

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x5b, 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1765-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-10: PIC16(L)F1769 MEMORY MAP (BANKS 8-23) BANK 8 BANK 9 BANK 10 B

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers	480h	Core Registers	500h	Core Registers	580h	Core Registers	600h	Core Registers	680h	Core Registers	700h	Core Registers	780h	Core Registers
40Bh	(Table 3-2)	48Bh	(Table 3-2)	50Bh	(Table 3-2)	58Bh	(Table 3-2)	60Bh	(Table 3-2)	68Bh	(Table 3-2)	70Bh	(Table 3-2)	78Bh	(Table 3-2)
40Ch	_	48Ch		50Ch	_	58Ch	_	60Ch	_	68Ch		70Ch	_	78Ch	_
40Dh	_	48Dh		50Dh		58Dh		60Dh	—	68Dh	COG1PHR	70Dh	COG2PHR	78Dh	
40Eh	HIDRVC	48Eh	_	50Eh	_	58Eh	_	60Eh	—	68Eh	COG1PHF	70Eh	COG2PHF	78Eh	—
40Fh	—	48Fh	—	50Fh	OPA1NCHS	58Fh	—	60Fh	—	68Fh	COG1BLKR	70Fh	COG2BLKR	78Fh	—
410h	_	490h	—	510h	OPA1PCHS	590h	DACLD	610h	—	690h	COG1BLKF	710h	COG2BLKF	790h	—
411h	—	491h		511h	OPA1CON	591h	DAC1CON0	611h		691h	COG1DBR	711h	COG2DBR	791h	
412h	_	492h	—	512h	OPA10RS	592h	DAC1REFL	612h	—	692h	COG1DBF	712h	COG2DBF	792h	
413h	T4TMR	493h	TMR3L	513h	OPA2NCHS	593h	DAC1REFH	613h	—	693h	COG1CON0	713h	COG2CON0	793h	—
414h	T4PR	494h	TMR3H	514h	OPA2PCHS	594h	DAC2CON0	614h		694h	COG1CON1	714h	COG2CON1	794h	PRG1RTSS
415h	T4CON	495h	TICON	515h	OPA2CON	595h	DAC2REFL	615h	—	695h	COGIRISO	715h	COG2RISU	795h	PRG1FISS
4160		496N	T3GCON	5160	UPA2UR5	596N	DAC2REFH	616N		696N		7160	COG2RIST	796N	PRGTINS
41711 410b	TACENCON	49711 400b		51711 510h		59711	DACOUNU	619h	PWW3DCL	609/11		71711 719b		79/11 709h	PRGICONU
41011 /10h	14K31	49011 100h		510h		59011		610h		600h	COGIEISO	710H	COG2EISO	79011 700h	PRGICON1 PRG1CON2
410h	TETMP	495H	TMR5I	514h		504h		61Ah		694h	COG1EIS1	714h	COG2EIS1	794h	PRG2RTSS
41Rh	T6PR	49Rh	TMR5H	51Bh		59Bh	-	61Bh	PWM4DCH	69Bh	COG1ESIMO	71Rh	COG2ESIMO	79Bh	PRG2FTSS
41Ch	T6CON	49Ch	T5CON	51Ch		59Ch		61Ch	PWM4CON	69Ch	COG1FSIM1	71Ch	COG2ESIM1	79Ch	PRG2INS
41Dh	T6HLT	49Dh	T5GCON	51Dh		59Dh		61Dh	_	69Dh	COG1ASD0	71Dh	COG2ASD0	79Dh	PRG2CON0
41Eh	T6CLKCON	49Eh	_	51Eh		59Eh		61Eh	_	69Eh	COG1ASD1	71Eh	COG2ASD1	79Eh	PRG2CON1
41Fh	T6RST	49Fh	_	51Fh	_	59Fh	_	61Fh	—	69Fh	COG1STR	71Fh	COG2STR	79Fh	PRG2CON2
420h		4A0h		520h		5A0h		620h	O an and Diamana	6A0h		720h		7A0h	
	General		General		General		General		General Purpose Register 48 Bytes						
	Purpose		Purpose		Purpose		Purpose	64Fh	rtegiotor to Byteo		Unimplemented		Unimplemented		Unimplemented
	Register		Register		Register		Register	650h	Linimplemented		Read as '0'		Read as '0'		Read as '0'
	80 Bytes		80 Bytes		80 Bytes		80 Bytes		Read as '0'						
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h-7Fh		70h-7Fh		70h-7Fh		70h-7Fh		70h-7Fh		70h-7Fh		70h-7Fh		70h-7Fh
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	
•						- ·		•	•	•					
-	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h		880h		900h	0 D I I	980h		A00h		A80h		B00h		B80h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
80Bh	(Table 3-2)	88Bh	(Table 3-2)	90Bh	(Table 3-2)	98Bh	(Table 3-2)	A0Bh	(Table 3-2)	A8Bh	(Table 3-2)	B0Bh	(Table 3-2)	B8Bh	(Table 3-2)
80Ch		88Ch		90Ch		98Ch		A0Ch		A8Ch		B0Ch		B8Ch	
	Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented
	Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h		8F0h		970h		9F0h		A70h		AF0h		B70h		BF0h	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
0751	70h-7Fh		70h-7Fh		70h-7Fh		70h-7Fh		70h-7Fh	A	70h-7Fh		70h-7Fh	DEEL	70h-7Fh
ŏ/⊦n		ŏ⊢⊦n		97FN		9FFN		A/Fn	1		1	B1FU		внни	

Legend: — = Unimplemented data memory locations, read as '0'.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the interrupt enable bit of the interrupt event is contained in the PIE1 or PIE2 register)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (see "Section 7.5 "Automatic Context Saving")
- · PC is loaded with the interrupt vector, 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

PIC16(L)F1764/5/8/9

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OSFIE	C2IE	C1IE		BCL1IE	C4IE ⁽¹⁾	C3IE ⁽¹⁾	CCP2IE ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is uncha	anged	x = Bit is unkr	Iown	U = Unimpler	mented bit, read	l as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
bit 7	OSFIE: Oscill 1 = Enables 0 = Disables	ator Fail Interru the Oscillator fa the Oscillator f	upt Enable bit ail interrupt ail interrupt				
bit 6	C2IE: Compa 1 = Enables t 0 = Disables	rator C2 Interru the Comparato the Comparato	upt Enable bit r C2 interrupt or C2 interrupt	:			
bit 5	C1IE: Compa 1 = Enables t 0 = Disables	rator C1 Interru the Comparato the Comparato	upt Enable bit r C1 interrupt pr C1 interrupt				
bit 4	Unimplemen	ted: Read as ')'				
bit 3	BCL1IE: MSS 1 = Enables 1 0 = Disables	SP Bus Collisio the MSSP bus the MSSP bus	n Interrupt En collision interr collision inter	able bit ^r upt rupt			
bit 2	C4IE: TMR6 t 1 = Enables t 0 = Disables	to T6PR Match the Comparato the Comparato	Interrupt Ena r C4 interrupt or C4 interrupt	ble bit ⁽¹⁾			
bit 1	bit 1 C3IE: TMR4 to T4PR Match Interrupt Enable bit ⁽¹⁾ 1 = Enables the Comparator C3 interrupt 0 = Disables the Comparator C3 interrupt						
bit 0	CCP2IE: CCF 1 = Enables 0 = Disables	P2 Interrupt Ena the CCP2 inter the CCP2 inter	able bit ⁽¹⁾ rupt rupt				
Note 1: PIC	16(L)F1768/9 o	only.					

REGISTER 7-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

8.0 POWER-DOWN MODE (SLEEP)

The Power-Down mode is entered by executing a SLEEP instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared, but keeps running if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. TO bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Timer1 and peripherals that operate from Timer1 continue operation in Sleep when the Timer1 clock source selected is:
 - LFINTOSC
 - T1CKI
 - Secondary oscillator
- 7. ADC is unaffected if the dedicated FRC oscillator is selected.
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance).
- 9. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- · Internal circuitry sourcing current from I/O pins
- · Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- · Modules using secondary oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or VSS externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 17.0 "5-Bit Digital-to-Analog Converter (DAC) Module" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

8.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled.
- 2. Brown-out Reset (BOR), if enabled.
- 3. Power-on Reset (POR), if enabled.
- 4. Watchdog Timer, if enabled.
- 5. Any external interrupt.
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information).

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to Section 6.12 "Determining the Cause of a Reset".

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should insert a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

PIC16(L)F1764/5/8/9

TABLE 10-1:FLASH MEMORY
ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)
PIC16(L)F1764		
PIC16(L)F1765	22	20
PIC16(L)F1768	32	32
PIC16(L)F1769		

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit, RD, of the PMCON1 register.

Once the read control bit is set, the Program Flash Memory controller will use the second instruction cycle to read the data. This causes the second instruction, immediately following the "BSF PMCON1, RD" instruction, to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

The PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a 2-cycle instruction on the next instruction after the RD bit is set.

FIGURE 10-1: FLASH PROGRAM

MEMORY READ

10.6 Register Definitions: Flash Program Memory Control

REGISTER 10-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PMDA	T<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit				
u = Bit is uncha	anged	x = Bit is unkn	nown	U = Unimpler	nented bit, read	l as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets

bit 7-0 PMDAT<7:0>: Read/Write Value for Least Significant bits of Program Memory bits

REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			PMDA	T<13:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PMDAT<13:8>: Read/Write Value for Most Significant bits of Program Memory bits

16.3 Register Definitions: ADC Control

REGISTER 16-1: ADCON0: ADC CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			CHS<4:0>			GO/DONE	ADON
bit 7			0.10 110				bit 0
Legend:							
R = Reada	able bit	W = Writable	bit				
u = Bit is u	nchanged	x = Bit is unkr	nown	U = Unimpler	mented bit, rea	d as '0'	
'1' = Bit is	set	'0' = Bit is clea	ared	-n/n = Value a	at POR and BC	R/Value at all c	ther Resets
<u></u>							
bit 7	Unimplemer	nted: Read as '	0'				
bit 6-2	CHS<4:0>: A	Analog Channel	Select bits				
	11111 = FV	R (Fixed Voltag	e Reference)	Buffer1 Output	(2)		
	11110 = DA	C1_output(")	ator(3)				
	11101 – Ter 11100 – DA	C2 output ^(1,5)	ator				
	11011 = DA	C3_output ⁽⁴⁾					
	11010 = DA	C4_output ^(4,5)					
	11001 = Re	served; no chai	nnel connecte	d			
	•						
	•	(5.6)					
	01111 = Sw	itched AN7 ^(3,6)					
	01110 = Sw	served: no chai	nnel connecte	h			
	01100 = Re	served; no cha	nnel connecte	d.			
	01011 = AN	11 ⁽⁵⁾					
	01010 = AN	10 ⁽³⁾					
	01001 - AN	8(5)					
	00111 = AN	7					
	00110 = AN	6					
	00101 = AN	5					
	00100 - AN	3					
	00010 = AN	2					
	00001 = AN	1					
L:1 4	00000 = AN		- Otatus hit				
DIT 1		ADC Conversion	n Status dit	tting this hit ata			
	This bit i	s automatically	cleared by ha	rdware when th	ne ADC conver	sion has comple	eted.
	0 = ADC cor	version comple	eted/not in pro	gress			
bit 0	ADON: ADC	Enable bit					
	1 = ADC is e	nabled					
	0 = ADC is d	isabled and cor	nsumes no ope	erating current			
Note 1:	See Section 17.0	"5-Bit Digital-	to-Analog Co	nverter (DAC)	Module" for r	nore informatior	۱.
2:	See Section 14.0	"Fixed Voltag	e Reference (FVR)" for more	e information.		
3:	See Section 15.0	"Temperature	e Indicator Mo	dule" for more	e information.		
4:	See Section 18.0	"10-Bit Digita	I-to-Analog C	onverter (DAC	C) Module" for	more information	on.
5:	PIC16(L)F1768/9	only.					

6: Input source is switched off when op amp override is forced tri-state. See Section 29.3 "Override Control".

21.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A software programmable prescaler is available for exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION_REG register.

Note:	The Watchdog Timer (WDT) uses its own
	independent prescaler.

There are eight prescaler options for the Timer0 module, ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register.

The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler.

21.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

Note: The Timer0 interrupt cannot wake the processor from Sleep since the timer is frozen during Sleep.

21.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in Table 36-12: Timer0 and Timer1 External Clock Requirements.

21.1.6 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.

23.6.3 EDGE-TRIGGERED HARDWARE LIMIT MODE

In Hardware Limit mode, the timer can be reset by the TMRx_ers external signal before the timer reaches the period count. Three types of Resets are possible:

- Reset on rising or falling edge (MODE<4:0>= 00011)
- Reset on rising edge (MODE<4:0> = 00100)
- Reset on falling edge (MODE<4:0> = 00101)

FIGURE 23-6: EDGE-TRIGGERED HARDWARE LIMIT MODE TIMING DIAGRAM (MODE<4:0> = 00100)

When the timer is used in conjunction with the CCP in PWM mode, then an early Reset shortens the period and restarts the PWM pulse after a two-clock delay. Refer to Figure 23-6.

24.4.4 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when T2PR/T4PR/T6PR is 255. The resolution is a function of the T2PR/T4PR/T6PR register value as shown by Equation 24-4.

EQUATION 24-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse-width value is greater than the period, the assigned PWM pin(s) will remain unchanged.

TABLE 24-2:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS ((Fosc = 20 MHz)	

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
T2PR Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6

TABLE 24-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
T2PR Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

24.4.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 5.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

24.4.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

24.4.7 PWM OUTPUT

The output of the CCP in PWM mode is the PWM signal generated by the module and described above. This output is available to the following peripherals:

- ADC trigger
- COG
- PRG
- DSM
- CLC
- Op amp override
- Timer2/4/6 Reset
- Any device pins

-n/n = Value at POR and BOR/Value at all other Resets

REGISTER 26-2: F	PWMxINTE: P	WMx INTERRUPT	ENABLE REGISTER
------------------	-------------	---------------	------------------------

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	—	—	_	OFIE	PHIE	DCIE	PRIE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit				
u = Bit is unchanged x = Bit is unknown U = Unimplemented bit, read as '0'						as '0'	

bit 7-4	Unimplemented: Read as '0'
bit 3	OFIE: Offset Interrupt Enable bit
	1 = Interrupts CPU on offset match
	0 = Does not interrupt CPU on offset match
bit 2	PHIE: Phase Interrupt Enable bit
	1 = Interrupts CPU on phase match
	0 = Does not interrupt CPU on phase match
bit 1	DCIE: Duty Cycle Interrupt Enable bit
	1 = Interrupts CPU on duty cycle match
	0 = Does not interrupt CPU on duty cycle match
bit 0	PRIE: Period Interrupt Enable bit
	1 = Interrupts CPU on period match

'0' = Bit is cleared

'1' = Bit is set

0 = Does not interrupt CPU on period match

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
FIS7	FIS6	FIS5	FIS4	FIS3	FIS2	FIS1	FIS0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit									
u = Bit is uncha	anged	x = Bit is unkr	nown	U = Unimpler	mented bit, read	l as '0'			
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets		
bit 7 bit 6	FIS7: COGx 1 = PWM3 o 0 = PWM3 o FIS6: COGx	Falling Event Ir utput is enable utput has no ef Falling Event Ir	nput Source 7 d as a falling e fect on the fall nput Source 6	Enable bit event input ling event Enable bit					
	1 = CCP2 ou 0 = CCP2 ou	Itput is enabled	as a falling e	vent input ng event					
bit 5	FIS5: COGX 1 = CCP1 ou 0 = CCP1 ou	Falling Event Ir itput is enablec itput has no eff	nput Source 5 I as a falling e fect on the falli	Enable bit vent input ng event					
bit 4	FIS4: COGx 1 = Compara 0 = Compara	Falling Event Ir ator 4 output is ator 4 output ha	nput Source 4 enabled as a t as no effect on	Enable bit falling event in the falling eve	put nt				
bit 3	bit 3 FIS3: COGx Falling Event Input Source 3 Enable bit 1 = Comparator 3 output is enabled as a falling event input 0 = Comparator 3 output has no effect on the falling event								
bit 2	bit 2 FIS2: COGx Falling Event Input Source 2 Enable bit 1 = Comparator 2 output is enabled as a falling event input 0 = Comparator 2 output has no effect on the falling event								
bit 1	FIS1: COGx 1 = Compara 0 = Compara	Falling Event Ir ator 1 output is ator 1 output ha	nput Source 1 enabled as a t as no effect on	Enable bit falling event in the falling eve	put nt				
bit 0	FIS0: COGx 1 = Pin select 0 = Pin select	Falling Event Ir cted with COG> cted with COG>	nput Source 0 (INPPS registe (INPPS registe	Enable bit er is enabled a er has no effec	s falling event in t on the falling e	nput event			

REGISTER 27-7: COGxFIS0: COGx FALLING EVENT INPUT SELECTION REGISTER 0

28.1.5 CLCx SETUP STEPS

The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the EN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (see Table 28-1).
- Clear any associated ANSELx bits.
- Set all TRISx bits associated with inputs.
- Clear all TRISx bits associated with outputs.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the POLy bits of the CLCxPOL register.
- Select the desired logic function with the MODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the POL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired Pin PPS Control register and also clear the TRISx bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the INTP bit in the CLCxCON register for a rising event.
 - Set the INTN bit in the CLCxCON register for a falling event.
 - Set the CLCxIE bit of the associated PIE registers.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the EN bit of the CLCxCON register.

28.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR registers will be set when either edge detector is triggered and its associated enable bit is set. The INTP enables rising edge interrupts and the INTN bit enables falling edge interrupts. Both are located in the CLCxCON register. To fully enable the interrupt, set the following bits:

- · EN bit of the CLCxCON register
- CLCxIE bit of the associated PIE registers
- INTP bit of the CLCxCON register (for a rising edge detection)
- INTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The CLCxIF bit of the associated PIR registers must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

28.3 Output Mirror Copies

Mirror copies of all CLCxCON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the CLCxOUT bits in the individual CLCxCON registers.

28.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

28.5 Operation During Sleep

The CLCx module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLCx module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLCx input source when the CLCx is enabled, the CPU will go Idle during Sleep, but the CLCx will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

REGISTER 28-11: CLCxDATA: CLCx DATA OUTPUT

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
—	—	—	—	—	MLC3OUT	MLC2OUT	MLC1OUT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-3	Unimplemented: Read as '0'
bit 2	MLC3OUT: Mirror copy of LC3OUT bit
bit 1	MLC2OUT: Mirror copy of LC2OUT bit
bit 0	$\ensuremath{\text{MLC10UT}}$: Mirror copy of LC10UT bit

TABLE 28-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Name	Bit7	Bit6	Bit5	Bit4	Blt3	Bit2	Bit1	Bit0	Register on Page
ANSELA	_	_	_	ANSA4	—		ANSA<2:0>		137
ANSELB ⁽¹⁾		ANSE	3<7:4>		—	—	_	_	143
ANSELC	ANSC<	<7:6> ⁽¹⁾	_	_	ANSC<3:0>				148
CLCxCON	EN	—	OUT	INTP	INTN		MODE<2:0>		338
CLCDATA	_	_	_	_	—	MLC3OUT	MLC2OUT	MLC10UT	345
CLCxGLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	341
CLCxGLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	342
CLCxGLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	343
CLCxGLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	344
CLCxPOL	POL	—	_	—	G4POL	G3POL	G2POL	G1POL	339
CLCxSEL0	_	_			D1S•	<5:0>			340
CLCxSEL1					D2S	<5:0>			340
CLCxSEL2					D3S•	<5:0>			340
CLCxSEL3					D4S•	<5:0>			341
CLCxPPS					C	LCxPPS<4:0	>		154, 156
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	101
PIE3	PWM6IE ⁽¹⁾	PWM5IE	COG1IE	ZCDIE	COG2IE ⁽¹⁾	CLC3IE	CLC2IE	CLC1IE	104
PIR3	PWM6IF ⁽¹⁾	PWM5IF	COG1IF	ZCDIF	COG2IF ⁽¹⁾	CLC3IF	CLC2IF	CLC1IF	107
RxyPPS	—	—	_			RxyPPS<4:0>			154
TRISA	—	_	TRISA	<5:4>	(3)		TRISA<2:0>		136
TRISB ⁽¹⁾		TRISE	3<7:4>		—	—	—	—	142
TRISC	TRISC	<7:6> ⁽¹⁾			TRISC	2<5:0>			147

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for CLCx module.

Note 1: PIC16(L)F1768/9 only.

2: Unimplemented, read as '1'.

PIC16(L)F1764/5/8/9

FIGURE 32-9: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

FIGURE 32-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
ANSELA	_	_	_	ANSA4	— ANSA<2:0>				137	
ANSELB ⁽¹⁾		ANSB	3<7:4>		—	—	—	—	143	
ANSELC	ANSC<	<7:6> ⁽¹⁾	—	—		ANSC	><3:0>		148	
INTCON	GIE	PEIE	TMR0IE	INTE	INTE IOCIE TMR0IF INTE IOCIF				101	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	102	
PIE2	OSFIE	C2IE	C1IE	—	BCL1IE	C4IE ⁽¹⁾	C3IE ⁽¹⁾	CCP2IE ⁽¹⁾	103	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	105	
PIR2	OSFIF	C2IF	C1IF	—	BCL1IF	C4IF ⁽¹⁾	C3IF ⁽¹⁾	CCP2IF ⁽¹⁾	106	
RxyPPS	—	_	—	RxyPPS<4:0>						
SSPCLKPPS	—	_	—		SS	PCLKPPS<4	:0>		154, 156	
SSPDATPPS	—	_	—		SS	PDATPPS<4	:0>		154, 156	
SSPSSPPS	—	_	—		S	SPSSPPS<4:	0>		154, 156	
SSP1ADD				ADD	<7:0>				430	
SSP1BUF	Synchronous	s Serial Port F	Receive Buffe	er/Transmit Re	egister				380*	
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPN	1<3:0>		426	
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	428	
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	429	
SSP1MSK	MSK<7:0>									
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	424	
TRISA	_	_	TRISA	∖<5:4>	(2)		TRISA<2:0>	•	136	
TRISB ⁽¹⁾		TRISE	3<7:4>		—	—	—	—	142	
TRISC	TRISC	<7:6> ⁽¹⁾			TRISC	><5:0>			147	

TABLE 32-3: SUMMARY OF REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the MSSP module in I^2C mode.

* Page provides register information.

Note 1: PIC16(L)F1768/9 only.

2: Unimplemented, read as '1'.

33.6 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore, cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

33.6.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCxSTA and TXxSTA Control registers must be configured for synchronous slave reception (see Section 33.5.2.4 "Synchronous Slave Reception Setup").
- If interrupts are desired, set the RCIE bit of the PIE1 register, and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCxREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set; thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit of the INTCON register is also set, then the Interrupt Service Routine at address, 004h, will be called.

33.6.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- The RCxSTA and TXxSTA Control registers must be configured for synchronous slave transmission (see Section 33.5.2.2 "Synchronous Slave Transmission Setup").
- The TXIF interrupt flag must be cleared by writing the output data to the TXxREG; thereby, filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits, TXIE of the PIE1 register and PEIE of the INTCON register, must set.

Upon entering Sleep mode, the device will be ready to accept clocks on the TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXxREG will transfer to the TSR and the TXIF flag will be set; thereby, waking the processor from Sleep. At this point, the TXxREG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set, then the Interrupt Service Routine at address, 0004h, will be called.

20-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimen	sion Limits	MIN	NOM	MAX	
Number of Pins	Ν		20		
Pitch	е		0.50 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.20 REF		
Overall Width	E		4.00 BSC		
Exposed Pad Width	E2	2.60	2.70	2.80	
Overall Length	D		4.00 BSC		
Exposed Pad Length	D2	2.60	2.70	2.80	
Contact Width	b	0.18	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-126B

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet Iogo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified Iogo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch Iogo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2014-2017, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1442-1