

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Dataila	
Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	57
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9keazn64amlhr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search for the following device numbers: KEAZN64.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q B KEA A C FFF M T PP N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	S = Automotive qualifiedP = Prequalification
В	Memory type	• 9 = Flash
KEA	Kinetis Auto family	• KEA
A	Key attribute	 Z = M0+ core F = M4 W/ DSP & FPU C= M4 W/ AP + FPU
С	CAN availability	N = CAN not available (Blank) = CAN available

Table continues on the next page...

3.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of °C	-100	+100	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test. The test produced the following results:
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass +100/-100 mA I-test with I_{DD} current limit at 800 mA (V_{DD} collapsed during positive injection).
 - I/O pins pass +70/-100 mA I-test with I_{DD} current limit at 1000 mA for V_{DD}.
 - Supply groups pass 1.5 V_{ccmax}.
 - RESET_B pin was only tested with negative I-test due to product conditioning requirement.

3.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Table 1. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	6.0	V
I _{DD}	Maximum current into V _{DD}	_	120	mA
V _{IN}	Input voltage except true open drain pins	-0.3	V _{DD} + 0.3 ¹	V
	Input voltage of true open drain pins	-0.3	6	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

1. Maximum rating of V_{DD} also applies to V_{IN}.

General

Nonswitching electrical specifications 4.1

4.1.1 **DC** characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 2. DC characteristics

Symbol		Descriptions		Min	Typical ¹	Max	Unit
_		Operating voltage	_	2.7	_	5.5	V
V _{OH}	Output	All I/O pins, except PTA2	5 V, I _{load} = -5 mA	V _{DD} – 0.8	_	_	V
	high voltage	and PTA3, standard-drive strength	3 V, $I_{load} = -2.5 \text{ mA}$	V _{DD} – 0.8	_	_	V
		High current drive pins,	5 V, $I_{load} = -20 \text{ mA}$	$V_{DD} - 0.8$	_	_	V
		high-drive strength ²	3 V, $I_{load} = -10 \text{ mA}$	V _{DD} – 0.8	_	_	V
I _{OHT}	Output	Max total I _{OH} for all ports	5 V	_	_	-100	mA
	high current		3 V	_	_	-60	
V _{OL}	Output low voltage	All I/O pins, standard-drive	5 V, I _{load} = 5 mA	_	_	0.8	V
			strength	3 V, I _{load} = 2.5 mA	_	_	0.8
	Voltage	High current drive pins, high-drive strength ²	5 V, I _{load} =20 mA	_	_	0.8	V
			3 V, I _{load} = 10 mA	_	_	0.8	V
I _{OLT}	Output	Max total I _{OL} for all ports	5 V	_	_	100	mA
	low current		3 V	_	_	60	
V _{IH}	Input high	All digital inputs	4.5≤V _{DD} <5.5 V	$0.65 \times V_{DD}$	_	_	V
	voltage		2.7≤V _{DD} <4.5 V	$0.70 \times V_{DD}$	_	_	
V _{IL}	Input low voltage	All digital inputs	4.5≤V _{DD} <5.5 V	_	_	0.35 × V _{DD}	V
			2.7≤V _{DD} <4.5 V	_	_	0.30 × V _{DD}	
V _{hys}	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$	_	_	mV
I _{In}	Input leakage current	Per pin (pins in high impedance input mode)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μΑ

Table continues on the next page...

KEA64 Sub-Family Data Sheet, Rev. 5, 05/2016 **NXP Semiconductors**

Nonswitching electrical specifications

Table 2. DC characteristics (continued)

Symbol		Descriptions		Min	Typical ¹	Max	Unit
II _{INTOT} I	Total leakage combined for all port pins	Pins in high impedance input mode	$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μА
R _{PU}	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Pullup resistors	PTA2 and PTA3 pins	_	30.0	_	60.0	kΩ
I _{IC}	DC	Single pin limit	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	-2	_	2	mA
	injection current ^{4,} 5, 6	Total MCU limit, includes sum of all stressed pins		-5	_	25	
C _{In}	Input capacitance, all pins		_	_	_	7	pF
V _{RAM}	RA	M retention voltage	_	2.0	_	_	V

- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 support high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 are true
 open drain I/O pins that are internally clamped to V_{SS}.
- 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 3. LVD and POR specification

Symbol	Descr	iption	Min	Тур	Max	Unit
V _{POR}	POR re-arr	n voltage ¹	1.5	1.75	2.0	V
V _{LVDH}	Falling low-voltage detect threshold—high range (LVDV = 1) ²		4.2	4.3	4.4	V
V _{LVW1H}	Falling low- voltage warning	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	threshold— high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}		Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	High range low-voltage detect/ warning hysteresis		_	100	_	mV

Table continues on the next page...

Nonswitching electrical specifications

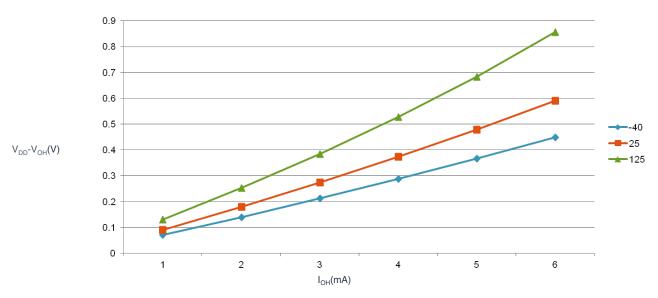


Figure 2. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 3 V)

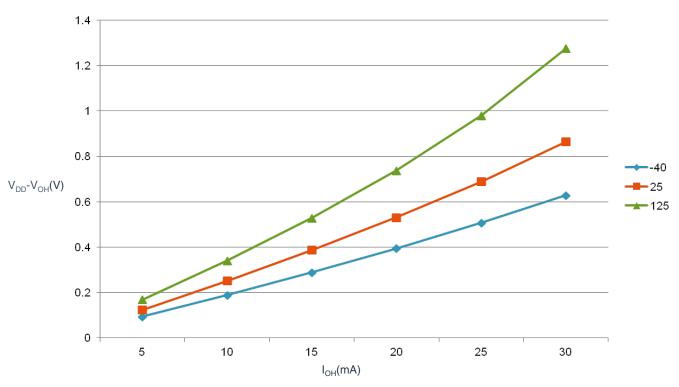


Figure 3. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 5 V)

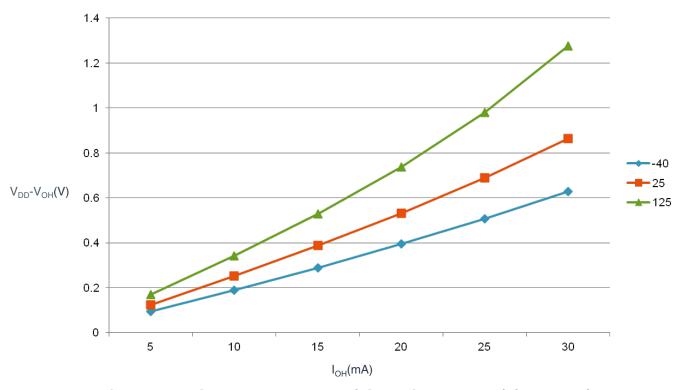


Figure 4. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 3 V)

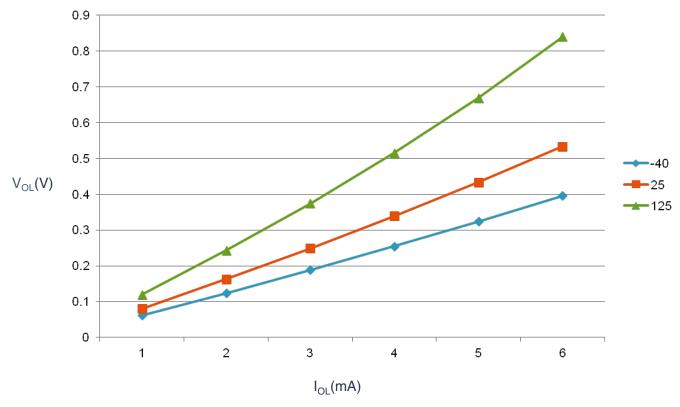


Figure 5. Typical V_{OL} Vs. I_{OL} (standard drive strength) ($V_{DD} = 5 \text{ V}$)

Nonswitching electrical specifications

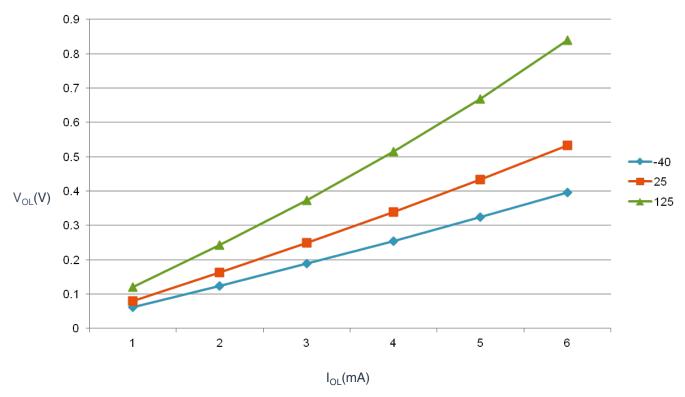


Figure 6. Typical V_{OL} Vs. I_{OL} (standard drive strength) ($V_{DD} = 3 \text{ V}$)

Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 5 \text{ V}$)

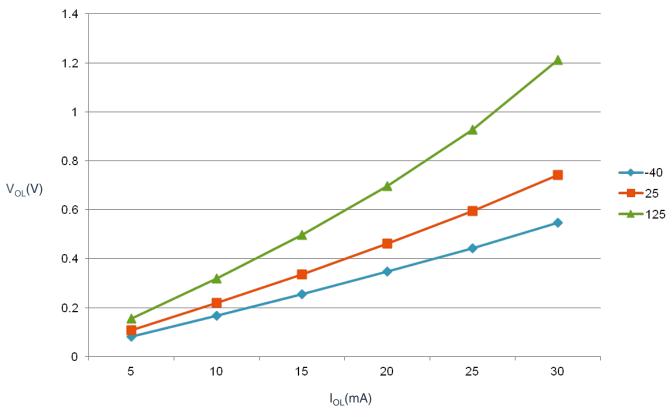


Figure 8. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 3 \text{ V}$)

4.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 4. Supply current characteristics

Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp			
Run supply current FEI	RI _{DD}	20 MHz	5	6.7	_	mA	–40 to 125 °C			
mode, all modules clocks enabled; run from flash		10 MHz		4.5	_					
chabled, full from flash		1 MHz		1.5	_					
		20 MHz	3	6.6	_					
		10 MHz	10 MHz	10 MHz	10 MHz		4.4	_		
		1 MHz		1.45	_					
Run supply current FEI	RI _{DD}	20 MHz	5	5.3	_	mA	–40 to 125 °C			
mode, all modules clocks disabled; run from flash		10 MHz		3.7	_					
disabled, full from flash		1 MHz		1.5	_					
		20 MHz	3	5.3	_					
		10 MHz		3.7	_					
		1 MHz		1.4	_					

Table continues on the next page...

4.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following NXP applications notes, available on **nxp.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

4.2 Switching specifications

4.2.1 Control timing

Table 5. Control timing

Num	Rating	ı	Symbol	Min	Typical ¹	Max	Unit
1	System and core clock		f _{Sys}	DC	_	40	MHz
2	Bus frequency (t _{cyc} = 1/f _{Bus})		f _{Bus}	DC	_	20	MHz
3	Internal low power oscillator f	requency	f _{LPO}	0.67	1.0	1.25	KHz
4	External reset pulse width ²		t _{extrst}	1.5 ×	_	_	ns
				t _{cyc}			
5	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
6	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
		Synchronous path ³	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
7	Keyboard interrupt pulse	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	width	Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	Normal drive strength (load = 50 pF) ⁴		t _{Fall}	_	9.5	_	ns
	Port rise and fall time - high	_	t _{Rise}	_	5.4	_	ns
	drive strength (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

Switching specifications

- Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.
- 3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 125 °C.

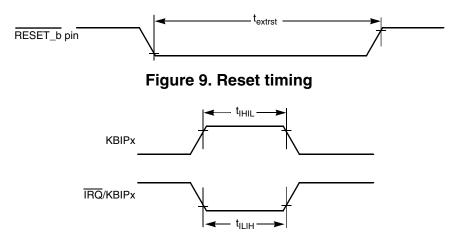


Figure 10. KBIPx timing

4.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Function	Symbol	Min	Max	Unit
External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
External clock period	t _{TCLK}	4	_	t _{cyc}
External clock high time	t _{clkh}	1.5	_	t _{cyc}
External clock low time	t _{clkl}	1.5	_	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 6. FTM input timing

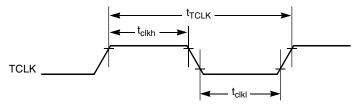


Figure 11. Timer external clock

Peripheral operating requirements and behaviors

- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_J = T_A + (P_D \times \theta_{JA})$$

Where:

 $T_A = Ambient temperature, °C$

 θ_{IA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273 \, ^{\circ}C)$$

Solving the equations above for K gives:

$$K = P_D \times (T_A + 273 \text{ }^{\circ}C) + \theta_{IA} \times (P_D)^2$$

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for an known T_A . Using this value of K, the values of P_D and P_D and P_D and P_D are obtained by solving the above equations iteratively for any value of P_D .

5 Peripheral operating requirements and behaviors

5.1 Core modules

5.1.1 SWD electricals

Table 8. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	5.5	V
J1	SWD_CLK frequency of operation			

Table continues on the next page...

Table 8. SWD full voltage range electricals (continued)

Symbol	Description	Min.	Max.	Unit
	Serial wire debug	0	20	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	3	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	35	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

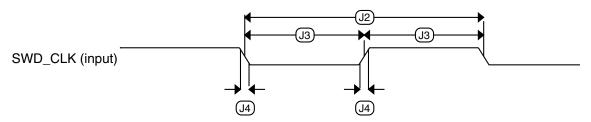


Figure 13. Serial wire clock input timing

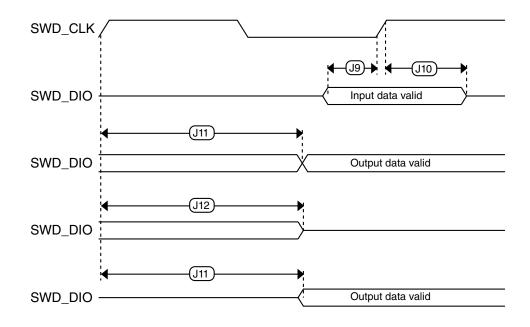


Figure 14. Serial wire data timing

5.2 External oscillator (OSC) and ICS characteristics

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient)

Num	Characteristic		Symbol	Min	Typical ¹	Max	Unit
1	Crystal or	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	resonator frequency	High range (RANGE = 1)	f _{hi}	4	_	20	MHz
2	Lo	Load capacitors			See Note ²		
3	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F	_	_	_	ΜΩ
		Low Frequency, High-Gain Mode		_	10	_	ΜΩ
		High Frequency, Low-Power Mode		_	1	_	ΜΩ
		High Frequency, High-Gain Mode		_	1	_	ΜΩ
4	Series resistor -	Low-Power Mode ³	R _S	_	0	_	kΩ
	Low Frequency	High-Gain Mode		_	200	_	kΩ
5	Series resistor - High Frequency	Low-Power Mode ³	R _S	_	0	_	kΩ
	Series resistor - High Frequency, High-Gain Mode	4 MHz		_	0	_	kΩ
		8 MHz		_	0	_	kΩ
		16 MHz		_	0	_	kΩ
6	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	time low range = 32.768 kHz crystal; High	Low range, high gain		_	800	_	ms
		High range, low power	t _{CSTH}	_	3	_	ms
	range = 20 MHz crystal ^{4,5}	High range, high gain		_	1.5	_	ms
7	Internal r	Internal reference start-up time		_	20	50	μs
8	Internal reference	ce clock (IRC) frequency trim range	f _{int_t}	31.25	_	39.0625	kHz
9	Internal reference clock frequency, factory trimmed	T = 125 °C, V _{DD} = 5 V	f _{int_ft}	_	31.25	_	kHz
10	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}	_	_	_	MHz
11	Factory trimmed internal oscillator accuracy	T = 125 °C, V _{DD} = 5 V	Δf _{int_ft}	-0.8	_	0.8	%
12	Deviation of IRC over temperature when trimmed at T = 25 °C, V _{DD} = 5 V	Over temperature range from -40 °C to 125°C	Δf_{int_t}	-1	_	0.8	%

Table continues on the next page...

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient) (continued)

Num		Characteristic		Min	Typical ¹	Max	Unit
13	Frequency accuracy of DCO output using factory trim value	Over temperature range from -40 °C to 125°C	Δf_{dco_ft}	-2.3	_	0.8	%
14	FLL acquisition time ^{4,6}		t _{Acquire}	_	_	2	ms
15	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁷		C _{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. See crystal or resonator manufacturer's recommendation.
- 3. Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

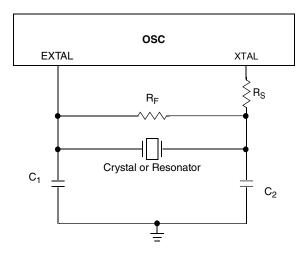


Figure 15. Typical crystal or resonator circuit

5.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

Table 10. Flash and EEPROM characteristics

Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
Supply voltage for program/erase –40 °C to 125 °C	V _{prog/erase}	2.7	_	5.5	V
Supply voltage for read operation	V _{Read}	2.7	_	5.5	V
NVM Bus frequency	f _{NVMBUS}	1	_	20	MHz
NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
Erase Verify All Blocks	t _{VFYALL}	_	_	2605	t _{cyc}
Erase Verify Flash Block	t _{RD1BLK}	_	_	2579	t _{cyc}
Erase Verify EEPROM Block	t _{RD1BLK}	_	_	810	t _{cyc}
Erase Verify Flash Section	t _{RD1SEC}	_	_	485	t _{cyc}
Erase Verify EEPROM Section	t _{DRD1SEC}	_	_	555	t _{cyc}
Read Once	t _{RDONCE}	_	_	464	t _{cyc}
Program Flash (2 word)	t _{PGM2}	0.12	0.13	0.31	ms
Program Flash (4 word)	t _{PGM4}	0.21	0.21	0.49	ms
Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
Program EEPROM (1 Byte)	t _{DPGM1}	0.10	0.10	0.27	ms
Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.43	ms
Program EEPROM (3 Byte)	t _{DPGM3}	0.25	0.26	0.60	ms
Program EEPROM (4 Byte)	t _{DPGM4}	0.32	0.33	0.77	ms
Erase All Blocks	t _{ERSALL}	95.42	100.18	100.30	ms
Erase Flash Block	t _{ERSBLK}	95.42	100.18	100.30	ms
Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.09	ms
Erase EEPROM Sector	t _{DERSPG}	4.81	5.05	20.57	ms
Unsecure Flash	t _{UNSECU}	95.42	100.19	100.31	ms
Verify Backdoor Access Key	t _{VFYKEY}	_	_	482	t _{cyc}
Set User Margin Level	t _{MLOADU}	_	_	415	t _{cyc}
FLASH Program/erase endurance T _L to T _H = -40 °C to 125 °C	n _{FLPE}	10 k	100 k	_	Cycles
EEPROM Program/erase endurance TL to TH = -40 °C to 125 °C	n _{FLPE}	50 k	500 k	_	Cycles
Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

^{1.} Minimum times are based on maximum $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$

^{2.} Typical times are based on typical f_{NVMOP} and maximum f_{NVMBUS}

^{3.} Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging

^{4.} $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual.

5.4 Analog

5.4.1 ADC characteristics

Table 11. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symbol	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V_{DDA}	2.7	_	5.5	V	_
voltage	Delta to V _{DD} (V _{DD} -V _{DDA})	ΔV_{DDA}	-100	0	+100	mV	_
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA})	ΔV_{SSA}	-100	0	+100	mV	_
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	_
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	_
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}		_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz		_	_	5		
	10-bit mode • f _{ADCK} > 4 MHz		_	_	5		
	• f _{ADCK} < 4 MHz		_	_	10		
	8-bit mode		_	_	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

^{1.} Typical values assume V_{DDA} = 5.0 V, Temp = 25°C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

Table 12. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

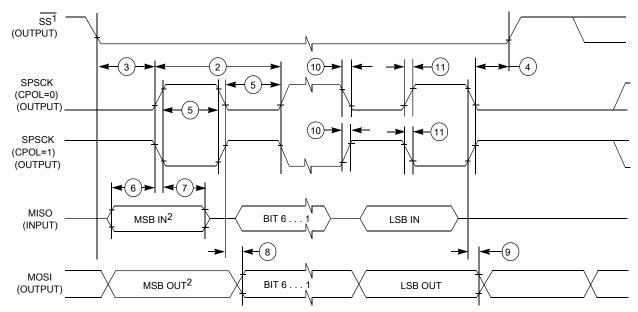
Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit
	Low power (ADLPC = 1)		1.25	2	3.3	
Conversion time (including sample time)	Short sample (ADLSMP = 0)	t _{ADC}	_	20	_	ADCK cycles
	Long sample (ADLSMP = 1)		_	40	_	
Sample time	Short sample (ADLSMP = 0)	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)		_	23.5	_	
Total unadjusted Error ²	12-bit mode	E _{TUE}	_	±5.0	_	LSB ³
	10-bit mode		_	±1.5	±2.0	
	8-bit mode		_	±0.7	±1.0	
Differential Non- Liniarity	12-bit mode	DNL	_	±1.0	_	LSB ³
	10-bit mode ⁴		_	±0.25	±0.5	
	8-bit mode ⁴		_	±0.15	±0.25	
Integral Non-Linearity	12-bit mode	INL	_	±1.0	_	LSB ³
	10-bit mode		_	±0.3	±0.5	
	8-bit mode		_	±0.15	±0.25	
Zero-scale error ⁵	12-bit mode	E _{ZS}	_	±2.0	_	LSB ³
	10-bit mode		_	±0.25	±1.0	
	8-bit mode		_	±0.65	±1.0	
Full-scale error ⁶	12-bit mode	E _{FS}	_	±2.5	_	LSB ³
	10-bit mode		_	±0.5	±1.0	
	8-bit mode		_	±0.5	±1.0	
Quantization error	≤12 bit modes	EQ	_	_	±0.5	LSB ³
Input leakage error ⁷	all modes	E _{IL}		I _{In} x R _{AS}	•	mV
Temp sensor slope	-40 °C–25 °C	m	_	3.266	_	mV/°C
	25 °C–125 °C		_	3.638	_	
Temp sensor voltage	25 °C	V _{TEMP25}	_	1.396	_	V
	-					

^{1.} Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} =1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} Includes quantization

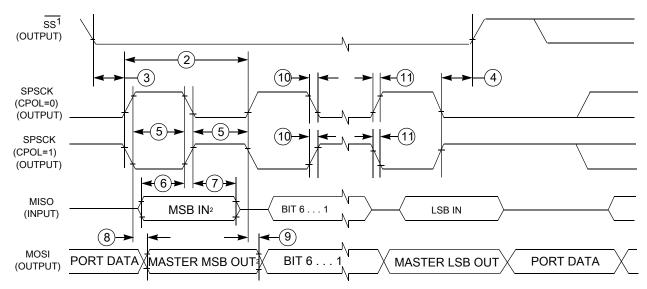
^{3. 1} LSB = $(\dot{V}_{REFH} - V_{REFL})/2^N$

^{4.} Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes


^{5.} $V_{ADIN} = V_{SSA}$

^{6.} $V_{ADIN} = V_{DDA}$

^{7.} I_{In} = leakage current (refer to DC characteristics)


Table 14. SPI master mode timing (continued)

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
10	t _{RI}	Rise time input	_	t _{Bus} – 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 17. SPI master mode timing (CPHA=0)

- 1.If configured as output
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI master mode timing (CPHA=1)

KEA64 Sub-Family Data Sheet, Rev. 5, 05/2016

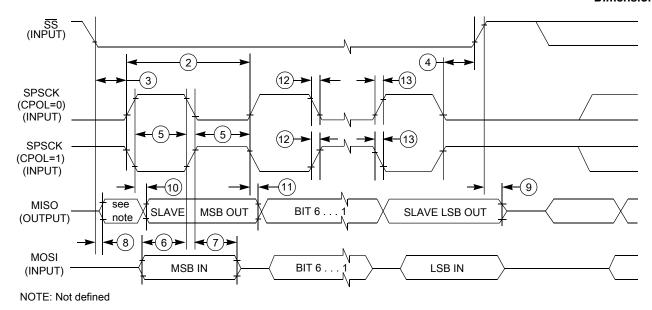


Figure 20. SPI slave mode timing (CPHA=1)

6 Dimensions

6.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **nxp.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin LQFP	98ASH70029A
64-pin LQFP	98ASS23234W

7 Pinout

7.1 Signal multiplexing and pin assignments

For the pin muxing details see section Signal Multiplexing and Signal Descriptions of KEA64 Reference Manual.

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE. JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2014-2016 NXP B.V.

Document Number S9KEA64P64M20SF0 Revision 5, 05/2016

