E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x5b, 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1764-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1764/5/8/9

Table of Contents

1.0	Device Overview	10				
2.0	Enhanced Mid-Range CPU	22				
3.0	Memory Organization	24				
4.0	Device Configuration	62				
5.0	Oscillator Module (with Fail-Safe Clock Monitor)	70				
6.0	Resets	87				
7.0	Interrupts	96				
8.0	Power-Down Mode (Sleep)	109				
9.0	Watchdog Timer (WDT)	113				
10.0	Flash Program Memory Control	117				
11.0	I/O Ports	134				
12.0	Peripheral Pin Select (PPS) Module	152				
13.0	Interrupt-On-Change	160				
14.0	Fixed Voltage Reference (FVR)	167				
15.0	Temperature Indicator Module	170				
16.0	Analog-to-Digital Converter (ADC) Module	172				
17.0	5-Bit Digital-to-Analog Converter (DAC) Module	186				
18.0	10-Bit Digital-to-Analog Converter (DAC) Module	190				
19.0	Comparator Module	196				
20.0	Zero-Cross Detection (ZCD) Module	206				
21.0	Timer0 Module	213				
22.0	Timer1/3/5 Module with Gate Control	216				
23.0	Timer2/4/6 Module	227				
24.0	Capture/Compare/PWM Modules	248				
25.0	10-Bit Pulse-Width Modulation (PWM) Module	261				
26.0	16-Bit Pulse-Width Modulation (PWM) Module	267				
27.0	Complementary Output Generator (COG) Module	293				
28.0	Configurable Logic Cell (CLC)	332				
29.0	Operational Amplifier (OPA) Modules	346				
30.0	Programmable Ramp Generator (PRG) Module	352				
31.0	Data Signal Modulator (DSM)	366				
32.0	Master Synchronous Serial Port (MSSP) Module	376				
33.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	431				
34.0	In-Circuit Serial Programming™ (ICSP™)	461				
35.0	Instruction Set Summary	463				
36.0	Electrical Specifications	477				
37.0	DC and AC Characteristics Graphs and Charts	511				
38.0	Development Support	533				
39.0	Packaging Information	537				
Appe	ndix A: Data Sheet Revision History	558				
The I	Nicrochip Website	559				
Custo	Istomer Change Notification Service					
Custo	omer Support	559				
Produ	uct Identification System	560				

EXAMPLE 10-1: FLASH PROGRAM MEMORY READ

*	This code	block will read	1 w	ord of program				
*	memory at the memory address:							
	PROG_ADD	R_HI : PROG_ADDR	LO					
*	data wil	l be returned in	the	e variables;				
*	PROG_DAT	A_HI, PROG_DATA_I	LO					
	BANKSEL	PMADRL	;	Select Bank for PMCON registers				
	MOVLW	PROG_ADDR_LO	;					
	MOVWF	PMADRL	;	Store LSB of address				
	MOVLW	PROG_ADDR_HI	;					
	MOVWF	PMADRH	;	Store MSB of address				
	BCF	PMCON1,CFGS	;	Do not select Configuration Space				
	BSF	PMCON1,RD	;	Initiate read				
	NOP		;	Ignored (Figure 10-1)				
	NOP		;	Ignored (Figure 10-1)				
	MOVF	PMDATL,W	;	Get LSB of word				
	MOVWF	PROG_DATA_LO	;	Store in user location				
	MOVF	PMDATH,W	;	Get MSB of word				
	MOVWF	PROG_DATA_HI	;	Store in user location				
1								

DS40001775C-page 124

© 2014-2017 Microchip Technology Inc

C16(L)F1764/5/8/9

12.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I²C)

Note: The I²C default input pins are I²C and SMBus compatible, and are the only pins on the device with this compatibility.

12.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 12-1.

EXAMPLE 12-1: PPS LOCK/UNLOCK SEQUENCE

;	suspend interrupts
	bcf INTCON,GIE
;	BANKSEL PPSLOCK ; set bank
;	required sequence, next 5 instructions
	movlw 0x55
	movwf PPSLOCK
	movlw 0xAA
	movwf PPSLOCK
;	Set PPSLOCKED bit to disable writes or
;	Clear PPSLOCKED bit to enable writes
	bsf PPSLOCK, PPSLOCKED
;	restore interrupts
	bsf INTCON,GIE

12.5 PPS Permanent Lock

The PPS can be permanently locked by setting the PPS1WAY Configuration bit. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set, after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

12.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

12.7 Effects of a Reset

A device Power-on Reset (POR) clears all PPS input and output selections to their default values. All other Resets leave the selections unchanged. Default input selections are shown in Table 12-1.

R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ON ⁽¹⁾ CKPS<2:0>					OUTP	S<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HC = Hardwa	re Clearable bi	it	
bit 7	ON: Timerx (1 = Timerx i 0 = Timerx i	Dn bit s on s off; all counte	rs and state m	nachines are res	set		
bit 6-4	Dit 6-4 CKPS<2:0>: Timer2 Type Clock Prescale Select bits 111 = 1:128 Prescaler 110 = 1:64 Prescaler 101 = 1:32 Prescaler 100 = 1:16 Prescaler 011 = 1:8 Prescaler 011 = 1:8 Prescaler						
bit 3-0	001 = 1:2 Pr 000 = 1:1 Pr OUTPS<3:0>	rescaler rescaler >: Timerx Outpu	it Postscaler S	Select bits			
	1111 = 1:16 1110 = 1:15 1101 = 1:14 1100 = 1:13 1011 = 1:12 1010 = 1:11 1001 = 1:10 1000 = 1:9 F 0111 = 1:8 F 0110 = 1:7 F 0101 = 1:6 F 0101 = 1:4 F 0010 = 1:3 F 0011 = 1:4 F 0010 = 1:1 F	Postscaler Postscaler					

REGISTER 23-2: TxCON: TIMERx CONTROL REGISTER

Note 1: In certain modes, the ON bit will be auto-cleared by hardware. See Section 23.6 "Operation Examples".

R/W-0/	0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
PSYNC ⁽	^{1,2)} CKPOL ⁽³⁾	CKSYNC ^(4,5)		٦	MODE<4:0> ^{(6,7}	7)			
bit 7	·						bit 0		
Legend:									
R = Read	able bit	W = Writable b	oit						
u = Bit is u	unchanged	x = Bit is unkno	own	U = Unimplen	nented bit, read	d as '0'			
'1' = Bit is	set	'0' = Bit is clea	red	-n/n = Value a	at POR and BC	R/Value at all o	other Resets		
bit 7	PSYNC: Time	erx Prescaler Sy	nchronization	Enable bit ^(1,2)					
	1 = TMRx pr	escaler output is	s synchronize	d to Fosc/4					
	0 = TMRx pr	escaler output is	s not synchror	nized to Fosc/4					
bit 6	CKPOL: Tim	erx Clock Polari	ty Selection bi	it ⁽³⁾					
	1 = Falling e	dge of input cloc	ck clocks time	r/prescaler					
		age of input cloc	K CIOCKS TIME	/prescaler					
DIT 5	CKSYNC: III	merx Clock Synd	chronization E						
	$\perp = ON regis$	ster bit is synchro ster bit is not syn	chronized to	KZ_CIK INPUT TMR2_CIK input					
hit 4-0		Timerx Control	Mode Selecti	on hits(6,7)					
	See Table 23	-1							
Note 1:	Setting this bit en	sures that readir	ig TMRx will r	eturn a valid va	lue.				
2:	2: When this bit is '1', Timer2 cannot operate in Sleep mode.								
3:	CKPOL should no	CKPOL should not be changed while $ON = 1$.							
4:	Setting this bit en	tting this bit ensures glitch-free operation when the ON bit is enabled or disabled.							
5:	when this bit is se	hen this bit is set, then the timer operation will be delayed by two TMRx input clocks after the ON bit is it.							
6:	: Unless otherwise indicated, all modes start upon ON = 1 and stop upon ON = 0 (stops occur without affecting the value of TMRx).								

REGISTER 23-3: TxHLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

7: When TMRx = PRx, the next clock clears TMRx, regardless of the operating mode.

The maximum PWM resolution is ten bits when T2PR is 255. The resolution is a function of the T2PR register value as shown by Equation 25-4.

EQUATION 25-4: PWM RESOLUTION

Resolution	=	$\frac{\log[4(T2PR+1)]}{\log(2)}$	bits	
------------	---	-----------------------------------	------	--

Note: If the pulse-width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 25-1:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
T2PR Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 25-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
T2PR Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

25.7 Operation in Sleep Mode

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

25.8 Changes in System Clock Frequency

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to Section 5.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

25.9 Effects of Reset

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

REGISTER 25-2: PWMxDCH: PWMx DUTY CYCLE REGISTER HIGH BITS

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			DC<	<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit				
u = Bit is unch	anged	x = Bit is unkn	own	U = Unimplen	nented bit, read	l as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all c	other Resets

bit 7-0

DC<9:2>: PWM Duty Cycle Most Significant bits These bits are the MSbs of the PWM duty cycle. The two LSbs are found in the PWMxDCL register.

REGISTER 25-3: PWMxDCL: PWMx DUTY CYCLE REGISTER LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
DC<	:1:0>	—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

 bit 7-6
 DC<1:0>: PWM Duty Cycle Least Significant bits

 These bits are the LSbs of the PWM duty cycle. The MSbs are found in the PWMxDCH register.

bit 5-0 Unimplemented: Read as '0'

TABLE 25-4: SUMMARY OF REGISTERS ASSOCIATED WITH 10-BIT PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPTMRS	P4TSEL<1:0> P3TSEL<1:0>			C2TSEL<1:0>(1)		C1TSEL<1:0>		264	
PWMxCON	EN	_	OUT	POL	MODE	<1:0>	_	_	265
PWMxDCH		DC<9:2>							266
PWMxDCL	DC<	1:0>	—	_	_	—	_	—	266
RxyPPS	—	_	_	- RxyPPS<4:0>					154
TxCON	ON		CKPS<2:0>		OUTPS<3:0>				244
TxCLKCON	—	_	—	— — CS<3:0>					243
TxPR	TMRx Period Register								227
TRISA	—	—	TRISA	TRISA<5:4>(1) TRISA<2:0>				•	136
TRISB ⁽²⁾		TRISB<7:4>			_	—	—	—	142
TRISC	TRISC7 ⁽²⁾	TRISC6(2)	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	147

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1768/9 only.

R/W/HC-0/0	R/W-0/0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
LDA ⁽¹⁾	LDT ⁽³⁾	—	_	_	—	—	LDS ^(2,3)
bit 7	-			÷	•	·	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	HC = Hardwa	re Clearable bi	t	
u = Bit is unc	hanged	x = Bit is unkn	nown	U = Unimplem	nented bit, read	l as '0'	
'1' = Bit is set	t	'0' = Bit is clea	ared	-n/n = Value a	t POR and BO	R/Value at all o	other Resets
bit 7	LDA: Load B	uffer Armed bit ⁽	1)				
	If LDT = 1:						
	1 = Loads th	e ODO bit, and	d OFx, PHx, D	Cx and PRx b	uffers at the er	nd of the perio	d in which the
	selected	trigger occurs					
	0 = Does not	load buffers, lo	bad has compl	eted			
	$\frac{\text{If } \text{LD } \text{I} = 0:}{1 = 1 \text{ and } \text{a the}}$				are at the and		ariad
	\perp = Loads in 0 = Does not	load buffers lo	OFX, PHX, DC	x and PRX buil eted	ers at the end o	or the current p	benoa
bit 6	IDT: Load Bu	iffer on Trigger	hit(3)				
bit o	1 = Waits for	trigger selected	d by the LDSC	1.0> hits to occ	ur before enabl	ling the LDA bi	ŧ
	0 = Load trig	gering is disable	ed; buffer load	s are controlled	by the LDA bit	t alone	L .
bit 5-1	Unimplemen	ted: Read as '0)'		-		
bit 0	LDS: Load Tr	igger Source S	elect bit ^(2,3)				
	$1 = LD6_trigg$	ger					
	0 = LD5_trigg	ger					
Note 1: Th	nie hit ie cleared	by the module	after a reload	operation. It ca	n he cleared in	software to cle	ar an evicting

REGISTER 26-5: PWMxLDCON: PWMx RELOAD TRIGGER SOURCE SELECT REGISTER

- **Note 1:** This bit is cleared by the module after a reload operation. It can be cleared in software to clear an existing arming event.
 - 2: The source corresponding to a PWM module's own LDx_trigger is reserved.
 - 3: PIC16(L)F1768/9 only.

PIC16(L)F1764/5/8/9

REGISTER 27-6:

	REGIS	STER 1									
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
RSIM15 ⁽¹⁾	RSIM14	RSIM13	RSIM12	RSIM11	RSIM10	RSIM9	RSIM8				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit								
u = Bit is unch	anged	x = Bit is unk	nown	U = Unimplen	nented bit, read	d as '0'					
'1' = Bit is set	•	'0' = Bit is cle	eared	-n/n = Value a	at POR and BC	R/Value at all c	other Resets				
bit 7	RSIM15: CO RIS15 = 1:	Gx Rising Eve	nt Input Sourc	e 15 Mode bit ⁽¹)						
	1 = DSM2 M 0 = DSM2 M <u>RIS15 = 0:</u>	1D2_out output 1D2_out output	low-to-high trai : high level will	nsition will cause I cause an imme	e a rising event ediate rising ev	after rising even ent	t phase delay				
h:+ C	DSM2 MD2	out output has	no effect on ri	ising event.							
DILO	RIS14 = 1:	GX RISING EVE	nt input Sourc								
	1 = DSM1 M	ID1_out output	low-to-high trai	nsition will cause	a rising event	after rising even	t phase delay				
	0 = DSM1 MD1_out output high level will cause an immediate rising event										
	DSM1 MD1_	out output has	no effect on r	ising event.							
bit 7-6	Unimplemer	nted: Read as	·0'								
bit 5	RSIM13: COGx Rising Event Input Source 13 Mode bit										
	RIS13 = 1: 1 = CLC3 or	utput low-to-hic	h transition wi	ill cause a risinc	i event after ris	ing event phase	e delav				
	0 = CLC3 ol	utput high level	will cause an	immediate risin	g event		o doldy				
	RIS13 = 0: CLC3 output	has no effect o	on rising event	t.							
bit 4	RSIM12: COGx Rising Event Input Source 12 Mode bit										
	RIS12 = 1:										
	 1 = CLC2 output low-to-high transition will cause a rising event after rising event phase delay 0 = CLC2 output high level will cause an immediate rising event 										
	$\frac{RIS12 = 0}{CLC2}$										
hit 2		nas no effect (on rising eveni	o 11 Modo hit							
DIL 3	RIS11 = 1:										
	1 = CLC1 ou 0 = CLC1 ou	utput low-to-hig utput high level	h transition wi will cause an	Il cause a rising immediate rising) event after ris g event	ing event phase	e delay				
	$\frac{\text{RIS11} = 0}{\text{CLC1 output}}$	has no effect of	on risina event	t.							
bit 2	RSIM10: CO	Gx Rising Eve	nt Input Sourc	 e 10 Mode bit							
	RIS10 = 1:	Ū.	·								
	1 = PWM6 c 0 = PWM6 c	output low-to-hi output high leve	gh transition v el will cause ar	vill cause a risin n immediate risi	g event after ri ng event	sing event phas	se delay				
	<u>RIS10 = 0:</u> PWM6 outpu	it has no effect	on rising ever	nt.							

COGxRSIM1: COGx RISING EVENT SOURCE INPUT MODE

Note 1: PIC16(L)F1768/9 only. Otherwise unimplemented, read as '0'.

32.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 32-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 32-6, Figure 32-8, Figure 32-9 and Figure 32-10, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSPxADD + 1))

Figure 32-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

Note: In Master mode, the clock signal output to the SCK pin is also the clock signal input to the peripheral. The pin selected for output with the RxyPPS register must also be selected as the peripheral input with the SSPCLKPPS register.

32.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL is sampled low at the beginning of the Start condition (Figure 32-33).
- b) SCL is sampled low before SDA is asserted low (Figure 32-34).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- · The Start condition is aborted,
- · The BCLIF flag is set and
- The MSSP module is reset to its Idle state (Figure 32-33).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 32-35). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 32-33: BUS COLLISION DURING START CONDITION (SDA ONLY)

33.4 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDxCON register selects 16-bit mode.

The SPxBRGH, SPxBRGL register pair determines the period of the free-running baud rate timer. In Asynchronous mode, the multiplier of the baud rate period is determined by both the BRGH bit of the TXxSTA register and the BRG16 bit of the BAUDxCON register. In Synchronous mode, the BRGH bit is ignored.

Table 33-3 contains the formulas for determining the baud rate. Example 33-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various Asynchronous modes have been computed for your convenience and are shown in Table 33-5. It may be advantageous to use the high baud rate (BRGH = 1) or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-Bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPxBRGH, SPxBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is Idle before changing the system clock.

EXAMPLE 33-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

 $Desired Baud Rate = \frac{Fosc}{64([SPBRGH:SPBRGL] + 1)}$

Solving for SPxBRGH:SPxBRGL:

TABLE 33-3: BAUD RATE FORMULAS

Configuration Bits				Poud Poto Formula		
SYNC	C BRG16 BRGH		BRG/EUSART Mode	Dauu Kale Formula		
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]		
0	0 1		8-bit/Asynchronous			
0	1	0	16-bit/Asynchronous	FOSC/[16 (II+1)]		
0	1	1	16-bit/Asynchronous			
1	1 0 x 8 1 1 x 16		8-bit/Synchronous	Fosc/[4 (n+1)]		
1			16-bit/Synchronous			

Legend: x = Don't care, n = value of SPxBRGH, SPxBRGL register pair.

TABLE 33-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	442
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	441
SP1BRGL	BRG<7:0>								
SP1BRGH	BRG<15:8>								443
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	440

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.

33.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXxSTA register. The Break character transmission is then initiated by a write to the TXxREG. The value of data written to TXxREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXxSTA register indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 33-9 for the timing of the Break character sequence.

33.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXxREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXxREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXxREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXxREG.

FIGURE 33-9: SEND BREAK CHARACTER SEQUENCE

33.4.5 RECEIVING A BREAK CHARACTER

The Enhanced USART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCxSTA register and the received data as indicated by RCxREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- RCIF bit is set
- · FERR bit is set
- RCxREG = 00h

The second method uses the auto-wake-up feature described in **Section 33.4.3** "**Auto-Wake-up on Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDxCON register before placing the EUSART in Sleep mode.

33.5.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 33.5.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- · SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCxREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 33.5.2.4 Synchronous Slave Reception Setup
- 1. Set the SYNC and SPEN bits, and clear the CSRC bit.
- 2. Clear the ANSELx bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register, and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCxSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCxREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	_	_	ANSA4	_		ANSA<2:0>		137
ANSELB ⁽¹⁾		ANSB	<7:4>		_	—	_	_	143
ANSELC	ANSC<	7:6> ⁽¹⁾	_	_		ANSC	<3:0>		148
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	442
CKPPS	_	_	_			CKPPS<4:0>			154, 156
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	101
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	102
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	105
RC1REG			EUS	SART Receiv	e Data Regis	ter			436*
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	441
RXPPS	—	_	_	RXPPS<4:0>					154, 156
TRISA	—	_	TRISA	A<5:4>(2) TRISA<2:0>				136	
TRISB ⁽¹⁾		TRISB<7:4> — — — —						142	
TRISC	TRISC<	7:6> ⁽¹⁾			TRISC	><5:0>			147
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	440

TABLE 33-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave reception.

* Page provides register information.

Note 1: PIC16(L)F1768/9 only.

2: Unimplemented, read as '1'.

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VI	FW	C

	Units			MILLIMETERS			
Dimension Lin	MIN	NOM	MAX				
Number of Pins	N		14				
Pitch	е		1.27 BSC				
Overall Height	А	-	-	1.75			
Molded Package Thickness	A2	1.25	-	-			
Standoff §	A1	0.10	-	0.25			
Overall Width	E		6.00 BSC				
Molded Package Width	E1	3.90 BSC					
Overall Length	D	8.65 BSC					
Chamfer (Optional)	h	0.25	-	0.50			
Foot Length	L	0.40	-	1.27			
Footprint	L1	1.04 REF					
Lead Angle	O	0°	-	-			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.10	-	0.25			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087C Sheet 1 of 2