

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	56800
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	120KB (60K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	160-BGA
Supplier Device Package	160-MAPBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/dsp56f807vf80

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Product Documentation

The four documents listed in **Table 1-1** are required for a complete description and proper design with the 56F807. Documentation is available from local Freescale distributors, Freescale Semiconductor sales offices, Freescale Literature Distribution Centers, or online at **http://www.freescale.com**.

Торіс	Description	Order Number
56800E Family Manual	Detailed description of the 56800 family architecture, and 16-bit core processor and the instruction set	56800EFM
DSP56F801/803/805/807 User's Manual	Detailed description of memory, peripherals, and interfaces of the 56F801, 56F803, 56F805, and 56F807	DSP56F801-7UM
56F807 Technical Data Sheet	Electrical and timing specifications, pin descriptions, and package descriptions (this document)	DSP56F807
56F807 Errata	Details any chip issues that might be present	56F807E

Table 1-1 56F807 Chip Documentation

1.5 Data Sheet Conventions

This data sheet uses the following conventions:

OVERBAR	This is used to indicate a signal that is active when pulled low. For example, the $\overline{\text{RESET}}$ pin is active when low.							
"asserted"	A high true (active high) s	signal is high or a low tr	ue (active low) signal is lov	Ν.				
"deasserted"	A high true (active high) s	signal is low or a low tru	ie (active low) signal is hig	h.				
Examples:	Signal/Symbol	Signal/Symbol Logic State Signal State Voltage						
	PIN	True	Asserted	V _{IL} /V _{OL}				
	PIN	False	Deasserted	V _{IH} /V _{OH}				
	PIN	True	Asserted	V _{IH} /V _{OH}				
	PIN	False	Deasserted	V _{IL} /V _{OL}				

1. Values for V_{IL} , V_{OL} , V_{IH} , and V_{OH} are defined by individual product specifications.

2.2 Power and Ground Signals

Table 2-2 Power Inputs

No. of Pins	Signal Name	Signal Description
8	V _{DD}	Power —These pins provide power to the internal structures of the chip, and should all be attached to $V_{\text{DD.}}$
3	V _{DDA}	Analog Power —These pins is a dedicated power pin for the analog portion of the chip and should be connected to a low noise 3.3V supply.

Table 2-3 Grounds

No. of Pins	Signal Name	Signal Description
9	V _{SS}	\mbox{GND} These pins provide grounding for the internal structures of the chip and should all be attached to $V_{\mbox{SS}}$
3	V _{SSA}	Analog Ground—This pin supplies an analog ground.
1	TCS	TCS —This Schmitt pin is reserved for factory use and must be tied to V_{SS} for normal use. In block diagrams, this pin is considered an additional V_{SS} .

Table 2-4 Supply Capacitors and VPP

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
2	VCAPC	Supply	Supply	VCAPC —Connect each pin to a 2.2uF or greater bypass capacitor in order to bypass the core logic voltage regulator (required for proper chip operation). For more information, please refer to Section 5.2
2	VPP	Input	Input	VPP —This pin should be left unconnected as an open circuit for normal functionality.

2.8 Serial Peripheral Interface (SPI) Signals

NM

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description		
1	MISO	Input/ Output	Input	SPI Master In/Slave Out (MISO) —This serial data pin is an input to a master device and an output from a slave device. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected.		
	GPIOE6	Input/Outp ut	Input	Port E GPIO —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.		
				After reset, the default state is MISO.		
1	MOSI	Input/ Output	Input	SPI Master Out/Slave In (MOSI) —This serial data pin is an output from a master device and an input to a slave device. The master device places data on the MOSI line a half-cycle before the clock edge that the slave device uses to latch the data.		
	GPIOE5	Input/Outp ut	Input	Port E GPIO —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin. After reset, the default state is MOSI.		
	0011/	la a st/Ossta	lanest			
1	SCLK	Input/Outp ut	Input	SPI Serial Clock —In master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input.		
	GPIOE4	Input/Outp ut	Input	Port E GPIO —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.		
				After reset, the default state is SCLK.		
1	SS	Input	Input	SPI Slave Select—In master mode, this pin is used to arbitrate multiple masters. In slave mode, this pin is used to select the slave.		
	GPIOE7	Input/Outp ut	Input	Port E GPIO —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.		
				After reset, the default state is \overline{SS} .		

Table 2-12 Serial Peripheral Interface (SPI) Signals

2.10 Serial Communications Interface (SCI) Signals

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description		
1	MISO	Input/ Output	Input	SPI Master In/Slave Out (MISO)—This serial data pin is an input to a master device and an output from a slave device. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected.		
	GPIOE6	Input/Outp ut	Input	Port E GPIO —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.		
				After reset, the default state is MISO.		
1	MOSI	Input/ Output	Input	SPI Master Out/Slave In (MOSI) —This serial data pin is an output from a master device and an input to a slave device. The master device places data on the MOSI line a half-cycle before the clock edge that the slave device uses to latch the data.		
	GPIOE5	Input/Outp ut	Input	Port E GPIO —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin. After reset, the default state is MOSI.		
	00116					
1	SCLK	Input/Outp ut	Input	SPI Serial Clock —In master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input.		
	GPIOE4	Input/Outp ut	Input	Port E GPIO —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.		
				After reset, the default state is SCLK.		
1	SS	Input	Input	SPI Slave Select—In master mode, this pin is used to arbitrate multiple masters. In slave mode, this pin is used to select the slave.		
	GPIOE7	Input/Outp ut	Input	Port E GPIO —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.		
				After reset, the default state is \overline{SS} .		

Table 2-14 Serial Peripheral Interface (SPI) Signals

2.12 Analog-to-Digital Converter (ADC) Signals

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description		
4	ANA0-3	Input	Input	ANA0-3—Analog inputs to ADCA channel 1		
4	ANA4-7	Input	Input	ANA4-7—Analog inputs to ADCA channel 2		
2	VREF	Input	Input	VREF —Analog reference voltage for ADC. Must be set to V_{DDA} -0.3V for optimal performance.		
4	ANB0-3	Input	Input	ANB0-3—Analog inputs to ADCB, channel 1		
4	ANB4-7	Input	Input	ANB4-7—Analog inputs to ADCB, channel 2		

Table 2-17 Analog to Digital Converter Signals

2.13 Quad Timer Module Signals

No. of Pins	Signal Name	Signal Type State During Reset		Signal Lyne Signal Description			
2	TC0-1	Input/Output	Input	TC0-1—Timer C Channels 0 and 1			
4	TD0-3	3 Input/Output Input		TD0-3—Timer D Channels 0, 1, 2, and 3			

Table 2-18 Quad Timer Module Signals

2.14 JTAG/OnCE

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description			
1	тск	Input (Schmitt)	Input, pulled low internally	Test Clock Input —This input pin provides a gated clock to synchronize the test logic and shift serial data to the JTAG/OnCE port. The pin is connected internally to a pull-down resistor.			
1	TMS	Input (Schmitt)	Input, pulled high internally	 Test Mode Select Input—This input pin is used to sequence the JTAG TAP controller's state machine. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor. Note: Always tie the TMS pin to V_{DD} through a 2.2K resistor. 			
1	TDI	Input (Schmitt)	Input, pulled high internally	Test Data Input —This input pin provides a serial input data stream to the JTAG/OnCE port. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.			
1	TDO	Output	Tri-stated	Test Data Output —This tri-statable output pin provides a serial output data stream from the JTAG/OnCE port. It is driven in the Shift-IR and Shift-DR controller states, and changes on the falling edge of TCK.			
1	TRST	Input (Schmitt)	Input, pulled high internally	Test Reset —As an input, a low signal on this pin provides a reset signal to the JTAG TAP controller. To ensure complete hardware reset, TRST should be asserted at power-up and whenever RESET is asserted. The only exception occurs in a debugging environment when a hardware device reset is required and it is necessary not to reset the OnCE/JTAG module. In this case, assert RESET, but do not assert TRST. Note: For normal operation, connect TRST directly to V _{SS} . If the design is to be used in a debugging environment, TRST may be tied to V _{SS} through a 1K resistor.			
1	DE	Output	Output	Debug Event —DE provides a low pulse on recognized debug events.			

Table 2-19 JTAG/On-Chip Emulation (OnCE) Signals

Part 3 Specifications

3.1 General Characteristics

The 56F807 is fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital inputs. The term "5V-tolerant" refers to the capability of an I/O pin, built on a 3.3V compatible process technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture of devices designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V and 5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of $3.3V \pm 10\%$ during normal operation without causing damage). This 5V-tolerant capability therefore offers the power savings of 3.3V I/O levels while being able to receive 5V levels without being damaged.

Absolute maximum ratings given in **Table 3-1** are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent

Table 3-4 DC Electrical Characteristics (Continued)

Operating Conditions: $V_{SS} = V_{SSA} = 0 V$, $V_{DD} = V_{DDA} = 3.0-3.6 V$, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, $C_L \le 50$ pF, $f_{op} = 80$ MHz

Characteristic	Symbol	Min	Тур	Max	Unit
Output Low Voltage (at IOL)	V _{OL}	—	-	0.4	V
Output source current	I _{ОН}	4	—		mA
Output source current	I _{OL}	4	—	_	mA
PWM pin output source current ³	I _{OHP}	10	—	_	mA
PWM pin output sink current ⁴	I _{OLP}	16	—	_	mA
Input capacitance	C _{IN}	—	8		pF
Output capacitance	C _{OUT}	—	12	_	pF
V _{DD} supply current	I _{DDT} ⁵				
Run ⁶		—	195	220	mA
Wait ⁷		_	170	200	mA
Stop		_	115	145	mA
Low Voltage Interrupt, external power supply ⁸	V _{EIO}	2.4	2.7	3.0	V
Low Voltage Interrupt, internal power supply ⁹	V _{EIC}	2.0	2.2	2.4	V
Power on Reset ¹⁰	V _{POR}	-	1.7	2.0	V

1. Schmitt Trigger inputs are: EXTBOOT, IRQA, IRQB, RESET, TCS, ISA0-2, FAULTA0-3, ISB0-2, FAULTB0-3, TCK, TRST, TMS, TDI, and MSCAN_RX

2. Analog inputs are: ANA[0:7], XTAL and EXTAL. Specification assumes ADC is not sampling.

3. PWM pin output source current measured with 50% duty cycle.

4. PWM pin output sink current measured with 50% duty cycle.

5. $I_{DDT} = I_{DD} + I_{DDA}$ (Total supply current for $V_{DD} + V_{DDA}$)

6. Run (operating) I_{DD} measured using 8MHz clock source. All inputs 0.2V from rail; outputs unloaded. All ports configured as inputs; measured with all modules enabled.

7. Wait I_{DD} measured using external square wave clock source ($f_{osc} = 8MHz$) into XTAL; all inputs 0.2V from rail; no DC loads; less than 50pF on all outputs. C_L = 20pF on EXTAL; all ports configured as inputs; EXTAL capacitance linearly affects wait I_{DD}; measured with PLL enabled.

8. This low voltage interrupt monitors the V_{DDA} external power supply. V_{DDA} is generally connected to the same potential as V_{DD} via separate traces. If V_{DDA} drops below V_{EIO}, an interrupt is generated. Functionality of the device is guaranteed under transient conditions when V_{DDA} \geq V_{EIO} (between the minimum specified V_{DD} and the point when the V_{EIO} interrupt is generated).

9. This low voltage interrupt monitors the internally regulated core power supply. If the output from the internal voltage is regulator drops below V_{EIC}, an interrupt is generated. Since the core logic supply is internally regulated, this interrupt will not be generated unless the external power supply drops below the minimum specified value (3.0V).

10. Power—on reset occurs whenever the internally regulated 2.5V digital supply drops below 1.5V typical. While power is ramping up, this signal remains active as long as the internal 2.5V is below 1.5V typical, no matter how long the ramp-up rate is. The internally regulated voltage is typically 100mV less than V_{DD} during ramp-up until 2.5V is reached, at which time it self-regulates.

AC Electrical Characteristics

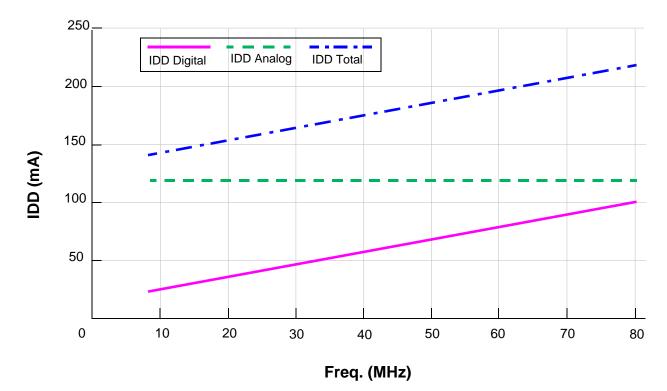
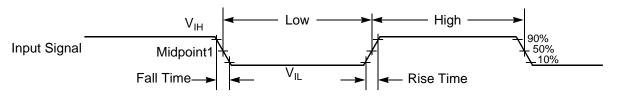



Figure 3-1 Maximum Run IDD vs. Frequency (see Note 6. in Table 3-14)

3.3 AC Electrical Characteristics

Timing waveforms in Section 3.3 are tested using the V_{IL} and V_{IH} levels specified in the DC Characteristics table. In Figure 3-2 the levels of V_{IH} and V_{IL} for an input signal are shown.

Note: The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 3-2 Input Signal Measurement References

Figure 3-3 shows the definitions of the following signal states:

- Active state, when a bus or signal is driven, and enters a low impedance state
- Tri-stated, when a bus or signal is placed in a high impedance state
- Data Valid state, when a signal level has reached V_{OL} or V_{OH}
- Data Invalid state, when a signal level is in transition between V_{OL} and V_{OH}

56F807 Technical Data Technical Data, Rev. 16

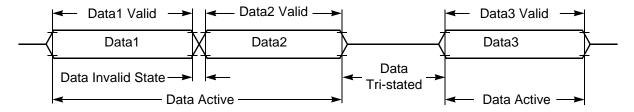


Figure 3-3 Signal States

Mode	XE ¹	YE ²	SE ³	OE ⁴	PROG ⁵	ERASE ⁶	MAS1 ⁷	NVSTR ⁸
Standby	L	L	L	L	L	L	L	L
Read	Н	Н	Н	Н	L	L	L	L
Word Program	Н	Н	L	L	Н	L	L	Н
Page Erase	Н	L	L	L	L	Н	L	Н
Mass Erase	Н	L	L	L	L	Н	Н	Н

- 1. X address enable, all rows are disabled when XE=0
- 2. Y address enable, YMUX is disabled when YE=0
- 3. Sense amplifier enable
- 4. Output enable, tri-state Flash data out bus when OE=0
- 5. Defines program cycle
- 6. Defines erase cycle
- 7. Defines mass erase cycle, erase whole block
- 8. Defines non-volatile store cycle

Table 3-6 IFREN Truth Table

Mode	IFREN=1	IFREN=0		
Read	Read information block	Read main memory block		
Word program	Program information block	Program main memory block		
Page erase	Erase information block	Erase main memory block		
Mass erase	Erase both block	Erase main memory block		

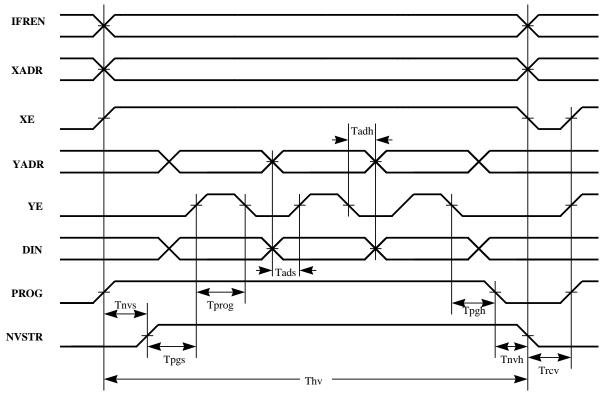


Figure 3-4 Flash Program Cycle

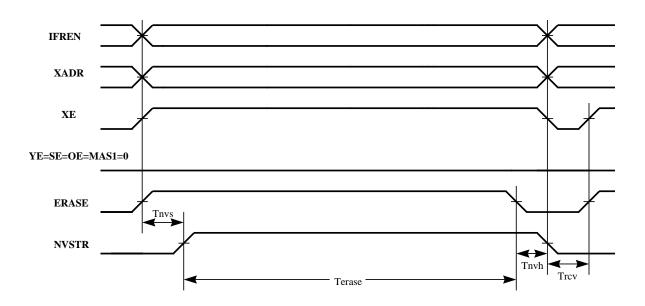


Figure 3-5 Flash Erase Cycle

56F807 Technical Data Technical Data, Rev. 16



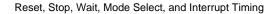
Figure 3-6 Flash Mass Erase Cycle

3.4 External Clock Operation

The 56F807 system clock can be derived from an external crystal or an external system clock signal. To generate a reference frequency using the internal oscillator, a reference crystal must be connected between the EXTAL and XTAL pins.

3.4.1 Crystal Oscillator

The internal oscillator is also designed to interface with a parallel-resonant crystal resonator in the frequency range specified for the external crystal in **Table 3-9**. In **Figure 3-7** a recommended crystal oscillator circuit is shown. Follow the crystal supplier's recommendations when selecting a crystal, since crystal parameters determine the component values required to provide maximum stability and reliable start-up. The crystal and associated components should be mounted as close as possible to the EXTAL and XTAL pins to minimize output distortion and start-up stabilization time. The internal 56F80x oscillator circuitry is designed to have no external load capacitors present. As shown in **Figure 3-8** no external load capacitors should be used.


The 56F80x components internally are modeled as a parallel resonant oscillator circuit to provide a capacitive load on each of the oscillator pins (XTAL and EXTAL) of 10pF to 13pF over temperature and process variations. Using a typical value of internal capacitance on these pins of 12pF and a value of 3pF

3.5 External Bus Asynchronous Timing

 $\label{eq:constraint} \begin{array}{c} \textbf{Table 3-10 External Bus Asynchronous Timing^{1,2}} \\ Operating Conditions: \ v_{SS} = v_{SSA} = 0 \ v, \ v_{DD} = v_{DDA} = 3.0 - 3.6 \ v, \ T_A = -40^\circ \ \text{to} \ +85^\circ \text{C}, \ C_L \leq 50 \text{pF}, \ f_{op} = 80 \text{MHz} \end{array}$

Characteristic	Symbol	Min	Мах	Unit
Address Valid to WR Asserted	t _{AWR}	6.5	_	ns
WR Width Asserted Wait states = 0 Wait states > 0	t _{WR}	7.5 (T*WS)+7.5		ns ns
WR Asserted to D0–D15 Out Valid	t _{WRD}	_	T + 4.2	ns
Data Out Hold Time from WR Deasserted	t _{DOH}	4.8	_	ns
Data Out Set Up Time to \overline{WR} Deasserted Wait states = 0 Wait states > 0	t _{DOS}	2.2 (T*WS)+6.4		ns ns
RD Deasserted to Address Not Valid	t _{RDA}	0	_	ns
Address Valid to RD Deasserted Wait states = 0 Wait states > 0	t _{ARDD}	18.7 (T*WS) + 18.7	-	ns ns
Input Data Hold to RD Deasserted	t _{DRD}	0	_	ns
RDAssertion WidthWait states = 0Wait states > 0	t _{RD}	19 (T*WS)+19		ns ns
Address Valid to Input Data Valid Wait states = 0 Wait states > 0	t _{AD}	_	1 (T*WS)+1	ns ns
Address Valid to RD Asserted	t _{ARDA}	-4.4	_	ns
RD Asserted to Input Data Valid Wait states = 0 Wait states > 0	t _{RDD}	_	2.4 (T*WS) + 2.4	ns ns
WR Deasserted to RD Asserted	t _{WRRD}	6.8	_	ns
RD Deasserted to RD Asserted	t _{RDRD}	0	_	ns
WR Deasserted to WR Asserted	t _{WRWR}	14.1	_	ns
RD Deasserted to WR Asserted	t _{RDWR}	12.8	_	ns

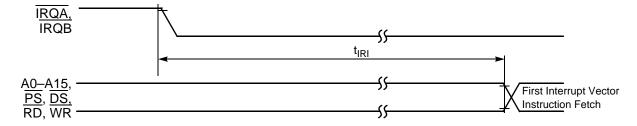


Figure 3-15 Interrupt from Wait State Timing

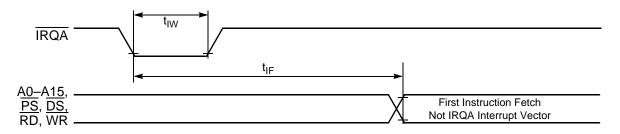


Figure 3-16 Recovery from Stop State Using Asynchronous Interrupt Timing

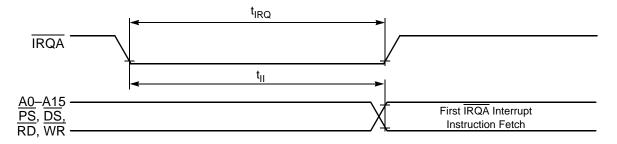


Figure 3-17 Recovery from Stop State Using IRQA Interrupt Service

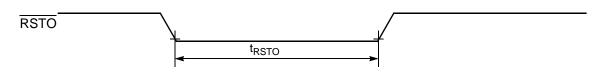


Figure 3-18 Reset Output Timing

3.13 JTAG Timing

 $\label{eq:conditions} \begin{array}{c} \mbox{Table 3-18 JTAG Timing}^{1,\ 3} \\ \mbox{Operating Conditions: } V_{SS} = V_{SSA} = 0 \ V, \ V_{DD} = V_{DDA} = 3.0 - 3.6 \ V, \ T_A = -40^\circ \ to \ +85^\circ C, \ C_L \leq 50 \ pF, \ f_{OP} = 80 \ MHz \end{array}$

Characteristic	Symbol	Min	Max	Unit
TCK frequency of operation ²	f _{OP}	DC	10	MHz
TCK cycle time	t _{CY}	100	_	ns
TCK clock pulse width	t _{PW}	50	—	ns
TMS, TDI data set-up time	t _{DS}	0.4	—	ns
TMS, TDI data hold time	t _{DH}	1.2	—	ns
TCK low to TDO data valid	t _{DV}	_	26.6	ns
TCK low to TDO tri-state	t _{TS}	—	23.5	ns
TRST assertion time	t _{TRST}	50	_	ns
DE assertion time	t _{DE}	4T	—	ns

1. Timing is both wait state and frequency dependent. For the values listed, T = clock cycle. For 80MHz operation, T = 12.5ns.

2. TCK frequency of operation must be less than 1/8 the processor rate.

3. Parameters listed are guaranteed by design.

Figure 3-29 Test Clock Input Timing Diagram

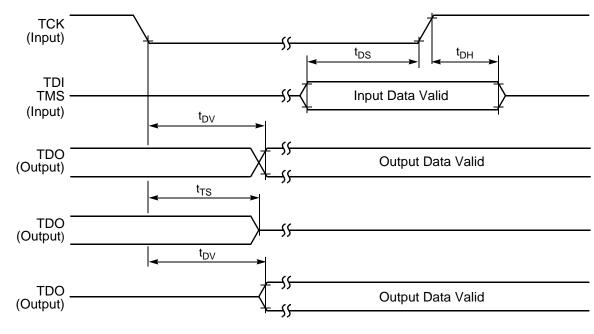


Figure 3-30 Test Access Port Timing Diagram

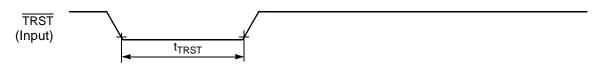
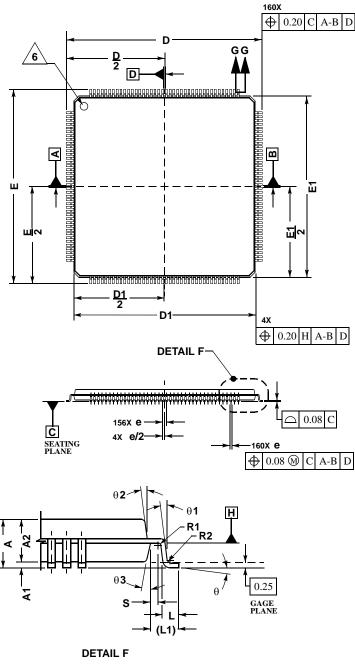



Figure 3-32 OnCE—Debug Event

- b→ - b→ - (b)→

SECTION G-G

NOTES:

- DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- DATUMS A, B, AND D TO BE DETERMINED WHERE THE LEADS EXIT THE PLASTIC BODY AT DATUM PLANE H.
- A. DATOR TEANETT.

 DIMENSIONS DI AND EI DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PER SIDE.
 DIMENSIONS DI AND EI ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
- INCLUDING MOLD MISMATCH. 5. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM & DIMENSION BY MORE THAN 0.08mm. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN A PROTRUSION AND AN ADJACENT LEAD IS 0.07mm. EXACT SHAPE OF CORNERS MAY VARY.

	MILLIMETERS					
DIM	MIN	MAX				
Α		1.60				
A1	0.05	0.15				
A2	1.35	1.45				
b	0.17	0.27				
b1	0.17	0.23				
с	0.09	0.20				
c1	0.09	0.16				
D	26.00	BSC				
D1	24.00 BSC					
e	0.50 BSC					
E	26.00 BSC					
E1	24.00 BSC					
L	0.45	0.75				
L1	1.00	REF				
R1	0.08					
R2	0.08	0.20				
S	0.20					
θ	00	7 °				
θ1	00					
θ2	11 °	13°				
θ3	11 °	13°				

CASE 1259-01 ISSUE O

Figure 4-2 160-pin LQFP Mechanical Information

Please see www.freescale.com for the most current case outline.

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	A0	41	GPIOB1	81	PWMA5	121	DE
2	A1	42	GPIOB2	82	FAULTA0	122	V _{SS}
3	A2	43	GPIOB3	83	FAULTA1	123	ISA0
4	A3	44	GPIOB4	84	FAULTA2	124	ISA1
5	A4	45	GPIOB5	85	FAULTA3	125	ISA2
6	A5	46	GPIOB6	86	EXTBOOT	126	TD0
7	A6	47	GPIOB7	87	V _{SSA}	127	TD1
8	A7	48	V _{SS}	88	V _{DDA}	128	TD2
9	V _{DD}	49	GPIOD0	89	V _{DD}	129	TD3
10	A8	50	GPIOD1	90	V _{SS}	130	TC0
11	A9	51	GPIOD2	91	V _{SS}	131	TC1
12	A10	52	GPIOD3	92	XTAL	132	TRST
13	A11	53	GPIOD4	93	EXTAL	133	TCS
14	A12	54	GPIOD5	94	V _{DD}	134	ТСК
15	A13	55	TXD1	95	V _{SS}	135	TMS
16	A14	56	RXD1	96	V _{DD}	136	TDI
17	A15	57	PWMB0	97	RSTO	137	TDO
18	V _{SS}	58	PWMB1	98	RESET	138	VCAPC2
19	PS	59	PWMB2	99	VREF	139	MSCAN_TX
20	DS	60	PWMB3	100	V _{DDA}	140	V _{DD}
21	WR	61	PWMB4	101	V _{SSA}	141	V _{SS}
22	RD	62	PWMB5	102	ANA0	142	MSCAN_RX
23	D0	63	V _{DD}	103	ANA1	143	SS
24	D1	64	ISB0	104	ANA2	144	SCLK
25	D2	65	VCAPC1	105	ANA3	145	MISO
26	D3	66	ISB1	106	ANA4	146	MOSI
27	D4	67	ISB2	107	ANA5	147	PHA0
28	D5	68	VPP2	108	ANA6	148	PHB0
29	D6	69	IRQA	109	ANA7	149	INDEX0
30	D7	70	IRQB	110	VREF2	150	HOME0

Table 4-1 56F807 LQFP Package Pin Identification by Pin Number

Solder Ball	Signal Name	Solder Ball	Signal Name	Solder Ball	Signal Name	Solder Ball	Signal Name
C3	A0	N4	GPIOB5	K12	V _{SSA}	E10	TC1
B2	A1	P4	GPIOB6	K13	V _{DDA}	D9	TRST
D3	A2	M4	GPIOB7	L14	V _{DD}	В9	TCS
C2	A3	L5	V _{SS}	K11	V _{SS}	E9	тск
B1	A4	N5	GPIOD0	K14	V _{SS}	A9	TMS
D2	A5	P5	GPIOD1	J13	XTAL	D8	TDI
C1	A6	K5	GPIOD2	J12	EXTAL	B8	TDO
D1	A7	N6	GPIOD3	J14	V _{DD}	A8	VCAPC2
E3	V _{DD}	L6	GPIOD4	J11	V _{SS}	E8	MSCAN_TX
E2	A8	K6	GPIOD5	H13	V _{DD}	D7	V _{DD}
E1	A9	P6	TXD1	H12	RSTO	E7	V _{SS}
F3	A10	N7	RXD1	H14	RESET	D6	MSCAN_RX
F2	A11	L7	PWMB0	H11	VREF	H1	D1
F1	A12	P7	PWMB1	G12	V _{DDA}	H2	D2
G3	A13	K7	PWMB2	G11	V _{SSA}	J3	D3
G2	A14	L8	PWMB3	G14	ANA0	J1	D4
G1	A15	K8	PWMB4	B13	DE	J2	D5
F4	V _{SS}	P8	PWMB5	A14	V _{SS}	K3	D6
G4	PS	L9	V _{DD}	B12	ISA0	K1	D7
H4	DS	N8	ISB0	A13	ISA1	L1	D8
J4	WR	P14	PWMA5	A12	ISA2	K2	D9
K4	RD	M13	FAULTA0	B11	TD0	L3	D10

- Measure the thermal resistance from the junction to where the leads are attached to the case. This definition is approximately equal to a junction to board thermal resistance.
- Use the value obtained by the equation $(T_J T_T)/P_D$ where T_T is the temperature of the package case determined by a thermocouple.

The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back-calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

5.2 Electrical Design Considerations

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

Use the following list of considerations to assure correct operation:

- Provide a low-impedance path from the board power supply to each V_{DD} pin on the controller, and from the board ground to each V_{SS} pin.
- The minimum bypass requirement is to place 0.1 μ F capacitors positioned as close as possible to the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the V_{DD}/V_{SS} pairs, including V_{DDA}/V_{SSA}. Ceramic and tantalum capacitors tend to provide better performance tolerances.

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty. representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. This product incorporates SuperFlash® technology licensed from SST. © Freescale Semiconductor, Inc. 2005. All rights reserved.

DSP56F807 Rev. 16 09/2007