

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Detuils	
Product Status	Obsolete
Туре	Floating Point
Interface	Synchronous Serial Port (SSP)
Clock Rate	33MHz
Non-Volatile Memory	External
On-Chip RAM	128kB
Voltage - I/O	5.00V
Voltage - Core	5.00V
Operating Temperature	0°C ~ 85°C (TC)
Mounting Type	Surface Mount
Package / Case	240-BFQFP Exposed Pad
Supplier Device Package	240-MQFP-EP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-21061ks-133

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

Summary	1
Key Features—Processor Core	1
General Description	3
SHARC Family Core Architecture	3
Memory and I/O Interface Features	4
Porting Code From the ADSP-21060 or ADSP-21062	7
Development Tools	7
Additional Information	8
Related Signal Chains	8
Pin Function Descriptions	9
Target Board Connector For EZ-ICE Probe	12
ADSP-21061 Specifications	14
Operating Conditions (5 V)	14
Electrical Characteristics (5 V)	14
Internal Power Dissipation (5 V)	15
External Power Dissipation (5 V)	16

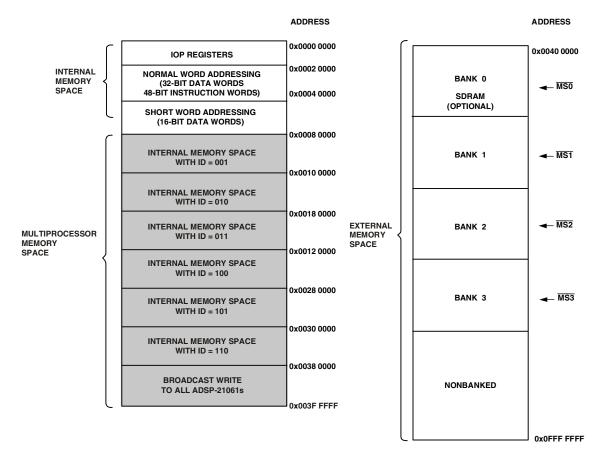
REVISION HISTORY

5/13—Rev C to Rev D
Updated Development Tools7
Added Related Signal Chains8
Removed the ADSP-21061LAS-176, ADSP-21061LKS-160, and ADSP-21061LKS-176 models from Ordering Guide

GENERAL NOTE

This data sheet represents production released specifications for the ADSP-21061 (5 V) and ADSP-21061L (3.3 V) processors for 33 MHz, 40 MHz, 44 MHz, and 50 MHz speed grades. The product name"ADSP-21061" is used throughout this data sheet to represent all devices, except where expressly noted.

ADSP-21061L Specifications 17
Operating Conditions (3.3 V) 17
Electrical Characteristics (3.3 V) 17
Internal Power Dissipation (3.3 V) 18
External Power Dissipation (3.3 V) 19
Absolute Maximum Ratings 20
ESD Caution 20
Package Marking Information 20
Timing Specifications 20
Test Conditions 43
Environmental Conditions 46
225-Ball PBGA Pin Configurations 47
240-Lead MQFP Pin Configurations 49
Outline Dimensions 50
Surface-Mount Design 52
Ordering Guide


Six channels of DMA are available on the ADSP-21061—four via the serial ports, and two via the processor's external port (for either host processor, other ADSP-21061s, memory or I/O transfers). Programs can be downloaded to the ADSP-21061 using DMA transfers. Asynchronous off-chip peripherals can control two DMA channels using DMA request/grant lines $(\overline{DMAR}_{1-2}, \overline{DMAG}_{1-2})$. Other DMA features include interrupt generation upon completion of DMA transfers and DMA chaining for automatic linked DMA transfers.

Serial Ports

The ADSP-21061 features two synchronous serial ports that provide an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices. The serial ports can operate at the full clock rate of the processor, providing each with a maximum data rate of up to 50 Mbps. Independent transmit and receive functions provide greater flexibility for serial communications. Serial port data can be automatically transferred to and from on-chip memory via DMA. Each of the serial ports offers TDM multichannel mode. The serial ports can operate with little-endian or big-endian transmission formats, with word lengths selectable from 3 bits to 32 bits. They offer selectable synchronization and transmit modes as well as optional μ -law or A-law companding. Serial port clocks and frame syncs can be internally or externally generated. The serial ports also include keyword and key mask features to enhance interprocessor communication.

Multiprocessing

The ADSP-21061 offers powerful features tailored to multiprocessor DSP systems. The unified address space (see Figure 4) allows direct interprocessor accesses of each ADSP-21061's internal memory. Distributed bus arbitration logic is included on-chip for simple, glueless connection of systems containing up to six ADSP-21061s and a host processor. Master processor changeover incurs only one cycle of overhead. Bus arbitration is selectable as either fixed or rotating priority. Bus lock allows indivisible read-modify-write sequences for semaphores. A vector interrupt is provided for interprocessor commands. Maximum throughput for interprocessor data transfer is 500 Mbps over the external port. Broadcast writes allow simultaneous transmission of data to all ADSP-21061s and can be used to implement reflective semaphores.

NOTE: BANK SIZES ARE SELECTED BY MSIZE BITS OF THE SYSCON REGISTER

Figure 4. Memory Map

Board Support Packages for Evaluation Hardware

Software support for the EZ-KIT Lite evaluation boards and EZ-Extender daughter cards is provided by software add-ins called Board Support Packages (BSPs). The BSPs contain the required drivers, pertinent release notes, and select example code for the given evaluation hardware. A download link for a specific BSP is located on the web page for the associated EZ-KIT or EZ-Extender product. The link is found in the *Product Download* area of the product web page.

Middleware Packages

Analog Devices separately offers middleware add-ins such as real time operating systems, file systems, USB stacks, and TCP/IP stacks. For more information see the following web pages:

- www.analog.com/ucos3
- www.analog.com/ucfs
- www.analog.com/ucusbd
- www.analog.com/lwip

Algorithmic Modules

To speed development, Analog Devices offers add-ins that perform popular audio and video processing algorithms. These are available for use with both CrossCore Embedded Studio and VisualDSP++. For more information visit www.analog.com and search on "Blackfin software modules" or "SHARC software modules".

Designing an Emulator-Compatible DSP Board (Target)

For embedded system test and debug, Analog Devices provides a family of emulators. On each JTAG DSP, Analog Devices supplies an IEEE 1149.1 JTAG Test Access Port (TAP). In-circuit emulation is facilitated by use of this JTAG interface. The emulator accesses the processor's internal features via the processor's TAP, allowing the developer to load code, set breakpoints, and view variables, memory, and registers. The processor must be halted to send data and commands, but once an operation is completed by the emulator, the DSP system is set to run at full speed with no impact on system timing. The emulators require the target board to include a header that supports connection of the DSP's JTAG port to the emulator.

For details on target board design issues including mechanical layout, single processor connections, signal buffering, signal termination, and emulator pod logic, see the *EE-68: Analog Devices JTAG Emulation Technical Reference* on the Analog Devices website (www.analog.com)—use site search on "EE-68." This document is updated regularly to keep pace with improvements to emulator support.

ADDITIONAL INFORMATION

This data sheet provides a general overview of the ADSP-21061 architecture and functionality. For detailed information on the ADSP-21000 Family core architecture and instruction set, refer to the ADSP- 2106x SHARC User's Manual.

RELATED SIGNAL CHAINS

A *signal chain* is a series of signal conditioning electronic components that receive input (data acquired from sampling either real-time phenomena or from stored data) in tandem, with the output of one portion of the chain supplying input to the next. Signal chains are often used in signal processing applications to gather and process data or to apply system controls based on analysis of real-time phenomena. For more information about this term and related topics, see the "signal chain" entry in the Glossary of EE Terms on the Analog Devices website.

Analog Devices eases signal processing system development by providing signal processing components that are designed to work together well. A tool for viewing relationships between specific applications and related components is available on the www.analog.com website.

The Circuits from the Lab[™] site (www.analog.com/signal chains) provides:

- Graphical circuit block diagram presentation of signal chains for a variety of circuit types and applications
- Drill down links for components in each chain to selection guides and application information
- Reference designs applying best practice design techniques

Table 2. Pin Descriptions (Continued)

Pin	Туре	Function
ACK	I/O/S	Memory Acknowledge. External devices can deassert ACK (low) to add wait states to an external memory access. ACK is used by I/O devices, memory controllers, or other peripherals to hold off completion of an external memory access. The ADSP-21061 deasserts ACK as an output to add wait states to a synchronous access of its internal memory. In a multiprocessing system, a slave ADSP-21061 deasserts the bus master's ACK input to add wait state(s) to an access of its internal memory. The bus master has a keeper latch on its ACK pin that maintains the input at the level to which it was last driven.
SBTS	I/S	Suspend Bus Three-State. External devices can assert SBTS (low) to place the external bus address, data, selects, and strobes in a high impedance state for the following cycle. If the ADSP-21061 attempts to access external memory while SBTS is asserted, the processor halts and the memory access is not complete until SBTS is deasserted. SBTS should only be used to recover from host processor/ADSP-21061 deadlock, or used with a DRAM controller.
IRQ ₂₋₀	I/A	Interrupt Request Lines. May be either edge-triggered or level-sensitive.
FLAG ₃₋₀	I/O/A	Flag Pins. Each is configured via control bits as either an input or output. As an input, they can be tested as a condition. As an output, they can be used to signal external peripherals.
TIMEXP	0	Timer Expired. Asserted for four cycles when the timer is enabled and TCOUNT decrements to zero.
HBR	I/A	Host Bus Request. This pin must be asserted by a host processor to request control of the ADSP-21061's external bus. When HBR is asserted in a multiprocessing system, the ADSP-21061 that is bus master will relinquish the bus and assert HBG. To relinquish the bus, the ADSP-21061 places the address, data, select, and strobe lines in a high impedance state. HBR has priority over all ADSP-21061 bus requests BR ₆₋₁ in a multiprocessing system.
HBG	I/O	Host Bus Grant. Acknowledges a bus request, indicating that the host processor may take control of the external bus. HBG is asserted (held low) by the ADSP-21061 until HBR is released. In a multiprocessing system, HBG is output by the ADSP-21061 bus master and is monitored by all others.
CS	I/A	Chip Select. Asserted by host processor to select the ADSP-21061.
REDY	O (O/D)	Host Bus Acknowledge. The ADSP-21061 deasserts REDY (low) to add wait states to an asynchronous access of its internal memory or IOP registers by a host. This pin is an open-drain output (O/D) by default; it can be programmed in the ADREDY bit of the SYSCON register to be active drive (A/D). REDY will only be output if the $\overline{\text{CS}}$ and $\overline{\text{HBR}}$ inputs are asserted.
DMAR ₂₋₁	I/A	DMA Request 1 (DMA Channel 7) and DMA Request 2 (DMA Channel 6).
DMAG ₂₋₁	O/T	DMA Grant 1 (DMA Channel 7) and DMA Grant 2 (DMA Channel 6).
BR ₆₋₁	I/O/S	Multiprocessing Bus Requests. Used by multiprocessing ADSP-21061 processors to arbitrate for bus mastership. An ADSP-21061 only drives its own BRx line (corresponding to the value of its ID2-0 inputs) and monitors all others. In a multiprocessor system with less than six ADSP-21061s, the unused BRx pins should be pulled high; the processor's own BRx line must not be pulled high or low because it is an output.
ID2-0	O (O/D)	Multiprocessing ID. Determines which multiprocessing bus request ($\overline{BR1} - \overline{BR6}$) is used by ADSP-21061. ID = 001 corresponds to $\overline{BR1}$, ID = 010 corresponds to $\overline{BR2}$, etc., ID = 000 in single-processor systems. These lines are a system configuration selection which should be hardwired or changed at reset only.
RPBA	I/S	Rotating Priority Bus Arbitration Select. When RPBA is high, rotating priority for multiprocessor bus arbitration is selected. When RPBA is low, fixed priority is selected. This signal is a system configuration selection which must be set to the same value on every ADSP-21061. If the value of RPBA is changed during system operation, it must be changed in the same CLKIN cycle on every ADSP-21061.
CPA	I/O (O/D)	Core Priority Access. Asserting its \overline{CPA} pin allows the core processor of an ADSP-21061 bus slave to interrupt background DMA transfers and gain access to the external bus. \overline{CPA} is an open-drain output that is connected to all ADSP-21061s in the system. The \overline{CPA} pin has an internal 5 k Ω pull-up resistor. If core access priority is not required in a system, the \overline{CPA} pin should be left unconnected.
DTx	0	Data Transmit (Serial Ports 0, 1). Each DT pin has a 50 k Ω internal pull-up resistor.
DRx	1	Data Receive (Serial Ports 0, 1). Each DR pin has a 50 k Ω internal pull-up resistor.
TCLKx	I/O	Transmit Clock (Serial Ports 0, 1). Each TCLK pin has a 50 k Ω internal pull-up resistor.
RCLKx	I/O	Receive Clock (Serial Ports 0, 1). Each RCLK pin has a 50 k Ω internal pull-up resistor.

A = Asynchronous, G = Ground, I = Input, O = Output, P = Power Supply, S = Synchronous, (A/D) = Active Drive, (O/D) = Open-Drain, T = Three-State (when SBTS is asserted, or when the ADSP-21061 is a bus slave)

Table 2. Pin Descriptions (Continued)

Pin	Туре	Function	I					
TFSx	I/O	Transmit	Transmit Frame Sync (Serial Ports 0, 1).					
RFSx	I/O	Receive	Frame Sync (Se	erial Ports 0, 1).				
EBOOT	I	When EB	EPROM Boot Select. When EBOOT is high, the ADSP-21061 is configured for booting from an 8-bit EPROM When EBOOT is low, the LBOOT and BMS inputs determine booting mode. See the table in the BMS pin description below. This signal is a system configuration selection that should be hardwired.					
LBOOT	I	Link Boo	t. Must be tied	to GND.				
BMS	I/O/T*	I/O/T* Boot Memory Select. <i>Output</i> : Used as chip select for boot EPROM devices (when EBOOT = 1, LBOOT = 0). In a multiprocessor system, BMS is output by the bus master. <i>Input</i> : When low, indibooting will occur and that ADSP-21061 will begin executing instructions from external membelow. This input is a system configuration selection that should be hardwired. *Three-statak EPROM boot mode (when BMS is an output).						
		EBOOT	LBOOT	BMS	Booting Mode			
		1	0	Output	EPROM (Connect $\overline{\text{BMS}}$ to EPROM chip select.)			
		0	0	1(Input)	Host Processor.			
		0	0	0 (Input)	No Booting. Processor executes from external memory.			
CLKIN	I				P-21061. The instruction cycle rate is equal to CLKIN. CLKIN may ow the minimum specified frequency.			
RESET	I/A		location specifi		I to a known state and begins program execution at the program are reset vector address. This input must be asserted (low) at			
ТСК	1	Test Cloc	k (JTAG). Provi	des an asynchroi	nous clock for JTAG boundary scan.			
TMS	I/S				bl the test state machine. TMS has a 20 k Ω internal pull-up resistor			
TDI	I/S				lata for the boundary scan logic. TDI has a 20 k Ω internal pull-up			
TDO	0	Test Data	a Output (JTAG	i). Serial scan out	tput of the boundary scan path.			
TRST	I/A				achine. TRST must be asserted (pulsed low) after power-up or held 061. TRST has a 20 k Ω internal pull-up resistor.			
EMU	0		n Status. Must ernal pull-up re		o the ADSP-21061 EZ-ICE target board connector only. $\overline{\text{EMU}}$ has a			
ICSA	0	Reserved	Leave uncon	nected.				
VDD	Р	Power Su	(30 pins)	. See Operating (Conditions (5 V) and Operating Conditions (3.3 V).			
GND	G		ipply Return. (
NC		Do Not Connect. Reserved pins which must be left open and unconnected.						

T = Three-State (when SBTS is asserted, or when the ADSP-21061 is a bus slave)

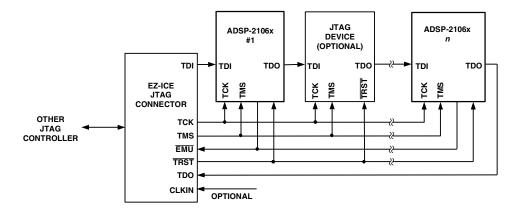


Figure 6. JTAG Scan Path Connections for Multiple ADSP-2106x Systems

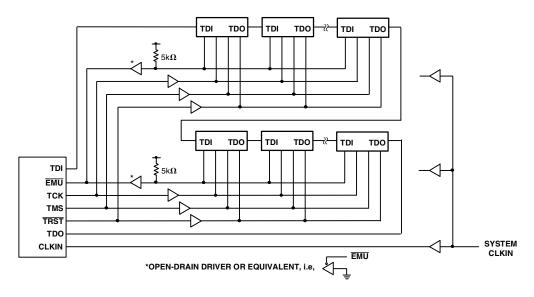


Figure 7. JTAG Clock Tree for Multiple ADSP-2106x Systems

ADSP-21061L SPECIFICATIONS

OPERATING CONDITIONS (3.3 V)

		A Grade		K Grade				
Parameter	Description	Min	Nom	Мах	Min	Nom	Max	Unit
V _{DD}	Supply Voltage	3.15	3.3	3.45	3.15	3.3	3.45	V
T _{CASE}	Case Operating Temperature	-40		+85	0		+85	°C
$V_{IH}1^1$	High Level Input Voltage @ $V_{DD} = Max$	2.0		$V_{DD} + 0.5$	2.0		$V_{DD} + 0.5$	v
$V_{\rm IH}2^2$	High Level Input Voltage @ $V_{DD} = Max$	2.2		$V_{DD} + 0.5$	2.2		$V_{DD} + 0.5$	v
V_{IL} ^{1, 2}	Low Level Input Voltage @ V_{DD} = Min	-0.5		+0.8	-0.5		+0.8	v

¹ Applies to input and bidirectional pins: DATA₄₇₋₀, ADDR₃₁₋₀, RD, WR, SW, ACK, SBTS, IRQ2-0, FLAG3-0, HGB, CS, DMAR1, DMAR2, BR₆₋₁, ID₂₋₀, RPBA, CPA, TFS0, TFS1, RFS0, RFS1, EBOOT, BMS, TMS, TDI, TCK, HBR, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1

 2 Applies to input pins: CLKIN, $\overline{\text{RESET}}, \overline{\text{TRST}}$

ELECTRICAL CHARACTERISTICS (3.3 V)

Parameter	Description	Test Conditions	Min	Max	Unit
V _{OH} ^{1,2}	High Level Output Voltage	@ $V_{DD} = Min$, $I_{OH} = -2.0 \text{ mA}$	2.4		V
V _{OL} ^{1, 2}	Low Level Output Voltage	@ $V_{DD} = Min$, $I_{OL} = 4.0 \text{ mA}$		0.4	V
I _{IH} ^{3, 4}	High Level Input Current	$@V_{DD} = Max, V_{IN} = V_{DD} Max$		10	μΑ
I _{IL} ³	Low Level Input Current	$@V_{DD} = Max, V_{IN} = 0 V$		10	μΑ
I _{ILP} ⁴	Low Level Input Current	$@V_{DD} = Max, V_{IN} = 0 V$		150	μΑ
l _{ozh} ^{5, 6, 7, 8}	Three-State Leakage Current	$@V_{DD} = Max, V_{IN} = V_{DD} Max$		10	μΑ
I _{OZL} ⁵	Three-State Leakage Current	$@V_{DD} = Max, V_{IN} = 0 V$		10	μΑ
I _{OZHP}	Three-State Leakage Current	@ $V_{DD} = Max$, $V_{IN} = V_{DD} Max$		350	μΑ
I _{OZLC} ⁷	Three-State Leakage Current	$@V_{DD} = Max, V_{IN} = 0 V$		1.5	mA
I _{OZLA} 9	Three-State Leakage Current	@ $V_{DD} = Max$, $V_{IN} = 1.5 V$		350	μΑ
I _{OZLAR} ⁸	Three-State Leakage Current	$@V_{DD} = Max, V_{IN} = 0 V$		4.2	mA
I _{OZLS} ⁶	Three-State Leakage Current	$@V_{DD} = Max, V_{IN} = 0 V$		150	μΑ
C _{IN} ^{10, 11}	Input Capacitance	$f_{\text{IN}} = 1 \text{ MHz}, T_{\text{CASE}} = 25^{\circ}\text{C}, V_{\text{IN}} = 2.5 \text{ V}$		4.7	pF

¹ Applies to output and bidirectional pins: DATA₄₇₋₀, ADDR₃₁₋₀, 3-0, $\overline{\text{MS}}_{3-0}$, $\overline{\text{RD}}$, $\overline{\text{WR}}$, PAGE, ADRCLK, $\overline{\text{SW}}$, ACK, FLAG3-0, TIMEXP, $\overline{\text{HBG}}$, REDY, $\overline{\text{DMAG1}}$, $\overline{\text{DMAG2}}$, $\overline{\text{BR}}_{6-1}$, CPA, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, $\overline{\text{BMS}}$, TDO, $\overline{\text{EMU}}$, ICSA.

²See "Output Drive Currents" on Page 45 for typical drive current capabilities.

³Applies to input pins: ACK, <u>SBTS</u>, <u>TRQ</u>₂₋₀, <u>HBR</u>, <u>CS</u>, <u>DMAR1</u>, <u>DMAR2</u>, ID₂₋₀, RPBA, EBOOT, LBOOT, CLKIN, <u>RESET</u>, TCK.

⁴ Applies to input pins with internal pull-ups: DR0, DR1, TRST, TMS, TDI, EMU.

⁶Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1.

⁹Applies to ACK pin when keeper latch enabled.

¹⁰Applies to all signal pins.

¹¹Guaranteed but not tested.

⁵ Applies to three-statable pins: DATA₄₇₋₀, ADDR₃₁₋₀, $\overline{\text{MS}}_{3-0}$, $\overline{\text{RD}}$, $\overline{\text{WR}}$, PAGE, ADRCLK, $\overline{\text{SW}}$, ACK, FLAG₃₋₀, $\overline{\text{HBG}}$, REDY, $\overline{\text{DMAG1}}$, $\overline{\text{DMAG2}}$, $\overline{\text{BMS}}$, $\overline{\text{BR}}_{6-1}$, TFSx, RFSx, TDO, $\overline{\text{EMU}}$. (Note that ACK is pulled up internally with 2 k Ω during reset in a multiprocessor system, when ID₂₋₀ = 001 and another ADSP-21061 is not requesting bus mastership.)

⁷Applies to \overline{CPA} pin.

⁸ Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 kΩ during reset in a multiprocessor system, when $ID_{2-0} = 001$ and another ADSP-21061L is not requesting bus mastership).

Memory Read—Bus Master

Use these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) without reference to CLKIN. These specifications apply when the ADSP-21061 is the

Table 12. Memory Read—Bus Master

bus master accessing external memory space in asynchronous access mode. Note that timing for ACK, DATA, RD, WR, and DMAGx strobe timing parameters only applies to asynchronous access mode.

			5 V and 3.3 V	
Parameter		Min	Мах	Unit
Timing Requ	irements			
t _{DAD}	Address, Selects Delay to Data Valid ^{1, 2}		18 + DT+W	ns
t _{DRLD}	RD Low to Data Valid ¹		12 + 5DT/8 + W	ns
t _{HDA}	Data Hold from Address, Selects ³	0.5		ns
t _{HDRH}	Data Hold from \overline{RD} High ³	2.0		ns
t _{DAAK}	ACK Delay from Address, Selects ^{2, 4}		15 + 7DT/8 + W	ns
t _{DSAK}	ACK Delay from RD Low ⁴		8 + DT/2 + W	ns
Switching Ch	aracteristics			
t _{DRHA}	Address, Selects Hold After RD High	0+H		ns
t _{DARL}	Address, Selects to RD Low ²	2 + 3DT/8		ns
t _{RW}	RD Pulse Width	12.5 + 5DT/8	+ W	ns
t _{RWR}	RD High to WR, RD, DMAGx Low	8 + 3DT/8 + H	1	ns
t _{SADADC}	Address, Selects Setup Before ADRCLK High ²	0 + DT/4		ns

W = (number of wait states specified in WAIT register) \times t_{CK}.

 $HI = t_{CK}$ (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).

 $H = t_{CK}$ (if an address hold cycle occurs as specified in WAIT register; otherwise H = 0).

 $^1\text{Data}$ delay/setup: user must meet t_{DAD} or t_{DRLD} or synchronous spec $t_{\text{SSDATI}}.$

² The falling edge of \overline{MSx} , \overline{SW} , \overline{BMS} is referenced.

³ Data hold: user must meet t_{HDA} or t_{HDRH} or synchronous spec t_{HSDATI}. See Example System Hold Time Calculation on Page 43 for the calculation of hold times given capacitive and dc loads.

⁴ACK delay/setup: user must meet t_{DAAK} or t_{DSAK} or synchronous specification t_{SACKC} (Table 13 on Page 25) for deassertion of ACK (Low), all three specifications must be met for assertion of ACK (High).

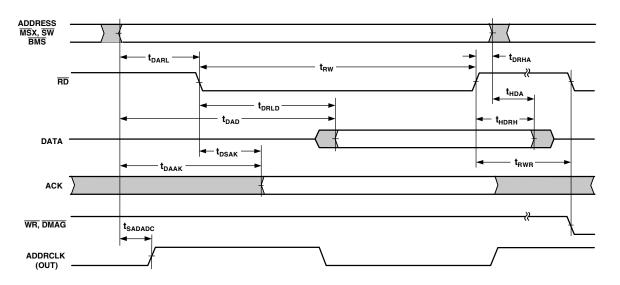


Figure 14. Memory Read—Bus Master

Memory Write—Bus Master

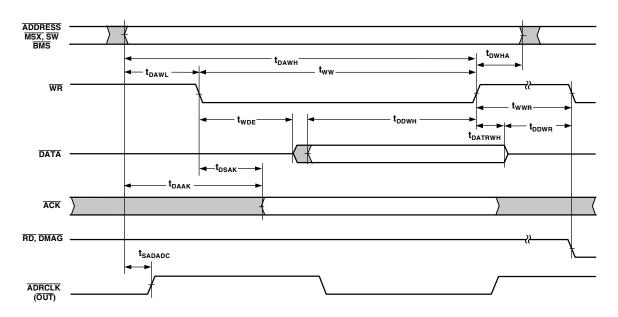
Use these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) without reference to CLKIN. These specifications apply when the ADSP-21061 is the

Table 13. Memory Write-Bus Master

bus master accessing external memory space in asynchronous access mode. Note that timing for ACK, DATA, $\overline{\text{RD}}$, $\overline{\text{WR}}$, and $\overline{\text{DMAGx}}$ strobe timing parameters only applies to asynchronous access mode.

		5 \	/ and 3.3 V	
Parame	Parameter		Мах	Unit
Timing F	lequirements			
t _{DAAK}	ACK Delay from Address, Selects ^{1, 2}		15 + 7DT/8 + W	ns
t _{DSAK}	ACK Delay from WR Low ¹		8 + DT/2 + W	ns
Switchin	g Characteristics			
t _{DAWH}	Address, Selects to WR Deasserted ²	17 + 15DT/16 + W		ns
t _{DAWL}	Address, Selects to WR Low ²	3 + 3DT/8		ns
t _{WW}	WR Pulse Width	13 + 9DT/16 + W		ns
t _{DDWH}	Data Setup Before WR High	7 + DT/2 + W		ns
t _{DWHA}	Address Hold After WR Deasserted	1 + DT/16 + H		ns
t _{DATRWH}	Data Disable After WR Deasserted ³	1 + DT/16 + H	6+DT/16+H	ns
t _{WWR}	WR High to WR, RD, DMAGx Low	8 + 7DT/16 + H		ns
t _{DDWR}	Data Disable Before WR or RD Low	5 + 3DT/8 + I		ns
t _{WDE}	WR Low to Data Enabled	-1 + DT/16		ns
t _{SADADC}	Address, Selects to ADRCLK High ²	0 + DT/4		ns

W = (number of wait states specified in WAIT register) \times t_{CK}.


 $H = t_{CK}$ (if an address hold cycle occurs, as specified in WAIT register; otherwise H = 0).

 $I = t_{CK}$ (if a bus idle cycle occurs, as specified in WAIT register; otherwise I = 0).

¹ACK delay/setup: User must meet t_{DAAK} or t_{DSAK} or synchronous specification t_{SAKC} for deassertion of ACK (low), all three specifications must be met for assertion of ACK (high).

² The falling edge of \overline{MSx} , \overline{SW} , \overline{BMS} is referenced.

³For more information, see Example System Hold Time Calculation on Page 43 for calculation of hold times given capacitive and dc loads.

Figure 15. Memory Write—Bus Master

Multiprocessor Bus Request and Host Bus Request

Use these specifications for passing of bus mastership between multiprocessing ADSP-21061s ($\overline{\text{BRx}}$) or a host processor, both synchronous and asynchronous ($\overline{\text{HBR}}$, $\overline{\text{HBG}}$).

Table 16. Multiprocessor Bus Request and Host Bus Request

		5 V a	5 V and 3.3 V	
Parameter		Min	Max	Unit
Timing Requ	uirements			
t _{HBGRCSV}	HBG Low to RD/WR/CS Valid ¹		20 + 5DT/4	ns
t _{SHBRI}	HBR Setup Before CLKIN ²	20 + 3DT/4		ns
t _{HHBRI}	HBR Hold After CLKIN ²		14 + 3DT/4	ns
t _{SHBGI}	HBG Setup Before CLKIN	13 + DT/2		ns
t _{HHBGI}	HBG Hold After CLKIN High		6 + DT/2	ns
t _{SBRI}	BRx, CPA Setup Before CLKIN ³	13 + DT/2		ns
t _{HBRI}	BRx, CPA Hold After CLKIN High		6 + DT/2	ns
t _{SRPBAI}	RPBA Setup Before CLKIN	20 + 3DT/4		ns
t _{HRPBAI}	RPBA Hold After CLKIN		12 + 3DT/4	ns
Switching C	haracteristics			
t _{DHBGO}	HBG Delay After CLKIN		7 – DT/8	ns
t _{HHBGO}	HBG Hold After CLKIN	-2 - DT/8		ns
t _{DBRO}	BRx Delay After CLKIN		5.5 – DT/8	ns
t _{HBRO}	BRx Hold After CLKIN	-2 - DT/8		ns
t _{DCPAO}	CPA Low Delay After CLKIN ⁴		6.5 – DT/8	ns
t _{TRCPA}	CPA Disable After CLKIN	-2 - DT/8	4.5 – DT/8	ns
t _{DRDYCS}	REDY (O/D) or (A/D) Low from $\overline{\text{CS}}$ and $\overline{\text{HBR}}$ Low ^{5, 6}		8	ns
t _{TRDYHG}	REDY (O/D) Disable or REDY (A/D) High from HBG ^{5, 7}	44 + 27DT/16		ns
t _{ARDYTR}	REDY (A/D) Disable from CS or HBR High ⁵		10	ns

¹ For first asynchronous access after HBR and CS asserted, ADDR31-0 must be a non-MMS value 1/2 t_{CK} before RD or WR goes low or by t_{HBRCSV} after HBG goes low. This is easily accomplished by driving an upper address signal high when HBG is asserted. See the "Host Processor Control of the ADSP-21061" section in the ADSP-2106x SHARC User's Manual.

²Only required for recognition in the current cycle.

 ${}^{3}\overline{\text{CPA}}$ assertion must meet the setup to CLKIN; deassertion does not need to meet the setup to CLKIN.

 4 For the ADSP-21061L (3.3 V), this specification is 8.5 – DT/8 ns max.

 $^{5}(O/D) = open drain, (A/D) = active drive.$

⁶For the ADSP-21061L (3.3 V), this specification is 12 ns max.

 $^7\,{\rm For}$ the ADSP-21061L (3.3 V), this specification is 40 + 23DT/16 ns min.

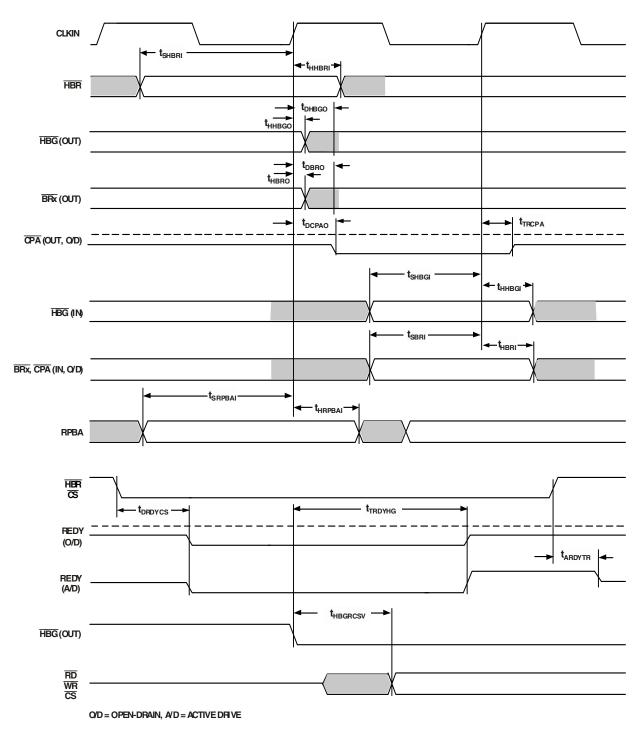


Figure 18. Multiprocessor Bus Request and Host Bus Request

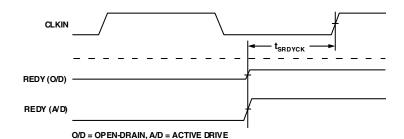
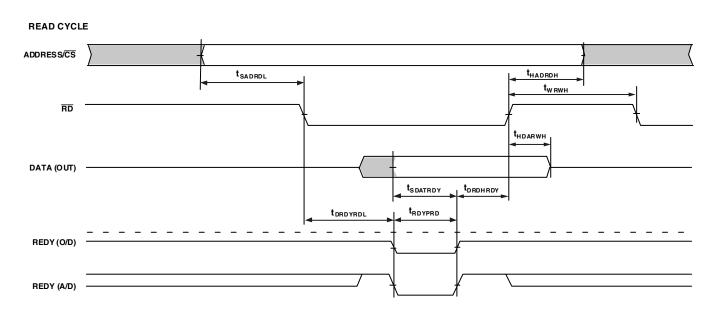
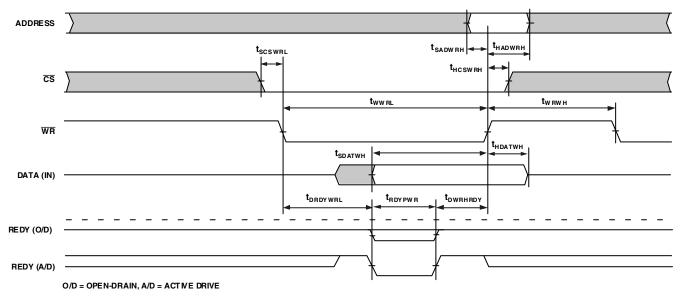




Figure 19. Synchronous REDY Timing

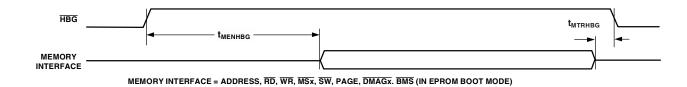


Figure 22. Three-State Timing (Bus Transition Cycle, SBTS Assertion)

DMA Handshake

These specifications describe the three DMA handshake modes. In all three modes, $\overline{\text{DMARx}}$ is used to initiate transfers. For Handshake mode, $\overline{\text{DMAGx}}$ controls the latching or enabling of data externally. For External Handshake mode, the data transfer is controlled by the ADDR31–0, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{SW}}$, PAGE, $\overline{\text{MS3-0}}$, ACK, and DMAGx signals. For Paced Master mode, the data transfer is controlled by ADDR31–0, RD, WR, MS3–0, and ACK (not DMAG). For Paced Master mode, the Memory Read-Bus Master, Memory Write-Bus Master, and Synchronous Read/Write-Bus Master timing specifications for ADDR31–0, RD, WR, MS3–0, SW, PAGE, DATA47–0, and ACK also apply.

Table 20. DMA Handshake

		5	V and 3.3 V	
Paramete	r	Min	Max	Unit
Timing Red	uirements			
t _{SDRLC}	DMARx Low Setup Before CLKIN ¹	5		ns
t _{SDRHC}	DMARx High Setup Before CLKIN ¹	5		ns
t _{WDR}	DMARx Width Low (Nonsynchronous)	6		ns
t _{SDATDGL}	Data Setup After DMAGx Low ²		10 + 5DT/8	ns
t _{HDATIDG}	Data Hold After DMAGx High	2		ns
t _{DATDRH}	Data Valid After DMARx High ²		16 + 7DT/8	ns
t _{DMARLL}	DMARx Low Edge to Low Edge ³	23 + 7DT/8		ns
t _{DMARH}	DMARx Width High	6		ns
Switching	Characteristics			
t _{DDGL}	DMAGx Low Delay After CLKIN	9 + DT/4	15 + DT/4	ns
twdgh	DMAGx High Width	6 + 3DT/8		ns
t _{WDGL}	DMAGx Low Width	12 + 5DT/8		ns
t _{HDGC}	DMAGx High Delay After CLKIN	-2 - DT/8	6 – DT/8	ns
t _{VDATDGH}	Data Valid Before DMAGx High ⁴	8 + 9DT/16		ns
t _{DATRDGH}	Data Disable After DMAGx High ⁵	0	7	ns
t _{DGWRL}	WR Low Before DMAGx Low	0	2	ns
t _{DGWRH}	DMAGx Low Before WR High	10 + 5DT/8 + W	/	ns
t _{DGWRR}	WR High Before DMAGx High	1 + DT/16	3 + DT/16	ns
t _{DGRDL}	RD Low Before DMAGx Low	0	2	ns
t _{DRDGH}	RD Low Before DMAGx High	11 + 9DT/16 +	W	ns
t _{DGRDR}	RD High Before DMAGx High	0	3	ns
t _{DGWR}	DMAGx High to WR, RD, DMAGx Low	5 + 3DT/8 + HI		ns
t _{DADGH}	Address/Select Valid to DMAGx High	17 + DT		ns
t _{DDGHA}	Address/Select Hold after DMAGx High ⁶	-0.5		ns
W = (num	per of wait states specified in WAIT register) \times t _{CK} .			
HI = t _{CK} (if	data bus idle cycle occurs, as specified in WAIT register; othe	rwise HI = 0).		

¹Only required for recognition in the current cycle.

² t_{SDATDGL} is the data setup requirement if DMARx is not being used to hold off completion of a write. Otherwise, if DMARx low holds off completion of the write, the data can be driven t_{DATDRH} after DMARx is brought high.

³For the ADSP-21061L (3.3 V), this specification is 23.5 + 7DT/8 ns min.

 4 t_{VDATDGH} is valid if $\overline{\text{DMARx}}$ is not being used to hold off completion of a read. If $\overline{\text{DMARx}}$ is used to prolong the read, then t_{VDATDGH} = t_{CK} - .25t_{CCLK} - 8 + (n × t_{CK}) where n equals the number of extra cycles that the access is prolonged.

⁵See Example System Hold Time Calculation on Page 43 for calculation of hold times given capacitive and dc loads.

⁶For the ADSP-21061L (3.3 V), this specification is -1.0 ns min.

Serial Ports

To determine whether communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync delay and frame sync setup and hold, 2) data delay and data setup and hold, and 3) SCLK width.

Table 21. Serial Ports-External Clock

		5	V and 3.3 V	
Parameter		Min	Max	Unit
Timing Requi	irements			
t _{SFSE}	TFS/RFS Setup Before TCLK/RCLK ¹	3.5		ns
t _{HFSE}	TFS/RFS Hold After TCLK/RCLK ^{1, 2}	4		ns
t _{SDRE}	Receive Data Setup Before RCLK ¹	1.5		ns
t _{HDRE}	Receive Data Hold After RCLK ¹	4		ns
t _{SCLKW}	TCLK/RCLK Width	9		ns
t _{SCLK}	TCLK/RCLK Period	t _{CK}		ns

¹Referenced to sample edge.

² RFS hold after RCK when MCE = 1, MFD = 0 is 0 ns minimum from drive edge. TFS hold after TCK for late external TFS is 0 ns minimum from drive edge.

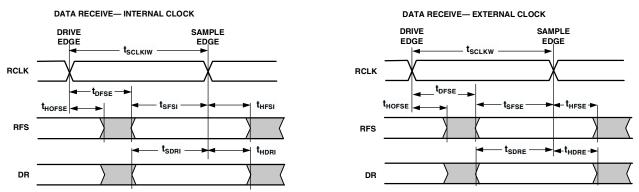
Table 22. Serial Ports—Internal Clock

			5 V and 3.3 V		
Parameter		Min	Мах	Unit	
Timing Requ	irements				
t _{SFSI}	TFS Setup Before TCLK ¹ ; RFS Setup Before RCLK ¹	8		ns	
t _{HFSI}	TFS/RFS Hold After TCLK/RCLK ^{1, 2}	1		ns	
t _{SDRI}	Receive Data Setup Before RCLK ¹	3		ns	
t _{HDRI}	Receive Data Hold After RCLK ¹	3		ns	

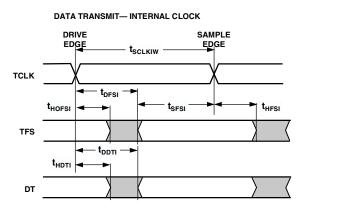
¹Referenced to sample edge.

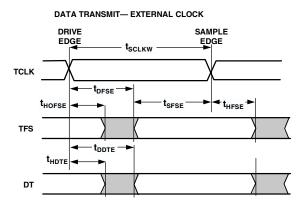
² RFS hold after RCK when MCE = 1, MFD = 0 is 0 ns minimum from drive edge. TFS hold after TCK for late external TFS is 0 ns minimum from drive edge.

Table 23. Serial Ports-External or Internal Clock


			5 V and 3.3 V	
Parameter		Min	Max	Unit
Switching Ch	aracteristics			
t _{DFSE}	RFS Delay After RCLK (Internally Generated RFS) ¹		13	ns
t _{HOFSE}	RFS Hold After RCLK (Internally Generated RFS) ¹	3		ns

¹Referenced to drive edge.


Table 24. Serial Ports—External Clock


			5 V and 3.3 V	
Parameter		Min	Max	Unit
Switching Ch	paracteristics			
t _{DFSE}	TFS Delay After TCLK (Internally Generated TFS) ¹		13	ns
t _{HOFSE}	TFS Hold After TCLK (Internally Generated TFS) ¹	3		ns
t _{DDTE}	Transmit Data Delay After TCLK ¹		16	ns
t _{HODTE}	Transmit Data Hold After TCLK ¹	5		ns

¹Referenced to drive edge.

NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.

NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.

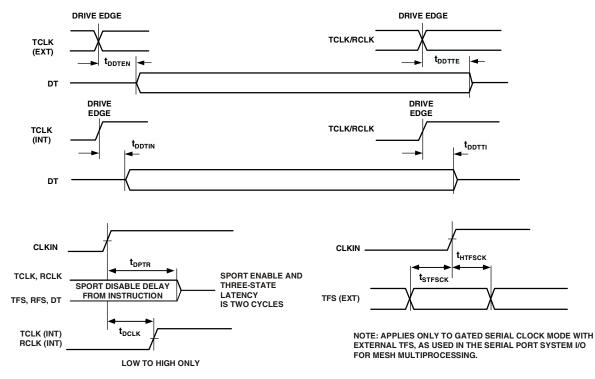


Figure 24. Serial Ports

JTAG Test Access Port and Emulation

For JTAG Test Access Port and Emulation, see Table 28 and Figure 26.

Table 28. JTAG Test Access Port and Emulation

			5 V and 3.3 V	
Parameter		Min	Мах	Unit
Timing Requ	irements			
t _{TCK}	TCK Period	t _{CK}		ns
t _{STAP}	TDI, TMS Setup Before TCK High	t _{CK}		ns
t _{HTAP}	TDI, TMS Hold After TCK High	6		ns
t _{SSYS}	System Inputs Setup Before TCK Low ¹	7		ns
t _{HSYS}	System Inputs Hold After TCK Low ¹	18		ns
t _{TRSTW}	TRST Pulse Width	4t _{CK}		ns
Switching Ch	naracteristics			
t _{DTDO}	TDO Delay from TCK Low		13	ns
t _{DSYS}	System Outputs Delay After TCK Low ²		18.5	ns

¹System Inputs = DATA47-0, ADDR31-0, RD, WR, ACK, SBTS, HBR, HBG, CS, DMARI, DMAR2, BR6-1, ID2-0, RPBA, IRQ2-0, FLAG3-0, CPA, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, EBOOT, LBOOT, BMS, CLKIN, RESET.

²System Outputs = DATA47-0, ADDR31-0, MS3-0, RD, WR, SW, ACK, ADRCLK, CLKOUT, HBG, REDY, DMAG1, DMAG2, BR6-1, CPA, FLAG3-0, TIMEXP, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, BMS.

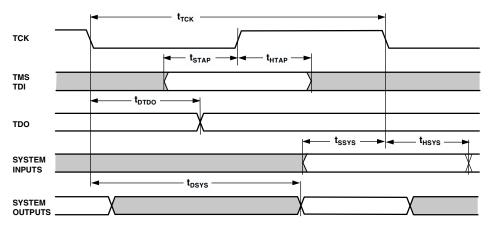


Figure 26. JTAG Test Access Port and Emulation

ENVIRONMENTAL CONDITIONS

Thermal Characteristics

The ADSP-21061 is available in 240-lead thermally enhanced MQFP package. The top surface of the thermally enhanced MQFP contains a metal slug from which most of the die heat is dissipated. The slug is flush with the top surface of the package. Note that the metal slug is internally connected to GND through the device substrate.

The ADSP-21061L is available in 240-lead MQFP and 225-ball plastic BGA packages.

All packages are specified for a case temperature (T_{CASE}). To ensure that the T_{CASE} is not exceeded, a heatsink and/or an air-flow source may be used. A heat sink should be attached with a thermal adhesive.

 $T_{CASE} = T_{AMB} + (PD \ \theta_{CA})$

T_{CASE} = Case temperature (measured on top surface of package)

 T_{AMB} = Ambient temperature °C

PD =Power dissipation in W (this value depends upon the specific application; a method for calculating PD is shown under Power Dissipation).

 θ_{CA} =Value from tables below.

Table 29. ADSP-21061 (5 V Thermally Enhanced ED/MQFP Package)

Parameter	Condition (Linear Ft./Min.)	Typical	Unit
θ_{CA}	Airflow = 0	10	°C/W
	Airflow = 100	9	
	Airflow = 200	8	
	Airflow = 400	7	
	Airflow = 600	6	

Table 30. ADSP-21061L (3.3 V MQFP Package)

Parameter	Parameter Condition (Linear Ft./Min.) Typic						
θ_{CA}	Airflow = 0	19.6	°C/W				
	Airflow = 100	17.6					
	Airflow = 200	15.6					
	Airflow = 400	13.9					
	Airflow = 600	12.2					

Table 31. ADSP-21061L (3.3 V PBGA Package)

Parameter	Typical	Unit	
θ_{CA}	Airflow = 0	19.0	°C/W
	Airflow = 200	13.6	
	Airflow = 400	11.2	

225-BALL PBGA PIN CONFIGURATIONS

Pin	PBGA	Pin	PBGA	Pin	PBGA	Pin	PBGA	Pin	PBGA
Name	Pin Number	Name	Pin Number	Name	Pin Number	Name	Pin Number	Name	Pin Number
BMS	A01	ADDR25	D01	ADDR14	G01	ADDR6	K01	EMU	N01
ADDR30	A02	ADDR26	D02	ADDR15	G02	ADDR5	K02	TDO	N02
DMAR2	A03	MS2	D03	ADDR16	G03	ADDR3	K03	IRQ0	N03
DT1	A04	ADDR29	D04	ADDR19	G04	ADDR0	K04	IRQ1	N04
RCLK1	A05	DMAR1	D05	GND	G05	ICSA	K05	ID2	N05
TCLK0	A06	TFS1	D06	V _{DD}	G06	GND	K06	NC	N06
RCLK0	A07	CPA	D07	V _{DD}	G07	V _{DD}	K07	NC	N07
ADRCLK	A08	HBG	D08	V _{DD}	G08	V _{DD}	K08	NC	N08
CS	A09	DMAG2	D09	V _{DD}	G09	V _{DD}	K09	NC	N09
CLKIN	A10	BR5	D10	V _{DD}	G10	GND	K10	NC	N10
PAGE	A11	BR1	D11	GND	G11	GND	K11	NC	N11
BR3	A12	DATA40	D12	DATA22	G12	DATA8	K12	NC	N12
DATA47	A13	DATA37	D13	DATA25	G13	DATA11	K13	NC	N13
DATA44	A14	DATA35	D14	DATA24	G14	DATA13	K14	DATA1	N14
DATA42	A15	DATA34	D15	DATA23	G15	DATA14	K15	DATA3	N15
MS0	B01	ADDR21	E01	ADDR12	H01	ADDR2	L01	TRST	P01
SW	B02	ADDR22	E02	ADDR11	H02	ADDR1	L02	TMS	P02
ADDR31	B03	ADDR24	E03	ADDR13	H03	FLAG0	L03	EBOOT	P03
HBR	B04	ADDR27	E04	ADDR10	H04	FLAG3	L04	ID0	P04
DR1	B05	GND	E05	GND	H05	RPBA	L05	NC	P05
DT0	B06	GND	E06	V _{DD}	H06	GND	L06	NC	P06
DR0	B07	GND	E07	V _{DD}	H07	GND	L07	NC	P07
REDY	B08	GND	E08	V _{DD}	H08	GND	L08	NC	P08
RD	B09	GND	E09	V _{DD}	H09	GND	L09	NC	P09
ACK	B10	GND	E10	V _{DD}	H10	GND	L10	NC	P10
BR6	B11	NC	E11	GND	H11	NC	L11	NC	P11
BR2	B12	DATA33	E12	DATA18	H12	DATA4	L12	NC	P12
DATA45	B13	DATA30	E13	DATA19	H13	DATA7	L13	NC	P13
DATA43	B14	DATA32	E14	DATA21	H14	DATA9	L14	NC	P14
DATA39	B15	DATA31	E15	DATA20	H15	DATA10	L15	DATA0	P15
MS3	C01	ADDR17	F01	ADDR9	J01	FLAG1	M01	TCK	R01
MS1	C02	ADDR18	F02	ADDR8	J02	FLAG2	M02	IRQ2	R02
ADDR28	C03	ADDR20	F03	ADDR7	J03	TIMEXP	M03	RESET	R03
SBTS	C04	ADDR23	F04	ADDR4	J04	TDI	M04	ID1	R04
TCLK1	C05	GND	F05	GND	J05	LBOOT (GND)	M05	NC	R05
RFS1	C06	GND	F06	V _{DD}	J06	NC	M06	NC	R06
TFS0	C07	V _{DD}	F07	V _{DD}	J07	NC	M07	NC	R07
RFS0	C08	V _{DD}	F08	V _{DD}	308	NC	M08	NC	R08
WR	C09	V _{DD}	F09	V _{DD}	J09	NC	M09	NC	R09
DMAG1	C10	GND	F10	V _{DD}	J10	NC	M10	NC	R10
BR4	C11	GND	F11	GND	J11	NC	M11	NC	R11
DATA46	C12	DATA29	F12	DATA12	J12	NC	M12	NC	R12

Table 32. ADSP-21061L 225-Lead Metric PBGA (B-225-2) Pin Assignments

OUTLINE DIMENSIONS



Figure 39. 240-Lead Metric Quad Flat Package, Thermally Enhanced [MQFP/ED] (SP-240-2)