

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x5b, 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1764-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-3: PIC16(L)F1764 MEMORY MAP (BANKS 0-7)

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)										
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	—	08Dh		10Dh	_	18Dh		20Dh		28Dh	_	30Dh		38Dh	
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh	_	08Fh		10Fh	CMOUT	18Fh		20Fh		28Fh		30Fh		38Fh	
010h		090h		110h	CM1CON0	190h		210h		290h		310h		390h	
011h	PIR1	091h	PIE1	111h	CM1CON1	191h	PMADRL	211h	SSP1BUF	291h	CCPR1L	311h		391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1NSEL	192h	PMADRH	212h	SSP1ADD	292h	CCPR1H	312h		392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM1PSEL	193h	PMDATL	213h	SSP1MSK	293h	CCP1CON	313h		393h	IOCAF
014h	PIR4	094h	PIE4	114h	CM2CON0	194h	PMDATH	214h	SSP1STAT	294h	CCP1CAP	314h		394h	
015h	TMR0	095h	OPTION_REG	115h	CM2CON1	195h	PMCON1	215h	SSP1CON1	295h		315h		395h	
016h	TMR1L	096h	PCON	116h	CM2NSEL	196h	PMCON2	216h	SSP1CON2	296h		316h		396h	_
017h	TMR1H	097h	WDTCON	117h	CM2PSEL	197h	VREGCON ⁽¹⁾	217h	SSP1CON3	297h		317h		397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	—	198h	—	218h		298h	—	318h		398h	IOCCN
019h	T1GCON	099h	OSCCON	119h		199h	RC1REG	219h		299h		319h		399h	IOCCF
01Ah	T2TMR	09Ah	OSCSTAT	11Ah	—	19Ah	TX1REG	21Ah		29Ah	—	31Ah	_	39Ah	—
01Bh	T2PR	09Bh	ADRESL	11Bh		19Bh	SP1BRGL	21Bh		29Bh		31Bh		39Bh	MD1CON0
01Ch	T2CON	09Ch	ADRESH	11Ch		19Ch	SP1BRGH	21Ch	_	29Ch		31Ch		39Ch	MD1CON1
01Dh	T2HLT	09Dh	ADCON0	11Dh	—	19Dh	RC1STA	21Dh	BORCON	29Dh	—	31Dh	_	39Dh	MD1SRC
01Eh	T2CLKCON	09Eh	ADCON1	11Eh		19Eh	TX1STA	21Eh	FVRCON	29Eh	CCPTMRS	31Eh	_	39Eh	MD1CARL
01Fh	T2RST	09Fh	ADCON2	11Fh	—	19Fh	BAUD1CON	21Fh	ZCD1CON	29Fh	—	31Fh	_	39Fh	MD1CARH
020h		0A0h		120h		1A0h		220h		2A0h		320h	General Purpose Register	3A0h	
	General Purpose Register 80 Bytes	32Fn 330h	Unimplemented Read as '0'		Unimplemented Read as '0'										
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
	Common RAM 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh								
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: 🔲 = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1764.

5.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, EC, Secondary Oscillator and RC).

FIGURE 5-9: FSCM BLOCK DIAGRAM

5.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 5-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

5.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSFIF of the PIR2 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation.

The internal clock source chosen by the FSCM is determined by the IRCF<3:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs.

5.5.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the SCSx bits of the OSCCON register. When the SCSx bits are changed, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again become set by hardware.

5.5.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating.

Note: Due to the wide range of oscillator start-up times, the Fail-Safe circuit is not active during oscillator start-up (i.e., after exiting Reset or Sleep). After an appropriate amount of time, the user should check the status bits in the OSCSTAT register to verify the oscillator start-up and that the system clock switchover has successfully completed.

REGISTER 19-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0			
—		—	—	—	—	INTP	INTN			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit							
u = Bit is unch	anged	x = Bit is unkr	iown	U = Unimpler	nented bit, read	as '0'				
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
<u>.</u>										
bit 7-2	Unimplemen	ted: Read as '	0'							
bit 1	INTP: Comparator Interrupt on Positive Going Edge Enable bit									

	NTT . Comparator interrupt of the ostive Coing Edge Enable bit
	 1 = The CxIF interrupt flag will be set upon a positive going edge of the CxOUT bit 0 = No interrupt flag will be set on a positive going edge of the CxOUT bit
bit 0	INTN: Comparator Interrupt on Negative Going Edge Enable bit
	 1 = The CxIF interrupt flag will be set upon a negative going edge of the CxOUT bit 0 = No interrupt flag will be set on a negative going edge of the CxOUT bit

REGISTER 19-3: CMxNSEL: COMPARATOR Cx NEGATIVE CHANNEL SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	—		NCH<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-3	Unimplemented: Read as '0'
bit 2-0	NCH<2:0>: Comparator Nega

NCH<2:0>: Comparator Negative Input Channel Select bits

111 = CxVN connects to AGND

- 110 = CxVN connects to FVR Buffer2
- 101 = CxVN connects to PRG2_output⁽¹⁾
- 100 = CxVN connects to PRG1_output
- 011 = CxVN connects to CxIN3- pin
- 010 = CxVN connects to CxIN2- pin
- 001 = CxVN connects to CxIN1- pin
- 000 = CxVN connects to CxIN0- pin

Note 1: PIC16(L)F1768/9 only.

21.2 Register Definitions: Option Register

REGISTER 21-1: OPTION_REG: OPTION REGISTER

R/W-1/1	R/W-1/1	R/V	V-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W	/-1/1	R/W-1/1	
WPUEN	INTEDG	G TMF	ROCS	TMR0SE	PSA		PS<2	2:0>		
bit 7	1								bit 0	
									r	
Legend:										
R = Readable I	bit	VV = V	Vritable bi	t						
u = Bit is uncha	anged	x = Bi	t is unkno	wn	U = Unimple	mented bit, r	ead as '0'			
'1' = Bit is set		'0' = B	lit is clear	ed	-n/n = Value	at POR and	BOR/Value	at all othe	r Resets	
bit 7	WPUEN: \ 1 = All wea 0 = Weak	Weak Pull- ak pull-ups pull-ups ar	Up Enabl are disat e enableo	le bit bled (except d by individu	MCLR, if it is al WPUx latch	enabled) values				
bit 6	INTEDG: I 1 = Interru 0 = Interru	Interrupt E pt on rising pt on fallin	dge Seleo g edge of g edge of	ct bit INT pin f INT pin						
bit 5	TMR0CS: 1 = Transit 0 = Interna	TMR0CS: Timer0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (Fosc/4)								
bit 4	TMR0SE: 1 = Increm 0 = Increm	Timer0 So nent on hig nent on low	ource Edg h-to-low t /-to-high t	e Select bit transition on transition on	T0CKI pin T0CKI pin					
bit 3	PSA: Pres 1 = Presca 0 = Presca	scaler Assi aler is not a aler is assi	gnment b assigned t gned to th	it to the Timer ne Timer0 m	0 module odule					
bit 2-0	PS<2:0>:	Prescaler	Rate Sele	ect bits						
	I	Bit Value	Timer0 Ra	ate						
	-	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	}						
TABLE 21-1:	SUMMA	ARY OF F	REGISTE	RS ASSO	CIATED WI	H TIMER0				
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	

INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	101	
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>			214	
TMR0	Timer0 Mc	Timer0 Module Register								
TRISA	_	_			<1:0>	136				

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

* Page provides register information.

Note 1: Unimplemented, read as '1'.

26.7 Register Definitions: PWM Control

Long bit name prefixes for the 16-bit PWM peripherals are shown in Table 26-1. Refer to **Section 1.1 "Register and Bit Naming Conventions**" for more information.

TABLE 26-1: BIT NAME PREFIXES

Peripheral	Bit Name Prefix
PWM5	PWM5
PWM6 ⁽¹⁾	PWM6

Note 1: PIC16(L)F1768/9 devices only.

REGISTER 26-1: PWMxCON: PWMx CONTROL REGISTER

R/W-0/0	U-0	R/HS/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
EN	—	OUT	POL	MOD	E<1:0>		_
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	t				
HC = Hardware	Clearable bit	HS = Hardware	Settable bit	U = Unimplem	ented bit, read	as '0'	
'1' = Bit is set		'0' = Bit is clear	ed	-n/n = Value at	t POR and BOF	R/Value at all o	ther Resets
bit 7	EN: PWMx Mo	dule Enable bit					
	1 = Module is	enabled					
	0 = Module is	disabled					
bit 6	Unimplemente	ed: Read as '0'					
bit 5	OUT: Output S	tate of the PWM	k Module bit				
bit 4	POL: PWMx O	utput Polarity Co	ontrol bit				
	1 = PWMx out	put active state i	s low				
	0 = PWMx out	put active state i	s high				
bit 3-2	MODE<1:0>: F	PWMx Mode Cor	ntrol bits				
	11 = Center-A	ligned mode					
	10 = loggle O	In Match mode					
	00 = Standard	PWM mode					
bit 1-0	Unimplemente	ed: Read as '0'					

27.11 Buffer Updates

Changes to the Phase, Dead-Band and Blanking Count registers need to occur simultaneously during COG operation to avoid unintended operation that may occur as a result of delays between each register write. This is accomplished with the LD bit of the COGxCON0 register and double-buffering of the Phase, Blanking and Dead-Band Count registers.

Before the COG module is enabled, writing the Count registers loads the count buffers without need of the LD bit. However, when the COG is enabled, the count buffer updates are suspended after writing the Count registers until after the LD bit is set. When the LD bit is set, the Phase, Dead-Band and Blanking register values are transferred to the corresponding buffers synchronous with COG operation. The LD bit is cleared by hardware when the transfer is complete.

27.12 Input and Output Pin Selection

The COG has one selection for an input from a device pin. That one input can be used as rising and falling event source or a Fault source. The COGxINPPS register is used to select the pin. Refer to registers, xxxPPS (Register 12-1) and RxyPPS (Register 12-2).

The Pin PPS Control registers are used to enable the COG outputs. Any combination of outputs to pins is possible including multiple pins for the same output. See the RxyPPS control register and Section 12.2 "PPS Outputs" for more details.

27.13 Operation During Sleep

The COG continues to operate in Sleep provided that the COG_clock, rising event, and falling event sources remain active.

The HFINTSOC remains active during Sleep when the COG is enabled and the HFINTOSC is selected as the COG_clock source.

27.14 Configuring the COG

The following steps illustrate how to properly configure the COG to ensure a synchronous start with the rising event input:

- 1. If a pin is to be used for the COG Fault or event input, use the COGxINPPS register to configure the desired pin.
- 2. Clear all ANSELx register bits associated with pins that are used for COG functions.

- Ensure that the TRISx control bits corresponding to the COG outputs to be used are set so that all are configured as inputs. The COG module will enable the output drivers as needed later.
- 4. Clear the EN bit, if not already cleared.
- 5. Set desired dead-band times with the COGxDBR and COGxDBF registers, and select the source with the RDBS and FDBS bits of the COGxCON1 register.
- 6. Set desired blanking times with the COGxBLKR and COGxBLKF registers.
- 7. Set desired phase delay with the COGxPHR and COGxPHF registers.
- 8. Select the desired shutdown sources with the COGxASD1 register.
- 9. Setup the following controls in the COGxASD0 Auto-Shutdown register:
 - Select both output override controls to the desired levels (this is necessary, even if not using auto-shutdown because start-up will be from a shutdown state).
 - Set the ASE bit and clear the ARSEN bit.
- 10. Select the desired rising and falling event sources with the COGxRIS0, COGxRIS1, COGxFIS0 and COGxFIS1 registers.
- 11. Select the desired Rising and Falling Event modes with the COGxRSIM0, COGxRSIM11, COGxFSIM0 and COGxFSIM1 registers.
- 12. Configure the following controls in the COGxCON1 register:
 - Set the polarity for each output
 - · Select the desired dead-band timing sources
- 13. Configure the following controls in the COGxCON0 register:
 - · Set the desired operating mode
 - · Select the desired clock source
- 14. If one of the Steering modes is selected, then configure the following controls in the COGxSTR register:
 - Set the steering bits of the outputs to be used.
 - · Set the desired static levels.
- 15. Set the EN bit.
- 16. Set the pin PPS controls to direct the COG outputs to the desired pins.
- 17. If auto-restart is to be used, set the ARSEN bit and the ASE will be cleared automatically; otherwise, clear the ASE bit to start the COG.

REGISTER 28-3: CLCxSEL0: GENERIC CLCx DATA 1 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			D1S	<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is unch	anged	x = Bit is unkr	nown	U = Unimplen	nented bit, read	l as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
bit 7-6	Unimpleme	ented: Read as '	0'				
bit 5-0	D1S<5:0>:	CLCx Data1 Inpu	ut Selection b	its			

REGISTER 28-4: CLCxSEL1: GENERIC CLCx DATA 2 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_				D2S	<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-6 Unimplemented: Read as '0'

See Table 28-1.

bit 5-0 D2S<5:0>: CLCx Data 2 Input Selection bits See Table 28-1.

REGISTER 28-5: CLCxSEL2: GENERIC CLCx DATA 3 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			D3S	8<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets
here and the second		

bit 7-6 Unimplemented: Read as '0'

bit 5-0 D3S<5:0>: CLCx Data 3 Input Selection bits See Table 28-1.

INS<2:0>	PIC16(L)F1764/5 Voltage Source	PIC16(L)F1768/9	Voltage Source
1010-1111	Reserved	Reserved	Reserved
1001 (1)	Reserved	Switched PRG1IN1/OPA2OUT	Switched PRG2IN1/OPA1OUT
1000 (1)	Switched PRG1IN0/OPA1OUT	Switched PRG1IN0/OPA1OUT	Switched PRG2IN0/OPA2OUT
0111	Reserved	Reserved	Reserved
0110	Reserved	DAC4_output	DAC4_output
0101	DAC3_output	DAC3_output	DAC3_output
0100	Reserved	DAC2_output	DAC2_output
0011	DAC1_output	DAC1_output	DAC1_output
0010	FVR_buffer2	FVR_buffer2	FVR_buffer2
0001	Reserved	PRG1IN1/OPA2OUT	PRG2IN1/OPA1OUT
0000	PRG1IN0/OPA1OUT	PRG1IN0/OPA1OUT	PRG2IN0/OPA2OUT

TABLE 30-2: VOLTAGE INPUT SOURCES

Note 1: Input source is switched off when op amp override is forcing tri-state. See Section 29.3 "Override Control".

REGISTER 32-1: SSP1STAT: MSSP STATUS REGISTER (CONTINUED)

BF: Buffer Full Status bit

bit 0

- Receive (SPI and I²C modes):
- 1 = Receive is complete, SSPxBUF is full
- 0 = Receive is not complete, SSPxBUF is empty
- Transmit (I²C mode only):
- 1 = Data transmit is in progress (does not include the \overline{ACK} and Stop bits), SSPxBUF is full
- 0 = Data transmit is complete (does not include the ACK and Stop bits), SSPxBUF is empty

33.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- · One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- Half-duplex synchronous slave
- · Programmable clock polarity in Synchronous modes
- · Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 33-1 and Figure 33-2.

The EUSART transmit output (TX_out) is available to the TX/CK pin and internally to the following peripherals:

- Configurable Logic Cell (CLC)
- Data Signal Modulator (DSM)

FIGURE 33-1: EUSART TRANSMIT BLOCK DIAGRAM

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7		•	•		1		bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is unch	anged	x = Bit is unkr	nown	U = Unimple	mented bit, read	as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
		D <i>i</i> D <i>i</i> i <i>i i i i i i i i i i</i>					
bit /	SPEN: Serial	Port Enable bi	t				
	1 = Serial points 0 = Serial points	rt is enabled rt is disabled (h	eld in Reset)				
bit 6	RX9: 9-Bit Re	ceive Enable b	pit				
	1 = Selects 9	-bit reception					
	0 = Selects 8	-bit reception					
bit 5	SREN: Single	Receive Enab	ole bit				
	Asynchronous Don't care.	<u>s mode:</u>					
	Synchronous mode – Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after recention is complete						
	Synchronous Don't care.	mode – Slave:					
bit 4	CREN: Continuous Receive Enable bit						
	Asynchronous 1 = Enables 0 = Disables	<u>s mode:</u> receiver receiver					
	Synchronous mode: 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive				REN)		
bit 3	ADDEN: Add	ress Detect En	able bit				
	Asynchronous 1 = Enables 0 = Disables	<u>s mode, 9-bit (F</u> address detect address detect	<u>RX9 = 1):</u> ion, enables ii tion, all bytes	nterrupt and lo are received a	ads the receive Ind ninth bit can	buffer when RS be used as par	SR<8> is set rity bit
	Asynchronous Don't care.	s mode, 8-bit (F	RX9 = 0):				
bit 2	FERR: Framin	ng Error bit					
	1 = Framing 0 = No framir	error (can be u ng error	pdated by rea	iding RCxREG	register and re	ceiving next val	id byte)
bit 1	OERR: Overr	un Error bit					
	1 = Overrun (0 = No overru	error (can be cl un error	leared by clea	Iring bit, CREN	1)		
bit 0	RX9D: Ninth I	bit of Received	Data				
	This can be a	ddress/data bit	or a parity bit	and must be	calculated by us	er firmware.	

REGISTER 33-2: RC1STA: RECEIVE STATUS AND CONTROL REGISTER

33.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXxSTA register. The Break character transmission is then initiated by a write to the TXxREG. The value of data written to TXxREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXxSTA register indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 33-9 for the timing of the Break character sequence.

33.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXxREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXxREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXxREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXxREG.

FIGURE 33-9: SEND BREAK CHARACTER SEQUENCE

33.4.5 RECEIVING A BREAK CHARACTER

The Enhanced USART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCxSTA register and the received data as indicated by RCxREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- RCIF bit is set
- · FERR bit is set
- RCxREG = 00h

The second method uses the auto-wake-up feature described in **Section 33.4.3** "**Auto-Wake-up on Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDxCON register before placing the EUSART in Sleep mode.

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f

SUBLW	Subtract W from literal		
Syntax:	[label] SL	IBLW k	
Operands:	$0 \leq k \leq 255$		
Operation:	$k - (W) \rightarrow (W)$		
Status Affected:	C, DC, Z		
Description:	The W register is subtracted (2's complement method) from the 8 literal 'k'. The result is placed in register.		
	C = 0	W > k	
	C = 1	$W \leq k$	
	DC = 0	W<3:0> > k<3:0>	

DC = 1

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{WDT} \text{ prescaler}, \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The Power-Down Status bit, \overline{PD} , is cleared. Time-out Status bit, \overline{TO} , is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - (W) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.
	C = 0 $W > f$

C = 0	W > f
C = 1	$W \leq f$
DC = 0	W<3:0> > f<3:0>
DC = 1	$W<3:0> \le f<3:0>$

W<3:0> ≤ k<3:0>

SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the Borrow flag (Carry) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

TABLE 36-5: MEMORY PROGRAMMING SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	Vінн	Voltage on MCLR/VPP Pin	8.0	—	9.0	V	(Note 2)
D111	Iddp	Supply Current during Programming	—	—	10	mA	
D112	VBE	VDD for Bulk Erase	2.7	—	VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN	—	VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write		1.0	—	mA	
D115	IDDPGM	Current on VDD during Erase/Write	_	5.0	—	mA	
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	—	_	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
D122	Vprw	VDD for Read/Write	VDDMIN	—	VDDMAX	V	
D123	Tiw	Self-Timed Write Cycle Time	—	2	2.5	ms	
D124	TRETD	Characteristic Retention	—	40	_	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K	_	_	E/W	$-0^{\circ}C \le TA \le +60^{\circ}C$, Lower byte last 128 addresses

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and block erase.

2: Required only if single-supply programming is disabled.

TABLE 36-27: I²C BUS DATA REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions		
SP100*	Тнідн	Clock High Time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6		μS	Device must operate at a minimum of 10 MHz		
			SSP module	1.5 Tcy		Тсү			
SP101*	TLOW	Clock Low Time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz		
			SSP module	1.5 TCY	_	Тсү			
SP102*	TR	SDA and SCL Rise Time	100 kHz mode	_	1000	ns			
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10-400 pF		
SP103*	TF	SDA and SCL Fall Time	100 kHz mode	_	250	ns			
			400 kHz mode	20 + 0.1 Св	250	ns	CB is specified to be from 10-400 pF		
SP106*	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns			
			400 kHz mode	0	0.9	μS			
SP107*	TSU:DAT	Data Input Setup Time	100 kHz mode	250	_	ns	(Note 2)		
			400 kHz mode	100		ns			
SP109*	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)		
			400 kHz mode	—	—	ns			
SP110*	TBUF	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free before a new transmission can start		
			400 kHz mode	1.3		μS			
SP111	SP111 CB Bus Capacitive Loading		_	400	pF				

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement, Tsu:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line, TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

Note: Unless otherwise noted, VIN = 5V, FOSC = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-7: IDD, EC Oscillator LP Mode, Fosc = 500 kHz, PIC16LF1764/5/8/9 Only.

FIGURE 37-8: IDD, EC Oscillator LP Mode, Fosc = 500 kHz, PIC16F1764/5/8/9 Only.

FIGURE 37-9: IDD Typical, EC Oscillator MP Mode, Fosc = 4 MHz, PIC16LF1764/5/8/9 Only.

FIGURE 37-10: IDD Typical, EC Oscillator MP Mode, Fosc = 4 MHz, PIC16F1764/5/8/9 Only.

FIGURE 37-11: IDD Typical, EC Oscillator HP Mode, PIC16LF1764/5/8/9 Only.

FIGURE 37-12: IDD Maximum, EC Oscillator HP Mode, PIC16LF1764/5/8/9 Only.

Note: Unless otherwise noted, VIN = 5V, FOSC = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-91: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 1.8V, PIC16LF1764/5/8/9 Only.

FIGURE 37-92: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16LF1764/5/8/9 Only.

FIGURE 37-93: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC16LF1764/5/8/9 Only.

FIGURE 37-94: Op Amp, Common Mode Rejection Ratio (CMRR), VDD = 3.0V.

FIGURE 37-95:Op Amp, Output VoltageHistogram, VDD = 3.0V, VCM = VDD/2.

FIGURE 37-96: Op Amp, Offset Over Common Mode Voltage, VDD = 3.0V, Temp. = 25°C.