

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9keazn64amlc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Package options
 - 64-pin LQFP
 - 32-pin LQFP

Table of Contents

Orde	ring part	
1.1	Determi	ning valid orderable parts4
Part	identific	ation
2.1	Descrip	tion4
2.2	Format.	4
2.3	Fields	4
2.4	Exampl	e5
Ratir	1gs	
3.1	Therma	l handling ratings
3.2	Moistur	e handling ratings
3.3	ESD ha	ndling ratings6
3.4	Voltage	and current operating ratings
Gene	eral	
4.1	Nonswi	tching electrical specifications7
	4.1.1	DC characteristics7
	4.1.2	Supply current characteristics
	4.1.3	EMC performance15
4.2	Switchi	ng specifications15
	4.2.1	Control timing15
	.1 Part : .1 .2 .3 .4 .3 .4 .3 .4 .3 .4 .3 .4 .3 3 	.1 Determinity .1 Determinity Part identific. .1 .1 Descrip .2 Format. .3 Fields .4 Example Ratings .1 .2 Moistur .3 ESD ha .4 Voltage General 4.1.1 4.1.2 4.1.3 .2 Switching 4.2.1 1

		4.2.2	FTM module timing
	4.3	Therma	l specifications17
		4.3.1	Thermal characteristics
5	Peri	pheral op	perating requirements and behaviors
	5.1	Core m	odules
		5.1.1	SWD electricals
	5.2	Externa	l oscillator (OSC) and ICS characteristics19
	5.3	NVM s	pecifications
	5.4	Analog.	
		5.4.1	ADC characteristics
		5.4.2	Analog comparator (ACMP) electricals25
	5.5	Commu	nication interfaces
		5.5.1	SPI switching specifications
6	Dim	ensions	
	6.1	Obtaini	ng package dimensions29
7	Pinc	out	
	7.1	Signal 1	nultiplexing and pin assignments
8	Rev	ision His	tory

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search for the following device numbers: KEAZN64.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q B KEA A C FFF M T PP N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 S = Automotive qualified P = Prequalification
В	Memory type	• 9 = Flash
KEA	Kinetis Auto family	• KEA
A	Key attribute	 Z = M0+ core F = M4 W/ DSP & FPU C= M4 W/ AP + FPU
С	CAN availability	 N = CAN not available (Blank) = CAN available

Ratings

Field	Description	Values
FFF	Program flash memory size	 16 = 16 KB 32 = 32 KB 64 = 64 KB
М	Maskset revision	 A = 1st Fab version B = Revision after 1st version
Т	Temperature range (°C)	 C = -40 to 85 V = -40 to 105 M = -40 to 125
PP	Package identifier	 LC = 32 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm)
N	Packaging type	 R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

S9KEAZN64AMLH

3 Ratings

3.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

3.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	—	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

Figure 2. Typical V_{DD}-V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 3 V)

Figure 3. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 5 V)

Figure 8. Typical V_{OL} Vs. I_{OL} (high drive strength) (V_{DD} = 3 V)

4.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
Run supply current FEI	RI _{DD}	20 MHz	5	6.7	_	mA	–40 to 125 °C
mode, all modules clocks		10 MHz		4.5	_		
		1 MHz		1.5	—		
		20 MHz	3	6.6	_		
		10 MHz		4.4	_		
		1 MHz		1.45	—		
Run supply current FEI	RI _{DD}	20 MHz	5	5.3	_	mA	–40 to 125 °C
mode, all modules clocks		10 MHz		3.7	_		
uisableu, fuit itoitt ilasti		1 MHz		1.5	—		
		20 MHz	3	5.3	_		
		10 MHz		3.7	_		
		1 MHz		1.4		1	

 Table 4.
 Supply current characteristics

Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Мах	Unit	Temp
Run supply current FBE	RI _{DD}	20 MHz	5	9	14.8	mA	–40 to 125 °C
mode, all modules clocks		10 MHz		5.2	_		
		1 MHz		1.45	_		
		20 MHz	3	8.8	11.8		
		10 MHz		5.1	_		
		1 MHz		1.4	_		
Run supply current FBE	RI _{DD}	20 MHz	5	8	12.3	mA	–40 to 125 °C
mode, all modules clocks		10 MHz		4.4	_		
		1 MHz		1.35	_		
		20 MHz	3	7.8	9.2		
		10 MHz		4.2	—		
		1 MHz		1.3	_		
Wait mode current FEI	WI _{DD}	20 MHz	5	5.5	7	mA	–40 to 125 °C
mode, all modules clocks		10 MHz		3.5	—		
		1 MHz		1.4	—		
		20 MHz	3	5.4	6.9		
		10 MHz		3.4	—		
		1 MHz		1.4	—		
Stop mode supply current no	SI _{DD}	—	5	2	145	μA	–40 to 125 °C
clocks active (except 1 kHz LPO clock) ²		_	3	1.9	135		–40 to 125 °C
ADC adder to Stop	_	_	5	86 (64-pin		μA	–40 to 125 °C
ADLPC = 1				packages)			
ADLSMP = 1				42 (32-pin package)			
ADCO = 1			3	82 (64-pin	_		
MODE = 10B				packages)			
ADICLK = 11B				41 (32-pin package)			
ACMP adder to Stop	—	_	5	12	_	μA	–40 to 125 °C
			3	12			
LVD adder to stop ³			5	128		μA	–40 to 125 °C
			3	124	_		

Table 4. Supply current characteristics (continued)

1. Data in Typical column was characterized at 5.0 V, 25 $^\circ C$ or is typical recommended value.

2. RTC adder causes I_{DD} to increase typically by less than 1 μ A; RTC clock source is 1 kHz LPO clock.

3. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

4.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following NXP applications notes, available on **nxp.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

4.2 Switching specifications

4.2.1 Control timing

Num	Rating	l	Symbol	Min	Typical ¹	Max	Unit
1	System and core clock		f _{Sys}	DC	_	40	MHz
2	Bus frequency $(t_{cyc} = 1/f_{Bus})$	f _{Bus}	DC	—	20	MHz	
3	Internal low power oscillator f	requency	f _{LPO}	0.67	1.0	1.25	KHz
4	External reset pulse width ²		t _{extrst}	1.5 ×	—	_	ns
				t _{cyc}			
5	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	—	_	ns
6	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	—	_	ns
		Synchronous path ³	t _{IHIL}	1.5 × t _{cyc}	—	—	ns
7	Keyboard interrupt pulse	Asynchronous path ²	t _{ILIH}	100	—	_	ns
	width	Synchronous path	t _{IHIL}	1.5 × t _{cyc}	—	—	ns
8	Port rise and fall time -	—	t _{Rise}	_	10.2	—	ns
	Normal drive strength (load = 50 pF) ⁴		t _{Fall}	_	9.5		ns
	Port rise and fall time - high	—	t _{Rise}	—	5.4	—	ns
	drive strength (load = 50 pF) ⁴		t _{Fall}	_	4.6		ns

Table 5. Control timing

Switching specifications

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.
- 3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 125 °C.

Figure 10. KBIPx timing

4.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Table 6. FTM input timing

Function	Symbol	Min	Max	Unit
External clock frequency	f _{TCLK} 0 f _{Bus} /4		Hz	
External clock period	t _{TCLK}	4	_	t _{cyc}
External clock high time	t _{clkh}	1.5	—	t _{cyc}
External clock low time	t _{ciki}	1.5	_	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Figure 11. Timer external clock

Figure 12. Timer input capture pulse

4.3 Thermal specifications

4.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Board type	Symbol	Description	64 LQFP	32 LQFP	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	71	86	°C/W	1, 2
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	53	57	°C/W	1, 3
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	59	72	°C/W	1, 3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	46	51	°C/W	1, 3
_	R _{θJB}	Thermal resistance, junction to board	35	33	°C/W	4
	R _{θJC}	Thermal resistance, junction to case	20	24	°C/W	5
_	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	5	6	°C/W	6

Table 7. Thermal attributes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.

KEA64 Sub-Family Data Sheet, Rev. 5, 05/2016

Peripheral operating requirements and behaviors

- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T_J) in °C can be obtained from:

 $T_{J} = T_{A} + (P_{D} \times \theta_{JA})$

Where:

 T_A = Ambient temperature, °C

 θ_{IA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

 $P_{\rm D} = \mathrm{K} \div (\mathrm{T}_{\mathrm{J}} + 273 \ ^{\circ}\mathrm{C})$

Solving the equations above for K gives:

$$\mathbf{K} = \mathbf{P}_{\mathrm{D}} \times (\mathbf{T}_{\mathrm{A}} + 273 \text{ }^{\circ}\text{C}) + \mathbf{\theta}_{\mathrm{JA}} \times (\mathbf{P}_{\mathrm{D}})^{2}$$

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for an known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving the above equations iteratively for any value of T_A .

5 Peripheral operating requirements and behaviors

5.1 Core modules

5.1.1 SWD electricals

Table 8. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	5.5	V
J1	SWD_CLK frequency of operation			

Table continues on the next page ...

KEA64 Sub-Family Data Sheet, Rev. 5, 05/2016

Symbol	Description	Min.	Max.	Unit
	Serial wire debug	0	20	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	—	ns
J4	SWD_CLK rise and fall times		3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	3	_	ns
J11	SWD_CLK high to SWD_DIO data valid		35	ns
J12	SWD_CLK high to SWD_DIO high-Z	5		ns

Table 8. SWD full voltage range electricals (continued)

Figure 13. Serial wire clock input timing

5.2 External oscillator (OSC) and ICS characteristics

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient)

Num		Characteristic	Symbol	Min	Typical ¹	Мах	Unit
1	Crystal or	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	resonator frequency	High range (RANGE = 1)	f _{hi}	4		20	MHz
2	L	bad capacitors	C1, C2		See Note ²		
3	Feedback resistor	Low Frequency, Low-Power Mode ³	R_{F}	—		—	ΜΩ
		Low Frequency, High-Gain Mode		—	10	—	ΜΩ
		High Frequency, Low-Power Mode		_	1		MΩ
		High Frequency, High-Gain Mode			1		ΜΩ
4	Series resistor -	Low-Power Mode ³	R _S	—	0	—	kΩ
	Low Frequency	High-Gain Mode		—	200	—	kΩ
5	Series resistor - High Frequency	Low-Power Mode ³	R _S	_	0		kΩ
	Series resistor -	4 MHz		_	0	—	kΩ
	High Frequency, High-Gain Mode	8 MHz		_	0	—	kΩ
		16 MHz		_	0	_	kΩ
6	Crystal start-up	Low range, low power	t _{CSTL}	—	1000	—	ms
	time low range =	Low range, high gain		—	800	—	ms
	crystal; High	High range, low power	t _{CSTH}	—	3	—	ms
	range = 20 MHz crystal ^{4,5}	High range, high gain		—	1.5	—	ms
7	Internal r	eference start-up time	t _{IRST}	—	20	50	μs
8	Internal reference	ce clock (IRC) frequency trim range	f_{int_t}	31.25	—	39.0625	kHz
9	Internal reference clock frequency, factory trimmed [,]	T = 125 °C, V _{DD} = 5 V	f _{int_ft}	_	31.25	_	kHz
10	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}		—		MHz
11	Factory trimmed internal oscillator accuracy	T = 125 °C, V _{DD} = 5 V	$\Delta f_{int_{ft}}$	-0.8	—	0.8	%
12	Deviation of IRC over temperature when trimmed at $T = 25 \degree$ C, $V_{DD} = 5 V$	Over temperature range from -40 °C to 125°C	Δf_{int_t}	-1	_	0.8	%

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual.

5.4 Analog

5.4.1 ADC characteristics

Characteri stic	Conditions	Symbol	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V _{DDA}	2.7		5.5	V	
voltage	Delta to V_{DD} (V_{DD} - V_{DDA})	ΔV _{DDA}	-100	0	+100	mV	_
Ground voltage	Delta to V_{SS} (V_{SS} - V_{SSA})	ΔV _{SSA}	-100	0	+100	mV	_
Input voltage		V _{ADIN}	V _{REFL}		V _{REFH}	V	_
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	_
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}		_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz			—	5		
	 10-bit mode fADCK > 4 MHz 		_	_	5		
	• f _{ADCK} < 4 MHz		—	_	10		
	8-bit mode	_			10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4		8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

Table 11. 5 V 12-bit ADC operating conditions

1. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK}=1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

Figure 16. ADC input impedance equivalency diagram

Table 12.	12-bit ADC	characteristics	(V _{REFH} =	V_{DDA} ,	$V_{REFL} =$	V _{SSA})
-----------	------------	-----------------	----------------------	-------------	--------------	--------------------

Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit
Supply current		I _{DDA}	—	133	—	μA
ADLPC = 1						
ADLSMP = 1						
ADCO = 1						
Supply current		I _{DDA}	_	218	—	μA
ADLPC = 1						
ADLSMP = 0						
ADCO = 1						
Supply current		I _{DDA}	—	327	—	μA
ADLPC = 0						
ADLSMP = 1						
ADCO = 1						
Supply current		I _{DDA}	_	582	990	μA
ADLPC = 0						
ADLSMP = 0						
ADCO = 1						
Supply current	Stop, reset, module off	I _{DDA}	_	0.011	1	μA
ADC asynchronous clock source	High speed (ADLPC = 0)	f _{ADACK}	2	3.3	5	MHz

Characteristic	Conditions	Symbol	Min	Typ ¹	Мах	Unit
	Low power (ADLPC = 1)		1.25	2	3.3	
Conversion time (including sample time)	Short sample (ADLSMP = 0)	t _{ADC}	_	20	_	ADCK cycles
	Long sample (ADLSMP = 1)		_	40	_	
Sample time	Short sample (ADLSMP = 0)	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)		_	23.5	_	
Total unadjusted Error ²	12-bit mode	E _{TUE}	—	±5.0	—	LSB ³
	10-bit mode		_	±1.5	±2.0	
	8-bit mode		—	±0.7	±1.0	
Differential Non-	12-bit mode	DNL	—	±1.0	—	LSB ³
Liniarity	10-bit mode ⁴		_	±0.25	±0.5	
	8-bit mode ⁴		_	±0.15	±0.25	
Integral Non-Linearity	12-bit mode	INL	—	±1.0	—	LSB ³
	10-bit mode		_	±0.3	±0.5	
	8-bit mode		_	±0.15	±0.25	
Zero-scale error ⁵	12-bit mode	E _{ZS}	—	±2.0	—	LSB ³
	10-bit mode		_	±0.25	±1.0	
	8-bit mode		—	±0.65	±1.0	
Full-scale error ⁶	12-bit mode	E _{FS}	—	±2.5	—	LSB ³
	10-bit mode		_	±0.5	±1.0	
	8-bit mode		_	±0.5	±1.0	
Quantization error	≤12 bit modes	Eq	—	—	±0.5	LSB ³
Input leakage error ⁷	all modes	EIL		I _{In} x R _{AS}		mV
Temp sensor slope	-40 °C–25 °C	m	—	3.266	_	mV/°C
	25 °C–125 °C		—	3.638	_	
Temp sensor voltage	25 °C	V _{TEMP25}	_	1.396	_	V

Table 12. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

2. Includes quantization

- 3. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 4. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
- 5. $V_{ADIN} = V_{SSA}$
- 6. $V_{ADIN} = V_{DDA}$
- 7. I_{In} = leakage current (refer to DC characteristics)

Peripheral operating requirements and behaviors

5.4.2	Analog comparator (ACMP) electricals
	Table 13. Comparator electrical specifications

Characteristic	Symbol	Min	Typical	Max	Unit
Supply voltage	V _{DDA}	2.7	—	5.5	V
Supply current (Operation mode)	I _{DDA}	—	10	20	μA
Analog input voltage	V _{AIN}	V _{SS} - 0.3	—	V _{DDA}	V
Analog input offset voltage	V _{AIO}	—	—	40	mV
Analog comparator hysteresis (HYST=0)	V _H	—	15	20	mV
Analog comparator hysteresis (HYST=1)	V _H		20	30	mV
Supply current (Off mode)	IDDAOFF	_	60	—	nA
Propagation Delay	t _D	—	0.4	1	μs

5.5 Communication interfaces

5.5.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 80% V_{DD} , unless noted, and 25 pF load on all SPI pins. All timing assumes slew rate control is disabled and high-drive strength is enabled for SPI output pins.

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} – 30	1024 x t _{Bus}	ns	—
6	t _{SU}	Data setup time (inputs)	8	_	ns	_
7	t _{HI}	Data hold time (inputs)	8	_	ns	_
8	t _v	Data valid (after SPSCK edge)	—	25	ns	_
9	t _{HO}	Data hold time (outputs)	20		ns	

Table 14. SPI master mode timing

Figure 20. SPI slave mode timing (CPHA=1)

6 Dimensions

6.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **nxp.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin LQFP	98ASH70029A
64-pin LQFP	98ASS23234W

7 Pinout

7.1 Signal multiplexing and pin assignments

For the pin muxing details see section Signal Multiplexing and Signal Descriptions of KEA64 Reference Manual.

8 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
Rev. 1	11 March 2014	Initial Release
Rev. 2	18 June 2014	 Parameter Classification section is removed. Classification column is removed from all the tables in the document. Supply current characteristics section is updated.
Rev. 3	18 July 2014	 ESD handling ratings section is updated. Figures in DC characteristics section are updated. Specs updated in following tables: Table 9. Table 4.
Rev. 4	03 Sept 2014	 Data Sheet type changed to "Technical Data".
Rev. 5	12 May 2016	 In section: Key features, Changed the number of instances of IIC to 1.

Table 16. Revision History

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2014–2016 NXP B.V.

Document Number S9KEA64P64M20SF0 Revision 5, 05/2016

