Microchip Technology - PIC16F1765-I/P Datasheet

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x5b, 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1765-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-13: PIC16(L)F1768/9 MEMORY MAP (BANKS 27-30)

	Bank 27		Bank 28		Bank 29	T '	Bank 30
D8Ch	—	E0Ch	—	E8Ch		F0Ch	
D8Dh	—	E0Dh	—	E8Dh		F0Dh	_
D8Eh	PWMEN	E0Eh	—	E8Eh		F0Eh	
D8Fh	PWMLD	E0Fh	PPSLOCK	E8Fh	—	F0Fh	CLCDATA
D90h	PWMOUT	E10h	INTPPS	E90h	RA0PPS	F10h	CLC1CON
D91h	PWM5PHL	E11h	TOCKIPPS	E91h	RA1PPS	F11h	CLC1POL
D92h	PWM5PHH	E12h	T1CKIPPS	E92h	RA2PPS	F12h	CLC1SEL0
D93h	PWM5DCL	E13h	T1GPPS	E93h	—	F13h	CLC1SEL1
D94h	PWM5DCH	E14h	CCP1PPS	E94h	RA4PPS	F14h	CLC1SEL2
D95h	PWM5PRL	E15h	CCP2PPS	E95h	RA5PPS	F15h	CLC1SEL3
D96h	PWM5PRH	E16h	COG1INPPS	E96h	—	F16h	CLC1GLS0
D97h	PWM50FL	E17h	COG2INPPS	E97h		F17h	CLC1GLS1
D98h	PWM50FH	E18h	—	E98h	_	F18h	CLC1GLS2
D99h	PWM5TMRL	E19h	T2INPPS	E99h	_	F19h	CLC1GLS3
D9Ah	PWM5TMRH	E1Ah	T3CKIPPS	E9Ah	_	F1Ah	CLC2CON
D9Bh	PWM5CON	E1Bh	T3GPPS	E9Bh		F1Bh	CLC2POL
D9Ch	PWM5INTE	E1Ch	T4INPPS	E9Ch	RB4PPS	F1Ch	CLC2SEL0
D9Dh	PWM5INTE	F1Dh	T5CKIPPS	F9Dh	RB5PPS	F1Dh	CLC2SEL1
D9Eh	PWM5CLKCON	E1Eh	TSGPPS	FQEh	RB6PPS	F1Eh	CLC2SEL2
DOEh		E1Eh	TEINIPPS	EQEN	RB7PPS	F1Eh	CLC2SEL3
		E20b		EAOb	PCOPPS	E20b	
		E21h				F21h	
DATH		EZ III	SSPDAIPPS	EAIII	RCIPPS	F2111	CLC2GLS1
DAZII			33733773	EAZII	RC2PPS		CLC2GLS2
DA3h	PWW6DCL	E23h	—	EA3h	RC3PPS	F23h	CLC2GLS3
DA4h	PWM6DCH	E24h	RXPPS	EA4h	RC4PPS	F24h	CLC3CON
DA5h	PWM6PRL	E25h	CKPPS	EA5h	RC5PPS	F25h	CLC3POL
DA6h	PWM6PRH	E26h	—	EA6h	RC6PPS	F26h	CLC3SEL0
DA7h	PWM60FL	E27h		EA7h	RC7PPS	F27h	CLC3SEL1
DA8h	PWM6OFH	E28h	CLCIN0PPS	EA8h	—	F28h	CLC3SEL2
DA9h	PWM6TMRL	E29h	CLCIN1PPS	EA9h	—	F29h	CLC3SEL3
DAAh	PWM6TMRH	E2Ah	CLCIN2PPS	EAAh	—	F2Ah	CLC3GLS0
DABh	PWM6CON	E2Bh	CLCIN3PPS	EABh	—	F2Bh	CLC3GLS1
DACh	PWM6INTE	E2Ch	PRG1FPPS	EACh	—	F2Ch	CLC3GLS2
DADh	PWM6INTF	E2Dh	PRG1RPPS	EADh	_	F2Dh	CLC3GLS3
DAEh	PWM6CLKCON	E2Eh	PRG2FPPS	EAEh	_	F2Eh	—
DAFh	PWM6LDCON	E2Fh	PRG2RPPS	EAFh	_	F2Fh	_
DB0h	PWM60FC0N	E30h	MD1CHPPS	EB0h		F30h	_
DB1h	_	E31h	MD1CLPPS	EB1h	_	F31h	_
DB2h	_	E32h	MD1MODPPS	EB2h	_	F32h	
DB3h	_	E33h	MD2CHPPS	EB3h	_	F33h	
DB4h	_	E34h	MD2CLPPS	FR4h	_	F34h	_
DB5b	_	E35h	MD2MODPPS	EB5h		E35h	
DB6h	_	E36h		FR6h		E36h	
DB7h		E37h		EB01		F37h	
DB8b	_	E38h		EB8h	_	F38b	
	_	ESON	_	EDON		ESOP	
	_	L J 911	_			F34F	
DBAN	_	EJAN	—	EBAN		FJAN	_
DRRU	—	E3Bh	—	FRRU		F3Bh	—
DBCh		E3Ch	—	EBCh		F3Ch	
DBDh	—	E3Dh	—	EBDh		F3Dh	—
DBEh	—	E3Eh	—	EBEh		F3Eh	—
DBFh	—	E3Fh	_	EBFh		F3Fh	
DC0h		E40h		EC0h		F40h	
	—		—		—		—
		,					

PIC16(L)F1764/5/8/9

TABLE 3-16: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other Resets	
Banl	k 12											
60Ch to 616h	_	Unimpleme	nted							_	_	
617h	PWM3DCL	DC•	<1:0>	—	_	—	—	—	_	хх	uu	
618h	PWM3DCH				DC<	9:2>				XXXX XXXX	uuuu uuuu	
619h	PWM3CON	EN	_	OUT	POL	—	—	—	_	0-00	0-00	
61Ah	PWM4DCL ⁽²⁾	DC•	<1:0>	—	—	—	—	—	—	00	uu	
61Bh	PWM4DCH ⁽²⁾				DC<	9:2>				0000 0000	uuuu uuuu	
61Ch	PWM4CON ⁽²⁾	EN	_	OUT	POL	—	—	—	_	0-00	0-00	
61Dh 61Fh	_	Unimpleme	nted	_	_							
Banl	Bank 13											
68Ch	—	Unimpleme	Jnimplemented									
68Dh	COG1PHR	—	_	COG Rising Edg	e Phase Delay		00 0000	00 0000				
68Eh	COG1PHF	_	_	COG Falling Edg	ge Phase Delay	00 0000	00 0000					
68Fh	COG1BLKR	_	_	COG Rising Edg	e Blanking Cou		00 0000	00 0000				
690h	COG1BLKF	_	_	COG Falling Edg	ge Blanking Cou	int Register				00 0000	00 0000	
691h	COG1DBR	_	_	COG Rising Edg	e Dead-band C	ount Register				00 0000	00 0000	
692h	COG1DBF	_	_	COG Falling Edg	ge Dead-band C	Count Register				00 0000	00 0000	
693h	COG1CON0	EN	LD	—	CS<	1:0>		MD<2:0>		00-0 0000	00-0 0000	
694h	COG1CON1	RDBS	FDBS	—	_	POLD	POLC	POLB	POLA	00 0000	00 0000	
695h	COG1RIS0				RIS<	7:0>				0000 0000	0000 0000	
696h	COG1RIS1	RIS15 ⁽²⁾				RIS<14:8>				0000 0000	0000 0000	
697h	COG1RSIM0				RSIM<	<7:0>				0000 0000	0000 0000	
698h	COG1RSIM1	RSIM15 ⁽²⁾			F	RSIM<14:8>				0000 0000	0000 0000	
699h	COG1FIS0		 FIS<7:0>								0000 0000	
69Ah	COG1FIS1	FIS15 ⁽²⁾	FIS15 ⁽²⁾ FIS<14:8>								0000 0000	
69Bh	COG1FSIM0				FSIM<	<7:0>				0000 0000	0000 0000	
69Ch	COG1FSIM1	FSIM15 ⁽²⁾			-	-SIM<14:8>				0000 0000	0000 0000	
69Dh	COG1ASD0	ASE	ARSEN	ASDBD)<1:0>	ASDAC	C<1:0>	_	—	0001 01	0001 01	
69Eh	COG1ASD1	AS7E	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	0000 0000	0000 0000	
69Fh	COG1STR	SDATD	SDATC	SDATB	SDATA	STRD	STRC	STRB	STRA	0000 0000	0000 0000	

 $\label{eq:legend: second condition; -= unimplemented, read as `0'; \ \texttt{r} = \texttt{reserved}.$ Shaded locations are unimplemented, read as `0'.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1768/9 only.

3: PIC16(L)F1764/5 only.

4: Unimplemented on PIC16LF1764/5/8/9.

6.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

6.14 Register Definitions: Power Control

REGISTER 6-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	STKOVF: Stack Overflow Flag bit
	1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or is cleared by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or is cleared by firmware
bit 5	Unimplemented: Read as '0'
bit 4	RWDT: Watchdog Timer Reset Flag bit
	1 = A Watchdog Timer Reset has not occurred or is set to '1' by firmware
	0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A $\overline{\text{MCLR}}$ Reset has not occurred or is set to '1' by firmware
	0 = A MCLR Reset has occurred (cleared by hardware)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or is set to '1' by firmware
	0 = A RESET instruction has been executed (cleared by hardware)
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = No Brown-out Reset occurred
	 A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

The PCON register bits are shown in Register 6-2.

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for interrupts:

- · Operation
- Interrupt Latency
- · Interrupts during Sleep
- INT Pin
- Automatic Context Saving

FIGURE 7-1: INTERRUPT LOGIC

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 7-1.

8.3 Register Definitions: Voltage Regulator Control

REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1
—	_	_	—	—	—	VREGPM	r
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	r = Reserved bit
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-2 Unimplemented: Read as '0'

VREGPM: Voltage Regulator Power Mode Selection bit

- 1 = Low-Power Sleep mode is enabled in Sleep⁽²⁾
 - Draws lowest current in Sleep, slower wake-up.
- 0 =Normal Power mode is enabled in Sleep⁽²⁾
- Draws higher current in Sleep, faster wake-up.

bit 0 **Reserved:** Read as '1'. Maintain this bit set.

Note 1: PIC16F1764/5/8/9 only.

bit 1

2: See Section 36.0 "Electrical Specifications".

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	101		
IOCAP	—	—		IOCAP<5:0>							
IOCAN	—	_			IOCAN	<5:0>			162		
IOCAF	—	_			IOCAF	<5:0>			163		
IOCBP ⁽¹⁾		IOCB	P<7:4>		_	_	—	—	163		
IOCBN ⁽¹⁾		IOCBI	√<7:4>		—	—	—	—	164		
IOCBF ⁽¹⁾		IOCBI	=<7:4>								
IOCCP	IOCCP<7:6> ⁽¹⁾			IOCCP<5:0>							
IOCCN	IOCCN.	<7:6> ⁽¹⁾		IOCCN<5:0>							165
IOCCF	IOCCF.	<7:6>(1)			IOCCF	<5:0>			166		
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	102		
PIE2	OSFIE	C2IE	C1IE	_	BCL1IE	C4IE ⁽¹⁾	C3IE ⁽¹⁾	CCP2IE ⁽¹⁾	103		
PIE3	PWM6IE ⁽¹⁾	PWM5IE	COG1IE	ZCDIE	COG2IE ⁽¹⁾	CLC3IE	CLC2IE	CLC1IE	104		
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	105		
PIR2	OSFIF	C2IF	C1IF		BCL1IF	C4IF ⁽¹⁾	C3IF ⁽¹⁾	CCP2IF ⁽¹⁾	106		
PIR3	PWM6IF ⁽¹⁾	PWM5IF	COG1IF	ZCDIF	COG2IF ⁽¹⁾	CLC3IF	CLC2IF	CLC1IF	107		
STATUS	_	_	_	TO	PD	Z	DC	С	27		
VREGCON ⁽²⁾	—	—	—	—	—	—	VREGPM	r	112		
WDTCON	_	_		V	VDTPS<4:0>	,		SWDTEN	115		

Legend: — = unimplemented location, read as '0'; r = Reserved bit. Shaded cells are not used in Power-Down mode.

Note 1: PIC16(L)F1768/9 only.

2: PIC16F1764/5/8/9 only.

9.0 WATCHDOG TIMER (WDT)

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a <code>CLRWDT</code> instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- Independent clock source
- Multiple operating modes:
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (nominal)
- Multiple Reset conditions
- Operation during Sleep

16.3 Register Definitions: ADC Control

REGISTER 16-1: ADCON0: ADC CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			CHS<4:0>			GO/DONE	ADON
bit 7			0.10 110				bit 0
Legend:							
R = Reada	able bit	W = Writable	bit				
u = Bit is u	nchanged	x = Bit is unkr	nown	U = Unimpler	mented bit, rea	d as '0'	
'1' = Bit is	set	'0' = Bit is clea	ared	-n/n = Value a	at POR and BC	R/Value at all c	ther Resets
<u></u>							
bit 7	Unimplemer	nted: Read as '	0'				
bit 6-2	CHS<4:0>: A	Analog Channel	Select bits				
	11111 = FV	R (Fixed Voltag	e Reference)	Buffer1 Output	(2)		
	11110 = DA	C1_output(")	ator(3)				
	11101 – Ter 11100 – DA	C2 output ^(1,5)	ator				
	11011 = DA	C3_output ⁽⁴⁾					
	11010 = DA	C4_output ^(4,5)					
	11001 = Re	served; no chai	nnel connecte	d			
	•						
	•	(5.6)					
	01111 = Sw	itched AN7 ^(3,6)					
	01110 = Sw	served: no chai	nnel connecte	h			
	01100 = Re	served; no cha	nnel connecte	d.			
	01011 = AN	11 ⁽⁵⁾					
	01010 = AN	10 ⁽³⁾					
	01001 - AN	8(5)					
	00111 = AN	7					
	00110 = AN	6					
	00101 = AN	5					
	00100 - AN	3					
	00010 = AN	2					
	00001 = AN	1					
L:1 4	00000 = AN		- Otatus hit				
DIT 1		ADC Conversion	n Status dit	tting this hit ata			
	This bit i	s automatically	cleared by ha	rdware when th	ne ADC conver	sion has comple	eted.
	0 = ADC cor	version comple	eted/not in pro	gress			
bit 0	ADON: ADC	Enable bit					
	1 = ADC is e	nabled					
	0 = ADC is d	isabled and cor	nsumes no ope	erating current			
Note 1:	See Section 17.0	"5-Bit Digital-	to-Analog Co	nverter (DAC)	Module" for r	nore informatior	۱.
2:	See Section 14.0	"Fixed Voltag	e Reference (FVR)" for more	e information.		
3:	See Section 15.0	"Temperature	e Indicator Mo	dule" for more	e information.		
4:	See Section 18.0	"10-Bit Digita	I-to-Analog C	onverter (DAC	C) Module" for	more information	on.
5:	PIC16(L)F1768/9	only.					

6: Input source is switched off when op amp override is forced tri-state. See Section 29.3 "Override Control".

17.6 Register Definitions: DAC Control

Long bit name prefixes for the 5-bit DAC peripherals are shown in Table 17-2. Refer to **Section 1.1 "Register and Bit Naming Conventions"** for more information.

TABLE 17-2: BIT NAME PREFIXES

Peripheral	Bit Name Prefix
DAC3	DAC3
DAC4 ⁽¹⁾	DAC4

Note 1: PIC16(L)F1768/9 devices only.

REGISTER 17-1: DACxCON0: DACx CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
EN	—	OE1	—	PSS<1:0>		—	NSS
bit 7							bit 0

Legend:							
R = Readable bit		W = Writable bit					
u = Bit is unch	anged	x = Bit is unknown	U = Unimplemented bit, read as '0'				
'1' = Bit is set		'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets				
bit 7	EN: DACx Er	nable bit					
	1 = DACx is	enabled					
	0 = DACx is	disabled					
bit 6	Unimplemer	nted: Read as '0'					
bit 5	OE1: DACx \	oltage Output Enable bit					
	1 = DACx vo	Itage level is also an output on the DACxOUT1 pin					
	0 = DACx vc	Itage level is disconnected from the DACxOUT1 pin					
bit 4	Unimplemented: Read as '0'						
bit 3-2	PSS<1:0>: D	ACx Positive Source Select	bits				
	11 = Reserve	ed, do not use					
	10 = FVR Bu	Iffer2 output					
	01 = VREF+ p	yin					
	00 = VDD						
bit 1	Unimplemer	nted: Read as '0'					
bit 0	NSS: DACx I	Negative Source Select bit					
	1 = VREF- pi	n					
	0 = Vss						

20.0 ZERO-CROSS DETECTION (ZCD) MODULE

The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero-crossing threshold is the zero-crossing reference voltage, ZCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current-limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram (Figure 20-2).

The ZCD module is useful when monitoring an AC waveform for, but not limited to, the following purposes:

- A/C period measurement
- · Accurate long term time measurement
- · Dimmer phase delayed drive
- · Low EMI cycle switching

20.1 External Resistor Selection

The ZCD module requires a current-limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 20-1 and Figure 20-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it doesn't interfere with the current source and sink.

FIGURE 20-2: SIMPLIFIED ZCD BLOCK DIAGRAM

22.0 TIMER1/3/5 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-Bit Timer/Counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- · 2-bit prescaler
- · Dedicated 32 kHz oscillator circuit
- · Optionally synchronized comparator out
- Multiple Timer1 gate (count enable) sources
- Interrupt-on-overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- · Time base for the capture/compare function
- Auto-conversion trigger (with CCP)

- Selectable gate source polarity
- Gate Toggle mode
- Gate Single-Pulse mode
- Gate value status
- Gate event interrupt

Figure 22-1 is a block diagram of the Timer1 module.

This device has three instances of Timer1 type modules. They include:

- Timer1
- Timer3
- Timer5

All references to Timer1 and Timer1 gate apply equally to Timer3 and Timer5.

FIGURE 22-1: TIMER1 BLOCK DIAGRAM

For a step-by-step procedure on how to set up this module for PWM operation, refer to Section 25.10.1 "Setup for PWM Operation Using PWMx Output Pins".

FIGURE 25-2: PWM OUTPUT

25.1 PWMx Pin Configuration

All PWM outputs are multiplexed with the PORT data latch. The user must configure the pins as outputs by clearing the associated TRISx bits.

25.2 Fundamental Operation

The PWM module produces a 10-bit resolution output. Timer2 and T2PR set the period of the PWM. The PWMxDCL and PWMxDCH registers configure the duty cycle. The period is common to all PWM modules, whereas the duty cycle is independently controlled.

Note:	The Timer2 postscaler is not used in the
	determination of the PWM frequency. The
	postscaler could be used to have a servo
	update rate at a different frequency than the
	PWM output.

All PWM outputs associated with Timer2 are set when TMR2 is cleared. Each PWMx is cleared when TMR2 is equal to the value specified in the corresponding PWMxDCH (8 MSbs) and PWMxDCL<7:6> (2 LSbs) registers. When the value is greater than or equal to T2PR, the PWM output is never cleared (100% duty cycle).

Note: The PWMxDCH and PWMxDCL registers are double-buffered. The buffers are updated when Timer2 matches T2PR. Care should be taken to update both registers before the timer match occurs.

25.3 **PWM** Output Polarity

The output polarity is inverted by setting the PWMxPOL bit of the PWMxCON register.

25.4 PWM Period

The PWM period is specified by the T2PR register of Timer2. The PWM period can be calculated using the formula of Equation 25-1.

EQUATION 25-1: PWM PERIOD

 $PWM Period = [T2PR + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 Prescale Value)

Note: Tosc = 1/Fosc.

When TMR2 is equal to T2PR, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The PWM output is active. (Exception: When the PWM duty cycle = 0%, the PWM output will remain inactive.)
- The PWMxDCH and PWMxDCL register values are latched into the buffers.

Note: The Timer2 postscaler has no effect on the PWM operation.

25.5 PWM Duty Cycle

The PWM duty cycle is specified by writing a 10-bit value to the PWMxDCH and PWMxDCL register pair. The PWMxDCH register contains the eight MSbs and the PWMxDCL<7:6>, the two LSbs. The PWMxDCH and PWMxDCL registers can be written to at any time.

Equation 25-2 is used to calculate the PWM pulse width.

Equation 25-3 is used to calculate the PWM duty cycle ratio.

EQUATION 25-2: PULSE WIDTH

$$Pulse Width = (PWMxDCH:PWMxDCL<7:6>) \bullet$$

TOSC • (TMR2 Prescale Value)

Note: Tosc = 1/Fosc.

EQUATION 25-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(PWMxDCH:PWMxDCL<7:6>)}{4(T2PR+1)}$$

The 8-bit timer TMR2 register is concatenated with the two Least Significant bits of 1/Fosc, adjusted by the Timer2 prescaler to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

25.6 PWM Resolution

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

REGISTER 27-13: COGxSTR: COGx STEERING CONTROL REGISTER 1⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SDATD	SDATC	SDATB	SDATA	STRD	STRC	STRB	STRA
bit 7	·	•					bit 0
Legend:							
R = Reada	able bit	W = Writable	bit				
u = Bit is u	inchanged	x = Bit is unk	nown	U = Unimplem	ented bit, read	as '0'	
'1' = Bit is	set	'0' = Bit is cle	ared	-n/n = Value at	t POR and BOF	R/Value at all ot	her Resets
bit 7	SDATD: CO	GxD Static Out	put Data bit				
	1 = COGxD	static data is h	igh				
	0 = COGxD	static data is lo	W				
bit 6	SDATC: CO	GxC Static Out	put Data bit				
	1 = COGxC	static data is h	igh				
	0 = COGxC	static data is lo	W				
bit 5	SDATB: CO	GxB Static Out	put Data bit				
	1 = COG x B	static data is h	igh				
L :							
DIC 4		GXA Static Out					
	1 = COGXA 0 = COGXA	static data is h	ign w				
bit 3	STRD: COG	xD Steering Co	ontrol bit				
bito	1 = COGxD	output has the	COGxD wave	form with polarity	control from the	he POI D bit	
	0 = COGxD	output is the st	tatic data level	determined by th	ne SDATD bit		
bit 2	STRC: COG	SxC Steering Co	ontrol bit				
	1 = COGxC	output has the	COGxC wave	form with polarity	y control from th	he POLC bit	
	0 = COGxC	output is the st	atic data level	determined by th	ne SDATC bit		
bit 1	STRB: COG	SxB Steering Co	ntrol bit				
	1 = COGxB	output has the	COGxB wave	form with polarity	<pre>/ control from th</pre>	ne POLB bit	
	0 = COGxB	output is the st	atic data level	determined by th	ne SDATB bit		
bit 0	STRA: COG	SxA Steering Co	ntrol bit				
	1 = COGxA	output has the	COGxA wave	form with polarity	/ control from the	ne POLA bit	
	0 = COGXA	oulput is the st	alic data level	determined by th	IE SDATA DI		
Note 1:	Steering is activ	e only when the	e MD<2:0> bits	s of the COGxCC	0N0 register =	00x (see Regis	ter 27-1).

30.9 Slope Compensation Application

An example slope compensation circuit is shown in Figure 30-6. The PRG input voltage is PRGxIN which shares an I/O pin with the op amp output. The op amp output is designed to operate at the expected peak current sense voltage, which we'll call VREF. The PRG output voltage starts at VREF and should fall at a rate less than half the target circuit current sense voltage rate of rise. Therefore, the compensator slope, expressed as volts per μ s, can be computed by Equation 30-1.

EQUATION 30-1: COMPENSATOR SLOPE

For example, when the circuit is using a 1 Ω current sense resistor and the peak current is 1A, then the peak current expressed as a voltage is 1V. Therefore, for this example the op amp output should be designed to operate at 1V. If the power supply PWM frequency is 1 MHz, then the period is 1 μ s. Therefore, the desired slope is 0.5 V/ μ s, which is computed as shown in Equation 30-2.

EQUATION 30-2: CALCULATION EXAMPLE

$$\frac{\frac{V_{REF}}{2}}{PWM Period (\mu s)} = \frac{\frac{1}{2}}{1 \mu s} = 0.5 V/\mu s$$

Note: The setting for $0.5V/\mu s$ is ISET<4:0> = 6

FIGURE 30-6: EXAMPLE SLOPE COMPENSATION CIRCUIT

TABLE 33-3: BAUD RATE FORMULAS

Configuration Bits				Boud Boto Formula	
SYNC	BRG16	BRGH	BRG/EUSART Mode		
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]	
0	0	1	8-bit/Asynchronous		
0	1	0	16-bit/Asynchronous	FOSC/[16 (II+1)]	
0	1	1	16-bit/Asynchronous		
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]	
1	1	x	16-bit/Synchronous		

Legend: x = Don't care, n = value of SPxBRGH, SPxBRGL register pair.

TABLE 33-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	442
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	441
SP1BRGL	BRG<7:0>							443	
SP1BRGH	BRG<15:8>						443		
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	440

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.

RRF	Rotate Right f through Carry				
Syntax:	[<i>label</i>] RRF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	See description below				
Status Affected:	С				
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				
	C Register f				

SUBLW	Subtract W	Subtract W from literal			
Syntax:	[label] SL	IBLW k			
Operands:	$0 \leq k \leq 255$				
Operation:	k - (W) → (W)			
Status Affected:	C, DC, Z				
Description:	The W regist complement literal 'k'. The register.	er is subtracted (2's method) from the 8-bit result is placed in the W			
	C = 0	W > k			
	C = 1	$W \leq k$			
	DC = 0	W<3:0> > k<3:0>			

DC = 1

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{WDT} \text{ prescaler}, \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The Power-Down Status bit, \overline{PD} , is cleared. Time-out Status bit, \overline{TO} , is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - (W) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.
	C = 0 $W > f$

C = 0	W > f
C = 1	$W \leq f$
DC = 0	W<3:0> > f<3:0>
DC = 1	$W<3:0> \le f<3:0>$

W<3:0> ≤ k<3:0>

SUBWFB	Subtract W from f with Borrow			
Syntax:	SUBWFB f {,d}			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$			
Status Affected:	C, DC, Z			
Description:	Subtract W and the Borrow flag (Carry) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.			

TABLE 36-5: MEMORY PROGRAMMING SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	Vінн	Voltage on MCLR/VPP Pin	8.0	—	9.0	V	(Note 2)
D111	Iddp	Supply Current during Programming	—	—	10	mA	
D112	VBE	VDD for Bulk Erase	2.7	—	VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN	—	VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write		1.0	—	mA	
D115	IDDPGM	Current on VDD during Erase/Write	_	5.0	—	mA	
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	—	_	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
D122	Vprw	VDD for Read/Write	VDDMIN	—	VDDMAX	V	
D123	Tiw	Self-Timed Write Cycle Time	—	2	2.5	ms	
D124	TRETD	Characteristic Retention	—	40	_	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K	_	_	E/W	$-0^{\circ}C \le TA \le +60^{\circ}C$, Lower byte last 128 addresses

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and block erase.

2: Required only if single-supply programming is disabled.

TABLE 36-7: CLOCK OSCILLATOR TIMING REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	0.5	MHz	External Clock (ECL) External Clock (ECM)	
			DC	—	4	MHz		
			DC	—	20	MHz	External Clock (ECH)	
		Oscillator Frequency ⁽¹⁾	—	32.768	—	kHz	LP Oscillator	
			0.1	—	4	MHz	XT Oscillator	
			1	—	4	MHz	HS Oscillator	
			1	—	20	MHz	HS Oscillator, VDD > 2.7V	
			DC	—	4	MHz	EXTRC, VDD > 2.0V	
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	—	∞	μS	LP Oscillator	
			250	—	∞	ns	XT Oscillator	
			50	—	∞	ns	HS Oscillator	
			50	—	∞	ns	External Clock (EC)	
		Oscillator Period ⁽¹⁾	_	30.5	—	μS	LP Oscillator	
			250	—	10,000	ns	XT Oscillator	
			50	—	1,000	ns	HS Oscillator	
			250	—	—	ns	EXTRC	
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	125	TCY	DC	ns	Tcy = 4/Fosc	
OS04*	TosH, TosL	External CLKIN High, External CLKIN Low	2	—	—	μS	LP Oscillator	
			100	—	—	ns	XT Oscillator	
			20	—	—	ns	HS Oscillator	
OS05*	TosR, TosF	External CLKIN Rise, External CLKIN Fall	0	—	∞	ns	LP Oscillator	
			0	—	∞	ns	XT Oscillator	
			0	—	∞	ns	HS Oscillator	

Standard Operating Conditions (unless otherwise stated)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 36-17: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

PIC16(L)F1764/5/8/9

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-13: IDD Typical, EC Oscillator HP Mode, PIC16F1764/5/8/9 Only.

FIGURE 37-14: IDD Maximum, EC Oscillator HP Mode, PIC16F1764/5/8/9 Only.

FIGURE 37-15: IDD LFINTOSC Mode, Fosc = 31 kHz, PIC16LF1764/5/8/9 Only.

FIGURE 37-16: IDD LFINTOSC Mode, Fosc = 31 kHz, PIC16F1764/5/8/9 Only.

FIGURE 37-17: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16LF1764/5/8/9 Only.

FIGURE 37-18: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16F1764/5/8/9 Only.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072B