG = 1): the chip normally enters powerdown mode.

#### Workaround:

Ensure that no instruction that writes to external memory or an XPeripheral preceeds the PWRDN instruction, otherwise insert a NOP instruction in front of PWRDN. When a multiplexed bus with memory tristate wait state is used, the PWRDN instruction must be executed from internal RAM or XRAM.