

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x5b, 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1768-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN DIAGRAMS

FIGURE 2: 16-PIN QFN (4x4)

PIC16(L)F1764/5/8/9

Register Definitions: Interrupt Control 7.6

R/W-0/	/0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0				
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF ⁽¹⁾				
bit 7							bit 0				
Legend:											
R = Read	able bit	W = Writable	W = Writable bit								
u = Bit is ı	unchanged	x = Bit is unkr	nown	U = Unimpler	mented bit, read	as '0'					
'1' = Bit is	set	'0' = Bit is cle	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets				
bit 7	GIE: Global I	Interrupt Enable	e bit								
	1 = Enables a 0 = Disables	all active interru all interrupts	ıpts								
bit 6	PEIE: Periph	Ieral Interrupt E	nable bit								
	1 = Enables 0 = Disables	all active periph all peripheral ir	eral interrupts	3							
bit 5	TMR0IE: Tim	ner0 Overflow Ir	nterrupt Enabl	e bit							
	1 = Enables 1 0 = Disables	the Timer0 inter the Timer0 inte	rrupt rrupt								
bit 4	INTE: INT EX	kternal Interrupt	Enable bit								
	1 = Enables f	the INT externa	l interrupt								
	0 = Disables	the INT externa	al interrupt								
bit 3	IOCIE: Interr	upt-On-Change	Enable bit								
	1 = Enables 1 0 = Disables	the Interrupt-Or	n-Change								
bit 2	TMR0IF: Tim	er0 Overflow Ir	nterrupt Flag b	oit							
	1 = TMR0 reg	gister has overf	lowed								
	0 = TMR0 reg	gister did not ov	/erflow								
bit 1	INTF: INT Ex	ternal Interrupt	Flag bit								
	1 = The INT	external interru	pt occurred								
h :+ 0		external Interru	pt did not occi	ur 							
DIEU	1 - When at	upt-On-Change	Interrupt Flag	Change pine o	bangod stato						
	0 = None of t	the Interrupt-Or	-Change pins	have changed	l state						
Note 1:	The IOCIF Flag bin have been cleared	t is read-only ar d by software.	nd cleared wh	en all the Inter	upt-On-Change	flags in the IO	CxF registers				
Note:	Interrupt flag bits enable bit or the appropriate interru	are set when a Global Enable upt flag bits are	n interrupt co e bit, GIE, of clear prior to	ndition occurs, the INTCON enabling an int	regardless of t register. User errupt.	he state of its of software should	corresponding Id ensure the				

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

EXAMPLE 10-1: FLASH PROGRAM MEMORY READ

*	* This code block will read 1 word of program								
*	memory at the memory address:								
	PROG_ADDR_HI : PROG_ADDR_LO								
*	data will be returned in the variables;								
*	PROG_DAT	A_HI, PROG_DATA_I	LO						
	BANKSEL	PMADRL	;	Select Bank for PMCON registers					
	MOVLW	PROG_ADDR_LO	;						
	MOVWF	PMADRL	;	Store LSB of address					
	MOVLW	PROG_ADDR_HI	;						
	MOVWF	PMADRH	;	Store MSB of address					
	BCF	PMCON1,CFGS	;	Do not select Configuration Space					
	BSF	PMCON1,RD	;	Initiate read					
	NOP		;	Ignored (Figure 10-1)					
	NOP		;	Ignored (Figure 10-1)					
	MOVF	PMDATL,W	;	Get LSB of word					
	MOVWF	PROG_DATA_LO	;	Store in user location					
	MOVF	PMDATH,W	;	Get MSB of word					
	MOVWF	PROG_DATA_HI	;	Store in user location					
1									

16.3 Register Definitions: ADC Control

REGISTER 16-1: ADCON0: ADC CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
			CHS<4:0>			GO/DONE	ADON	
bit 7			0.10 110				bit 0	
Legend:								
R = Reada	able bit	W = Writable	bit					
u = Bit is u	nchanged	x = Bit is unkr	nown	U = Unimpler	mented bit, rea	d as '0'		
'1' = Bit is	set	'0' = Bit is clea	ared	-n/n = Value a	at POR and BC	R/Value at all c	ther Resets	
<u></u>								
bit 7	Unimplemer	nted: Read as '	0'					
bit 6-2	CHS<4:0>: A	Analog Channel	Select bits					
	11111 = FV	R (Fixed Voltag	e Reference)	Buffer1 Output	(2)			
	11110 = DA	C1_output(")	ator(3)					
	11101 – DA	C2 output ^(1,5)	ator					
	11011 = DA	C3_output ⁽⁴⁾						
	$11010 = DAC4_output^{(4,5)}$							
	11001 = Re	served; no chai	nnel connecte	d				
	•							
	•	(5.6)						
	01111 = Sw	itched AN7 ^(3,6)						
	01110 = Sw	served: no chai	nnel connecte	h				
	01100 = Re	served; no cha	nnel connecte	d.				
	01011 = AN	11 ⁽⁵⁾						
	01010 = AN	10 ⁽³⁾						
	01001 - AN	8(5)						
	00111 = AN	7						
	00110 = AN	6						
	00101 = AN	5						
	00100 - AN	3						
	00010 = AN	2						
	00001 = AN	1						
L:1 4	00000 = AN		- Otatus hit					
DIT 1		ADC Conversion	n Status dit	tting this hit ata				
	This bit i	s automatically	cleared by ha	rdware when th	ne ADC conver	sion has comple	eted.	
	0 = ADC cor	version comple	eted/not in pro	gress				
bit 0	ADON: ADC	Enable bit						
	1 = ADC is e	nabled						
	0 = ADC is d	isabled and cor	nsumes no ope	erating current				
Note 1:	See Section 17.0	"5-Bit Digital-	to-Analog Co	nverter (DAC)	Module" for r	nore informatior	۱.	
2:	See Section 14.0	"Fixed Voltag	e Reference (FVR)" for more	e information.			
3:	See Section 15.0	"Temperature	e Indicator Mo	dule" for more	e information.			
4:	See Section 18.0	"10-Bit Digita	I-to-Analog C	onverter (DAC	C) Module" for	more information	on.	
5:	PIC16(L)F1768/9	only.						

6: Input source is switched off when op amp override is forced tri-state. See Section 29.3 "Override Control".

REGISTER 19-4: CMxPSEL: COMPARATOR Cx POSITIVE CHANNEL SELECT REGISTER 1

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
_	—	—	—	PCH<3:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit						
u = Bit is unch	anged	x = Bit is unkr	nown	U = Unimplemented bit, read as '0'					
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value at POR and BOR/Value at all other Resets					
bit 7-4	Unimplemen	ted: Read as '	0'						
bit 3-0	PCH<3:0>: C	omparator Pos	sitive Input Cha	annel Select bit	S				
	1111 = CxVP	connects to A	GND						
1110 = CxVP connects to FVR Buffer2									
	1101 = CxVP connects to DAC4_output ⁽¹⁾								
	1100 = CxVP connects to DAC3_output								
	1011 = CxVP	connects to D	AC2_output ⁽¹⁾						
	1010 = CxVP connects to DAC1_output								

- 1001 = CxVP connects to PRG2_output⁽¹⁾ 1000 = CxVP connects to PRG1 output
- 0111 = CxVP unconnected, input floating
- 0110 = CxVP unconnected, input floating
- 0101 = CxVP unconnected, input floating
- 0100 = CxVP unconnected, input floating
- 0011 = CxVP unconnected, input floating
- 0010 = CxVP unconnected, input floating
- 0001 = CxVP connects to CxIN1+ pin
- 0000 = CxVP connects to CxIN0+ pin

Note 1: PIC16(L)F1768/9 only.

Note: There are no long and short bit name variants for the following mirror register.

REGISTER 19-5: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	R-0/0	R-0/0	R-0/0	R-0/0
—	—	—	—	MC4OUT ⁽¹⁾	MC3OUT ⁽¹⁾	MC2OUT	MC1OUT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-2	Unimplemented: Read as '0'	
---------	----------------------------	--

- bit 3 MC4OUT: Mirror Copy of C4OUT bit⁽¹⁾
- bit 2 MC3OUT: Mirror Copy of C3OUT bit⁽¹⁾
- bit 1 MC2OUT: Mirror Copy of C2OUT bit
- bit 0 MC10UT: Mirror Copy of C10UT bit

Note 1: PIC16(L)F1768/9 only.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u	
GE	GPOL	GTM	GSPM	GGO/ DONE	GVAL	GSS<	:1:0>	
bit 7		•		- · · ·			bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	t POR and BC	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared	HC = Hardwa	re Clearable b	it		
bit 7 GE: Timer1 Gate Enable bit <u>If TMR1ON = 0:</u> This bit is ignored. <u>If TMR1ON = 1:</u> 1 = Timer1 counting is controlled by the Timer1 gate function								
hit 6	CPOL : Timor	1 Coto Doloritu	s or rimerry					
DILO	1 = Timer1 g 0 = Timer1 g	ate is active-hig ate is active-lo	gh (Timer1 co w (Timer1 cou	unts when gate	is high) s low)			
bit 5	GTM: Timer1	Gate Toggle M	lode bit					
	1 = Timer1 G 0 = Timer1 G Timer1 gate fl	ate Toggle mo ate Toggle mo lip-flop toggles	de is enabled de is disabled on every risin	and toggle flip-	flop is cleared			
bit 4	GSPM: Timer	1 Gate Single-	Pulse Mode b	vit				
	1 = Timer1 G 0 = Timer1 G	ate Single-Puls	se mode is en se mode is dis	abled and is co sabled	ntrolling Timer	1 gate		
bit 3	GGO/DONE:	Timer1 Gate S	ingle-Pulse A	cquisition Status	s bit			
	1 = Timer1 g 0 = Timer1 g	ate single-pulse ate single-pulse	e acquisition is e acquisition h	s ready, waiting nas completed o	for an edge r has not been	started		
bit 2	GVAL: Timer	1 Gate Value S	tatus bit					
	Indicates the Timer1 Gate I	current state of Enable bit (TMF	the Timer1 ga R1GE).	ate that could be	provided to TN	MR1H:TMR1L.	Jnaffected by	
bit 1-0	GSS<1:0>: ⊺	imer1 Gate So	urce Select bi	ts				
	GSS<1:0>: Timer1 Gate Source Select bits 11 = Comparator 2 optionally synchronized output (sync_C2OUT) 10 = Comparator 1 optionally synchronized output (sync_C1OUT) 01 = Timer0 overflow output 00 = Timer1 gate pin							

REGISTER 22-2: T1GCON: TIMER1 GATE CONTROL REGISTER

25.11 Register Definitions: 10-Bit PWM Control

Long bit name prefixes for the PWM peripherals are shown in Table 25-3. Refer to **Section 1.1.2.2 "Long Bit Names**" for more information.

TABLE 25-3: BIT NAME PREFIXES

Peripheral	Bit Name Prefix
PWM3	PWM3
PWM4 ⁽¹⁾	PWM4

Note 1: PIC16(L)F1768/9 devices only.

REGISTER 25-1: PWMxCON: PWMx CONTROL REGISTER

R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	U-0
EN	—	OUT	POL	—	—	—	—
bit 7						•	bit 0

Legend:							
R = Readable bit		W = Writable bit					
u = Bit is unch	anged	x = Bit is unknown	U = Unimplemented bit, read as '0'				
'1' = Bit is set		'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets				
bit 7	EN: PWMx M	Iodule Enable bit					
	1 = PWMx m	nodule is enabled					
	0 = PWMx m	nodule is disabled					
bit 6	Unimplemen	nted: Read as '0'					
bit 5	OUT: PWMx	Module Output Level When	Read bit				
bit 4 POL: PWMx Output Polarity Select bit							
	1 = PWMx o	utput is active-low	put is active-low				
	0 = PWMx o	utput is active-high					
bit 3-0	Unimplemen	nted: Read as '0'					

SLAVE RUN MODE WITH SYNC START TIMING DIAGRAM

PIC16(L)F1764/5/8/9

11-0	11-0	11-0	11-0	R////HS_0/0	R/W//HS_0/0	R/W/HS_0/0	R/M/HS_0/0			
				OFIF ⁽¹⁾	PHIF ⁽¹⁾	DCIF ⁽¹⁾	PRIF ⁽¹⁾			
bit 7				0111		501	bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	HS = Hardwa	re Settable bit					
u = Bit is uncl	hanged	x = Bit is unkr	iown	U = Unimplem	nented bit, read	l as '0'				
'1' = Bit is set '0' = Bit is cleared -n/n = Value at POR and BOR/Value at all other Reset										
L										
bit 7-4	bit 7-4 Unimplemented: Read as '0'									
bit 3	OFIF: Offset I	Interrupt Flag b	it ⁽¹⁾							
	1 = Offset ma	atch event occu	ırred							
	0 = Offset ma	atch event did r	not occur							
bit 2	PHIF: Phase	Interrupt Flag b	oit ⁽¹⁾							
	1 = Phase ma	atch event occu	urred							
	0 = Phase ma	atch event did	not occur							
bit 1	DCIF: Duty C	ycle Interrupt F	lag bit ⁽¹⁾							
	1 = Duty cycl	le match event	occurred							
	0 = Duty cycle match event did not occur									
bit 0	PRIF: Period	Interrupt Flag b	oit ⁽¹⁾							
	1 = Period m	atch event occ	urred							
	0 = Period m	atch event did	not occur							
	1 = Period m 0 = Period m	atch event occi atch event did	urred not occur							

REGISTER 26-3: PWMxINTF: PWMx INTERRUPT REQUEST REGISTER

Note 1: Bit is forced clear by hardware while module is disabled (EN = 0).

REGISTER 31-4: MDxCARH: MODULATION x CARRIER HIGH CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
—	_	—	—	CH<3:0> ⁽¹⁾						
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit							
u = Bit is uncha	anged	x = Bit is unkr	nown	U = Unimplen	nented bit, read	l as '0'				
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value at POR and BOR/Value at all other Resets						
bit 7-4	Unimplemen	ted: Read as '	n'							

bit 3-0	CH<3:0> Modulator Data High Carrier Selection bits ⁽¹⁾
	See Table 31-4.

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

CH<3:0>	High Carrier Source PIC16(L)F1764/5	High Carrier Source PIC16(L)F1768/9
1111	LC3_out	LC3_out
1110	LC2_out	LC2_out
1101	LC1_out	LC1_out
1100	Fixed Low	PWM6_out
1011	PWM5_out	PWM5_out
1010	Fixed Low	PWM4_out
1001	PWM3_out	PWM3_out
1000	Fixed Low	CCP2_out
0111	CCP1_out	CCP1_out
0110	Fixed Low	Fixed Low
0101	Fixed Low	Fixed Low
0100	Fixed Low	Fixed Low
0011	Fixed Low	Fixed Low
0010	HFINTOSC	HFINTOSC
0001	Fosc	Fosc
0000	MDxCHPPS Pin Selection	MDxCHPPS Pin Selection

TABLE 31-4: HIGH CARRIER SOURCES

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCL line, is called clock stretching. Clock stretching gives slave devices a mechanism to control the flow of data. When this detection is used on the SDA line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

32.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

32.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration and must stop transmitting on the SDA line. For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to re-issue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

32.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an ACK is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, allows the user to set the ACK value sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the AHEN and DHEN bits of the SSPxCON3 register are clear.

There are certain conditions where an ACK will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the Acknowledge time of the active bus. The ACKTIM status bit is only active when the AHEN bit or DHEN bit is enabled.

32.5 I²C Slave Mode Operation

The MSSP Slave mode operates in one of four modes selected by the SSPM<3:0> bits of SSPxCON1 register. The modes can be divided into 7-Bit and 10-Bit Addressing modes. 10-Bit Addressing mode operates the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operate the same as the other modes, with SSPxIF additionally getting set upon detection of a Start, Restart or Stop condition.

32.5.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 32-6) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes Idle and no indication is given to the software that anything happened.

The SSP Mask register (Register 32-5) affects the address matching process. See **Section 32.5.8 "SSP Mask Register**" for more information.

32.5.1.1 I²C Slave 7-Bit Addressing Mode

In 7-Bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

32.5.1.2 I²C Slave 10-Bit Addressing Mode

In 10-Bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSbs of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the Acknowledge of the high byte, the UA bit is set and SCL is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPxADD. Even if there is not an address match, SSPxIF and UA are set, and SCL is held low until SSPxADD is updated to receive a high byte again. When SSPxADD is updated, the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-Bit Addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then Acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

TABLE 33-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD RATE	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	—	—
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_

PIC16(L)F1764/5/8/9

FIGURE 33-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

PIC16(L)F1764/5/8/9

RX/DT Pin TX/CK Pin (SCKP = 0)	bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TX/CK Pin (SCKP = 1)	
Write to SREN bit	
SREN bit	
CREN bit'0'	·0'
RCIF bit (Interrupt)	
Read RCxREG	
Note: Timing diagrar	n demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0 .

FIGURE 33-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

TABLE 33-8: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	—	—	ANSA4	—		ANSA<2:0>		137
ANSELB ⁽¹⁾		ANSB	<7:4>		—	—	—	—	143
ANSELC	ANSC<7:6> ⁽¹⁾ — —			—		ANSC	<3:0>		148
BAUD1CON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	442
CKPPS	_	—	—			CKPPS<4:0>			154, 156
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	101
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	102
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	105
RC1REG			EUS	SART Receiv	e Data Regis	ster			436*
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	441
RXPPS	_	—	—			RXPPS<4:0>			154, 156
RxyPPS	_	—	—		I	RxyPPS<4:0	>		154
SP1BRGL				BRG<	:7:0>				443*
SP1BRGH				BRG<	15:8>				443*
TRISA	_	—	TRISA	<5:4>	(2)		TRISA<2:0>		136
TRISB ⁽¹⁾		TRISB	<7:4>	7:4>					142
TRISC	TRISC<	7:6>(1)			TRISC	C<5:0>			147
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	440

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

Note 1: PIC16(L)F1768/9 only.

2: Unimplemented, read as '1'.

TABLE 36-2: SUPPLY CURRENT (IDD)^(1,2) (CONTINUED)

PIC16LF1	1764/5/8/9 Star	dard Op	perating C	ondition	s (ur	nless oth	erwise stated)
PIC16F17	764/5/8/9						
Param	Device	Min	Typt	Marr	Unite		Conditions
No.	Characteristics	WIIII.	iypi	IVIAX.	Units	VDD	Note
D017		_	115	175	μA	1.8	Fosc = 500 kHz,
		—	145	210	μA	3.0	MFINTOSC mode
D017		—	160	230	μA	2.3	Fosc = 500 kHz,
		_	180	260	μA	3.0	MFINTOSC mode
		—	230	320	μA	5.0	
D019		—	0.9	1.3	mA	1.8	Fosc = 16 MHz,
		—	1.5	1.9	mA	3.0	HFINTOSC mode
D019		—	1.2	1.8	mA	2.3	Fosc = 16 MHz,
		—	1.5	2	mA	3.0	HFINTOSC mode
		—	1.7	2.1	mA	5.0	
D020		—	2.9	3.3	mA	3.0	Fosc = 32 MHz,
		—	3.5	4.1	mA	3.6	HFINTOSC mode
D020		_	2.9	3.8	mA	3.0	Fosc = 32 MHz,
		—	3.0	3.9	mA	5.0	HFINTOSC mode
D022			2.6	3.1	mA	3.0	Fosc = 32 MHz,
		—	3.4	3.9	mA	3.6	HS Oscillator mode (Note 5)
D022		—	2.6	3.2	mA	3.0	Fosc = 32 MHz
		—	3.3	4.2	mA	5.0	HS Oscillator mode (Note 5)

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For EXTRC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

4: FVR and BOR are disabled.

5: 8 MHz crystal/oscillator with 4x PLL enabled.

TABLE 36-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

Standa	Standard Operating Conditions (unless otherwise stated)										
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
30	TMCL	MCLR Pulse Width (low)	2	_	_	μS					
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V, 1:512 prescaler used				
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾		1024	_	Tosc					
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	65	140	ms					
34*	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	_	2.0	μS					
35	VBOR	Brown-out Reset Voltage ⁽²⁾	2.55 2.30 1.80	2.70 2.45 1.90	2.85 2.60 2.10	V V V	BORV = 0 BORV = 1 (PIC16F1764/5/8/9) BORV = 1 (PIC16LF1764/5/8/9)				
35A	VLPBOR	Low-Power Brown-out	1.8	2.1	2.5	V	LPBOR = 1				
36*	VHYST	Brown-out Reset Hysteresis	0	25	75	mV	$-40^\circ C \le T A \le +85^\circ C$				
37*	TBORDC	Brown-out Reset DC Response Time	1	3	35	μS	$VDD \leq VBOR$				

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

*

37.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Unless otherwise noted, all graphs apply to both the L and LF devices.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum", "Max.", "Minimum" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch	E	1.27 BSC				
Contact Pad Spacing	С		9.40			
Contact Pad Width (X20)	Х			0.60		
Contact Pad Length (X20)	Y			1.95		
Distance Between Pads	Gx	0.67				
Distance Between Pads	G	7.45				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A