

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x5b, 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1765t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DS40001775C-page 124

© 2014-2017 Microchip Technology Inc

C16(L)F1764/5/8/9

10.5 Write/Verify

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 10-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART

11.2 Register Definitions: PORTA

REGISTER 11-1: PORTA: PORTA REGISTER

U-0	U-0	R/W-x/x	R/W-x/x	R-x/x	R/W-x/x	R/W-x/x	R/W-x/x
_	—			RA<	:5:0>(1)		
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit				
u = Bit is uncha	anged	x = Bit is unkr	nown	U = Unimpler	nented bit, read	as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
bit 7-6 Unimplemented: Read as '0'							

- bit 5-0 RA<5:0>: PORTA I/O Value bits⁽¹⁾
 - 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL
- **Note 1:** Writes to PORTA are actually written to the corresponding LATA register. Reads from PORTA are the return of actual I/O pin values.

REGISTER 11-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	U-1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	TRISA<5:4>		(1)		TRISA<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-6	Unimplemented: Read as '0'
bit 5-4	TRISA<5:4>: PORTA Tri-State Control bit
	1 = PORTA pin is configured as an input (tri-stated)0 = PORTA pin is configured as an output
bit 3	Unimplemented: Read as '1' ⁽¹⁾
bit 2-0	TRISA<2:0>: PORTA Tri-State Control bit
	1 = PORTA pin is configured as an input (tri-stated)

Note 1: Unimplemented, read as '1'.

11.3 PORTB Registers (PIC16(L)F1768/9 only)

11.3.1 DATA REGISTER

PORTB is a 4-bit wide, bidirectional port. The corresponding Data Direction register is TRISB (Register 11-10). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 11-9) reads the status of the pins, whereas writing to it, will write to the PORT latch. All write operations are Read-Modify-Write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORTB Data Latch (LATB).

11.3.2 DIRECTION CONTROL

The TRISB register (Register 11-10) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

11.3.3 OPEN-DRAIN CONTROL

The ODCONB register (Register 11-14) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONB bit is set, the corresponding port output becomes an open-drain driver, capable of sinking current only. When an ODCONB bit is cleared, the corresponding port output pin is the standard push-pull drive, capable of sourcing and sinking current.

11.3.4 SLEW RATE CONTROL

The SLRCONB register (Register 11-15) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONB bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONB bit is cleared, the corresponding port pin drive slews at the maximum rate possible.

11.3.5 INPUT THRESHOLD CONTROL

The INLVLB register (Register 11-16) controls the input voltage threshold for each of the available PORTB input pins. A selection between the Schmitt Trigger CMOS or the TTL compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTB register and also the level at which an Interrupt-On-Change occurs, if that feature is enabled. See Table 36-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

11.3.6 ANALOG CONTROL

The ANSELB register (Register 11-12) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and the ANSELB bit set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing Read-Modify-Write instructions on the affected port.

Note: The ANSELB bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSELx bits must be initialized to '0' by user software.

11.3.7 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other functions are selected with the Peripheral Pin Select logic. See **Section 12.0 "Peripheral Pin Select (PPS) Module"** for more information. Analog input functions, such as ADC and op amp inputs, are not shown in the Peripheral Pin Select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELB register. Digital output functions may continue to control the pin when it is in Analog mode.

20.9 Register Definitions: ZCD Control

Long bit name prefixes for the Zero-Cross Detect peripheral are shown in Table 20-1. Refer to **Section 1.1.2.2** "Long Bit Names" for more information

TABLE 20-1: BIT NAME PREFIXES

Peripheral	Bit Name Prefix
ZCD1	ZCD1

REGISTER 20-1: ZCDxCON: ZERO-CROSS DETECTION x CONTROL REGISTER

R/W-0/0	U-0	R-x/x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
EN ⁽¹⁾	—	OUT	POL	—	—	INTP	INTN
bit 7							bit 0

[
Legend:					
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'		
u = Bit is uncha	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets		
'1' = Bit is set		'0' = Bit is cleared	q = value depends on configuration bits		
bit 7	EN: Zero-Cro	oss Detection Enable bit ⁽¹⁾			
	1 = Zero-Cro	ss Detect is enabled; ZCD p	pin is forced to output to source and sink current		
	0 = Zero-Cro	ss Detect is disabled; ZCD	pin operates according to PPS and TRISx controls		
bit 6	Unimplemen	ted: Read as '0'			
bit 5	OUT: Zero-Cr	ross Detection Logic Level b	it		
	POL bit = 0:				
	1 = ZCD pin	is sinking current			
	0 = ZCD pin	is sourcing current			
	POL bit = 1:				
	1 = ZCD pin	is sourcing current			
	0 = ZCD pin	is sinking current			
bit 4	POL: Zero-Ci	ross Detection Logic Output	Polarity bit		
	1 = ZCD logi	c output is inverted			
	0 = ZCD logi	c output is not inverted			
bit 3-2	Unimplemen	ted: Read as '0'			
bit 1	INTP: Zero-Cross Positive Edge Interrupt Enable bit				
	1 = ZCDIF bit is set on low-to-high OUT transition				
	0 = ZCDIF bit is unaffected by low-to-high OUT transition				
bit 0	INTN: Zero-C	cross Negative Edge Interrup	ot Enable bit		
	1 = ZCDIF bi	it is set on high-to-low OUT	transition		
0 = ZCDIF bit is unaffected by high-to-low OUT transition					
		affect where the ZOD Or affe	wration bit is closed		

Note 1: The EN bit has no effect when the ZCD Configuration bit is cleared.

FIGURE 26-12: OFFSET MATCH ON INCREMENTING TIMER TIMING DIAGRAM

PIC16(L)F1764/5/8/9

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
RIS15 ⁽¹⁾	RIS14	RIS13	RIS12	RIS11	RIS10	RIS9	RIS8
bit 7			·		•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is unch	anged	x = Bit is unkr	nown	U = Unimpler	mented bit, read	l as '0'	
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
bit 7	RIS15: COG	k Rising Event	Input Source	15 Enable bit ⁽¹)		
	1 = DSM2 M	D2_out is enab	oled as a rising	g event input			
	0 = DSM2 M	D2_out has no	effect on the	rising event			
bit 6	RIS14: COG	x Rising Event	Input Source	14 Enable bit			
	1 = DSM1 M	D1_out output	is enabled as	a rising event	input		
		D1_out has no	effect on the	rising event			
bit 5		k Rising Event	Input Source	13 Enable bit			
	1 = CLC3 ou 0 = CLC3 ou	itput is enabled	ect on the rising	ent input a event			
bit 4	RIS12: COG	x Rising Event	Input Source '	12 Enable bit			
Sit 1	1 = CLC2 ou	tout is enabled	as a rising ev	ent input			
	0 = CLC2 ou	tput has no effe	ect on the risir	ng event			
bit 3	RIS11: COG	Rising Event	Input Source '	11 Enable bit			
	1 = CLC1 ou	tput is enabled	as a rising ev	ent input			
	0 = CLC1 ou	tput has no effe	ect on the risir	ng event			
bit 2	RIS10: COG	x Rising Event	Input Source	10 Enable bit			
	1 = PWM6 o	utput is enable	d as a rising e	vent input			
1.10 A		utput nas no er	tect on the ris	ing event			
DIT 1		Rising Event In		Enable bit			
	\perp = PVVIVID OUTPUT IS ENABLED as a rising event input 0 = PWM5 output has no effect on the rising event						
bit 0	RIS8: COGY	Rising Event Ir	nout Source 8	Enable hit			
bit 0	1 = PWM4 or	utput is enable	d as rising eve	ent input			
	0 = PWM4 output has no effect on the rising event						
Note 1: PIC	C16(L)F1768/9	only. Otherwise	unimplement	ed, read as '0'			

REGISTER 27-4: COGxRIS1: COGx RISING EVENT INPUT SELECTION REGISTER 1

REGISTER 27-5: COGxRSIM0: COGx RISING EVENT SOURCE INPUT MODE REGISTER 0 (CONTINUED)

bit 1 RSIM1: COGx Rising Event Input Source 1 Mode bit

RIS1 = 1:

- 1 = Comparator 1 low-to-high transition will cause a rising event after rising event phase delay
- 0 = Comparator 1 high level will cause an immediate rising event

RIS1 = 0:

Comparator 1 has no effect on rising event.

RSIM0: COGx Rising Event Input Source 0 Mode bit

RIS0 = 1:

bit 0

- 1 = Pin selected with COGxINPPS register low-to-high transition will cause a rising event after rising event phase delay
- 0 = Pin selected with COGxINPPS register high level will cause an immediate rising event RIS0 = 0:

Pin selected with COGxINPPS register has no effect on rising event.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
AS7E	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E
bit 7	•	·		·			bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unki	nown	-n/n = Value at	POR and BO	R/Value at all of	ther Resets
'1' = Bit is se	t	'0' = Bit is cle	ared	q = Value depe	ends on conditi	on	
bit 7	AS7E: COG	x Auto-shutdow	n Source Enab	ole bit 7			
	1 = COGx is	s shutdown whe	en Timer4_outp	out is high			
	$0 = \text{Immer4}_{-}$	output has no e	effect on shutdo	own			
bit 6	AS6E: COG	x Auto-shutdow	n Source Enat	ble bit 6			
	1 = COGX Is 0 = Timer2	snutdown whe	en Timer2_outp effect on shutd	out is nign			
bit 5	AS5E: COG	x Auto-shutdow	n Source Enab	ole hit 5			
bit o	1 = COGx is	s shutdown whe	en CLC LC2 ou	ut is low			
	0 = CLC2 ou	utput has no eff	ect on shutdov	/n			
bit 4	AS4E: COG	x Auto-shutdow	n Source Enab	ole bit 4			
	1 = COGx is	shutdown whe	en Comparator	sync_C4OUT is	low		
	0 = Compar	ator 4 output ha	as no effect on	shutdown			
bit 3	AS3E: COG	x Auto-shutdow	/n Source Enat	ole bit 3			
	1 = COGx is	s shutdown whe	en Comparator	sync_C3OUT is	low		
hit 0				Shutuown			
DIL Z	A = COG	shutdown whe	n Comparator	svnc C20LIT is	low		
	0 = Compara	ator 2 output ha	as no effect on	shutdown	1011		
bit 1	AS1E: COG	x Auto-shutdow	n Source Enab	ole bit 1			
	1 = COGx is	shutdown whe	en comparator	sync_C1OUT is	low		
	0 = Compar	ator 1 output ha	as no effect on	shutdown			
bit 0	AS0E: COG	x Auto-shutdow	n Source Enab	ole bit 0			
	1 = COGx is	s shutdown whe	en pin selected	with COGxINPF	S register is lo	W	
	0 = Pin sele	cted with COG	XINPPS registe	er nas no effect c	on shutdown		

REGISTER 27-12: COGxASD1: COGx AUTO-SHUTDOWN CONTROL REGISTER 1

REGISTER 28-6: CLCxSEL3: GENERIC CLCx DATA 4 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			D4S	<5:0>		
bit 7	•	•					bit 0
Logond:							

Legenu.		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-6 Unimplemented: Read as '0'

bit 5-0 D4S<5:0>: CLCx Data 4 Input Selection bits See Table 28-1.

REGISTER 28-7: CLCxGLS0: CLCx GATE 1 LOGIC SELECT REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| G1D4T | G1D4N | G1D3T | G1D3N | G1D2T | G1D2N | G1D1T | G1D1N |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7	G1D4T: Gate 1 Data 4 True (non-inverted) bit
	1 = d4T is gated into g1
	0 = d4T is not gated into g1
bit 6	G1D4N: Gate 1 Data 4 Negated (inverted) bit
	1 = d4N is gated into g1
	0 = d4N is not gated into g1
bit 5	G1D3T: Gate 1 Data 3 True (non-inverted) bit
	1 = d3T is gated into g1
	0 = d3T is not gated into g1
bit 4	G1D3N: Gate 1 Data 3 Negated (inverted) bit
	1 = d3N is gated into g1
	0 = d3N is not gated into g1
bit 3	G1D2T: Gate 1 Data 2 True (non-inverted) bit
	1 = d2T is gated into g1
	0 = d2T is not gated into g1
bit 2	G1D2N: Gate 1 Data 2 Negated (inverted) bit
	1 = d2N is gated into g1
	0 = d2N is not gated into g1
bit 1	G1D1T: Gate 1 Data 1 True (non-inverted) bit
	1 = d1T is gated into g1
	0 = d1T is not gated into g1
bit 0	G1D1N: Gate 1 Data 1 Negated (inverted) bit
	1 = d1N is gated into g1
	0 = d1N is not gated into g1

© 2014-2017 Microchip Technology Inc.

31.0 DATA SIGNAL MODULATOR (DSM)

The Data Signal Modulator (DSM) is a peripheral that allows the user to mix a data stream, also known as a modulator signal, with a carrier signal to produce a modulated output.

Both the carrier and the modulator signals are supplied to the DSM module either internally, from the output of a peripheral, or externally through an input pin.

The modulated output signal is generated by performing a logical "AND" operation of both the carrier and modulator signals and then provided to the MDxOUT pin.

The carrier signal is comprised of two distinct and separate signals: a Carrier High (CARH) signal and a Carrier Low (CARL) signal. During the time in which the Modulator (MOD) signal is in a logic high state, the DSM mixes the Carrier High signal with the Modulator signal. When the Modulator signal is in a logic low state, the DSM mixes the Carrier Low signal with the Modulator signal. Using this method, the DSM can generate the following types of key modulation schemes:

- Frequency-Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Additionally, the following features are provided within the DSM module:

- Carrier Synchronization
- · Carrier Source Polarity Select
- Carrier Source Pin Disable
- Programmable Modulator Data
- · Modulator Source Pin Disable
- Modulated Output Polarity Select
- Slew Rate Control

Figure 31-1 shows a simplified block diagram of the Data Signal Modulator peripheral.

FIGURE 31-1: SIMPLIFIED BLOCK DIAGRAM OF THE DATA SIGNAL MODULATOR

© 2014-2017 Microchip Technology Inc.

DS40001775C-page 403

32.7 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 32-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 32-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 32-4demonstratesclockratesbasedoninstructioncyclesandtheBRGvalueloadedintoSSPxADD.

EQUATION 32-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 32-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C; this is an implementation limitation.

TABLE 32-4: MSSP CLOCK RATE w/BRG

Fosc	Fcy	BRG Value	Fclock (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note: Refer to the I/O port electrical specifications in Table 36-10 and Figure 36-7 to ensure the system is designed to support I/O timing requirements.

BCF	Bit Clear f				
Syntax:	[label] BCF f,b				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	$0 \rightarrow (f < b >)$				
Status Affected:	None				
Description:	Bit 'b' in register 'f' is cleared.				

BTFSC	Bit Test f, Skip if Clear				
Syntax:	[label]BTFSC f,b				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	skip if (f) = 0				
Status Affected:	None				
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.				

Bit Test f, Skip if Set

 $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$

BRA	Relative Branch	BTFSS			
Syntax:	[<i>label</i>]BRA label	Syntax:			
	[<i>label</i>]BRA \$+k	Operands:			
Operands:	-256 \leq label - PC + 1 \leq 255				
	$-256 \le k \le 255$	Operation:			
Operation: $(PC) + 1 + k \rightarrow PC$		Status Affect			
Status Affected: None		Description:			
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be	·			
	PC + 1 + k. This instruction is a				
	2-cycle instruction. This branch has a				
	limited range.				

	Operation:	skip if (f) = 1
	Status Affected:	None
al 'k' to the ve next ress will be on is a branch has a	Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BRW Relative Branch with W Syntax: [label] BRW Operands: None

Operanus.	NONE
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BSF	Bit Set f			
Syntax:	[label] BSF f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f \le b >)$			
Status Affected:	None			
Description:	Bit 'b' in register 'f' is set.			

FIGURE 36-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 36-13: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	—	—	ns	
			With Prescaler	20	_	_	ns	
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20	_	_	ns	
			With Prescaler	20	_	_	ns	
CC03*	TccP	CCPx Input Period		<u>3 Tcy + 40</u> N	—	—	ns	N = prescale value

Standard Operating Conditions (unless otherwise stated)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-49: Standard IO Voн vs. Ioн Over Temperature, VDD = 1.8V, PIC16LF1764/5/8/9 Only.

FIGURE 37-50: Standard IO VOL vs. IOL Over Temperature, VDD = 1.8V, PIC16LF1764/5/8/9 Only.

FIGURE 37-51: 100mA IO VOH vs. IOH Over Temperature, VDD = 5.5V, PIC16F1764/5/8/9 Only.

FIGURE 37-52: 100mA IO VoL vs. IoL Over Temperature, VDD = 5.5V, PIC16F1764/5/8/9 Only.

FIGURE 37-53: 100mA IO Voh vs. Ioh Over Temperature, VDD = 3.0V.

FIGURE 37-54: VOL vs. IOL Over Temperature, VDD = 3.0V.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-61: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16LF1764/5/8/9 Only.

FIGURE 37-62: Brown-Out Reset Hysteresis, Low Trip Point (BORV = 1), PIC16LF1764/5/8/9 Only.

FIGURE 37-63: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16F1764/5/8/9 Only.

FIGURE 37-64: Brown-Out Reset Hysteresis, Low Trip Point (BORV = 1), PIC16F1764/5/8/9 Only.

FIGURE 37-65: Brown-Out Reset Voltage, High Trip Point (BORV = 0).

FIGURE 37-66: Brown-Out Reset Hysteresis, High Trip Point (BORV = 0).

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-85: Temp. Indicator Initial Offset, High Range, Temp. = 20°C, PIC16F1764/5/8/9 Only..

FIGURE 37-86: Temp. Indicator Initial Offset, Low Range, Temp. = 20°C, PIC16F1764/5/8/9 Only.

FIGURE 37-87: Temp. Indicator Initial Offset, Low Range, Temp. = 20°C, PIC16LF1764/5/8/9 Only.

FIGURE 37-88: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 5.5V, PIC16F1764/5/8/9 Only.

FIGURE 37-89: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC16F1764/5/8/9 Only.

FIGURE 37-90: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16F1764/5/8/9 Only.