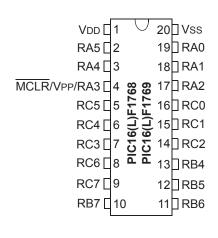
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

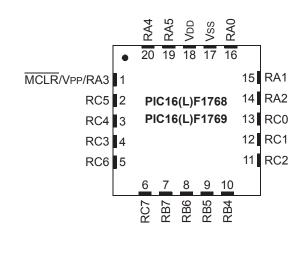
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x5b, 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1768-i-p

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note: See Table 4 for location of all peripheral functions.

FIGURE 4: 20-PIN QFN (4x4)

Note: See Table 4 for location of all peripheral functions.

TABLE 1-2: PIC16(L)F1764/5 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC4/T3G/PRG1R/CLCIN1/CK	RC4	RC4 TTL/ST		General purpose I/O.
	T3G ⁽¹⁾ TTL/ST		_	Timer3 gate input.
	PRG1R ⁽¹⁾	TTL/ST	_	Ramp generator set_rising input.
	CLCIN1 ⁽¹⁾	TTL/ST	_	CLC Input 1.
	CK ⁽¹⁾	TTL/ST	_	EUSART clock input.
RC5/T3CKI/PRG1F/CCP1/RX	RC5	TTL/ST	CMOS	General purpose I/O.
	T3CKI ⁽¹⁾	TTL/ST	—	Timer3 clock input.
	PRG1F ⁽¹⁾	TTL/ST	—	Ramp generator set_falling input.
	CCP1 ⁽¹⁾	TTL/ST	—	CCP1 capture input.
	RX ^(1,3)	TTL/ST	—	EUSART receive input.
VDD	Vdd	Power	—	Positive supply.
Vss	Vss	Power	—	Ground reference.
OUT ⁽²⁾	C1OUT		CMOS	Comparator 1 output.
	C2OUT		CMOS	Comparator 2 output.
	CCP1		CMOS	Compare/PWM1 output.
	MD10UT		CMOS	Data Signal Modulator 1 output.
	PWM3		CMOS	PWM3 output.
	PWM5		CMOS	PWM5 output.
	COG1A		CMOS	Complementary Output Generator Output A.
	COG1B		CMOS	Complementary Output Generator Output B.
	COG1C		CMOS	Complementary Output Generator Output C.
	COG1D		CMOS	Complementary Output Generator Output D.
	SDA ⁽³⁾		OD	I ² C data output.
	SCK		CMOS	SPI clock output.
	SCL ⁽³⁾		OD	I ² C clock output.
	SDO		CMOS	SPI data output.
	ТХ		CMOS	EUSART asynchronous TX data out.
	СК		CMOS	EUSART synchronous clock out.
	DT ⁽³⁾		CMOS	EUSART synchronous data output.
	CLC10UT		CMOS	Configurable Logic Cell 1 output.
	CLC2OUT		CMOS	Configurable Logic Cell 2 output.
	CLC3OUT		CMOS	Configurable Logic Cell 3 output.

XTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS Input Selection registers. 2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as peripheral digital outputs with the PPS Output Selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

HV = High Voltage

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR PIC16(L)F1764/5/8/9

	PC<14:0>	7
	L, CALLW 15 N, RETLW 15	
	Stack Level 0	ר ר
	Stack Level 1	
	•	
	Stack Level 15	
	Reset Vector	0000h
	•	
	Interrupt Vector	0004h
ſ		000411 0005h
On-Chip	Page 0	07554
Program \prec		07FFh 0800h
Memory	Page 1	000011
l		0FFFh
	Rollover to Page 0	1000h
	•	
	Rollover to Page 1	7FFFh

3.2.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSRn to point to the program memory.

3.2.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1:	RETLW INSTRUCTION
constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my function	
; LOTS OF COI	ЭF.
	TA_INDEX
; THE CONSTAN	NT IS IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available, so the older table read method must be used.

3.2.1.2 Indirect Read with FSRn

The program memory can be accessed as data by setting bit 7 of the FSRnH register and reading the matching INDFn register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDFn registers. Instructions that access the program memory via the FSRn require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSRn.

The high directive will set bit 7 if a label points to a location in program memory.

TABLE 3-16: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

	LE 3-10.								i	+	·
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other Resets
Bank	< 8										
40Ch											
 40Dh	_	Unimpleme	nted							_	_
40Eh	HIDRVC	_	_	HIDC	<5:4>	—	—	_	—	00	00
40Fh			•	•				•	•		
 412h	_	Unimpleme	nted							-	—
413h	T4TMR	Holding Reg	gister for the 8	-Bit TMR4 Regist	er					0000 0000	0000 0000
413h	T4PR	TMR4 Peric	od Register							1111 1111	1111 1111
415h	T4CON	ON		CKPS<2:0>			OUTP	S<3:0>		0000 0000	0000 0000
416h	T4HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			0000 0000	0000 0000
417h	T4CLKCON	—	_	—	—		CS<	<3:0>		0000	0000
418h	T4RST	—	_	—	—		RSEL	_<3:0>		0000	0000
419h	_	Unimpleme	nted	•		·				_	—
41Ah	T6TMR	Holding Register for the 8-Bit TMR4 Register								0000 0000	0000 0000
41Bh	T6PR	TMR4 Perio	od Register							1111 1111	1111 1111
41Ch	T6CON	ON		CKPS<2:0>			OUTP	S<3:0>		0000 0000	0000 0000
41Dh	T6HLT	PSYNC	CKPOL	CKSYNC		I	MODE<4:0>			0000 0000	0000 0000
41Eh	T6CLKCON	—	—	—	_		CS<	<3:0>		0000	0000
41Fh	T6RST	—	—	—	—		RSEL	_<3:0>		0000	0000
Bank	(9										
48Ch to 492h	_	Unimpleme	nted							_	_
493h	TMR3L	Holding Reg	gister for the L	east Significant B	yte of the 16-Bi	t TMR1 Register	r			XXXX XXXX	uuuu uuuu
494h	TMR3H	Holding Reg	gister for the N	lost Significant By	yte of the 16-Bit	TMR1 Register				XXXX XXXX	uuuu uuuu
495h	T3CON	CS	<1:0>	CKPS	<1:0>	OSCEN	SYNC	—	ON	0000 00-0	uuuu uu-u
496h	T3GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	GSS	S<1:0>	00x0 0x00	uuuu uxuu
497h to 499h	_	Unimplemented								_	_
49Ah	TMR5L	Holding Register for the Least Significant Byte of the 16-Bit TMR1 Register								XXXX XXXX	uuuu uuuu
49Bh	TMR5H	Holding Reg	gister for the N	lost Significant By	yte of the 16-Bit	TMR1 Register				XXXX XXXX	uuuu uuuu
49Ch	T5CON	CS	<1:0>	CKPS	0000 00-0	uuuu uu-u					
49Dh	T5GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	GSS	6<1:0>	00x0 0x00	uuuu uxuu
49Eh to 49Fh	—	Unimpleme	nted							_	_

Legend: x = unknown; u = unchanged; q = value depends on condition; - = unimplemented, read as '0'; x = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1768/9 only.

3: PIC16(L)F1764/5 only.

4: Unimplemented on PIC16LF1764/5/8/9.

4.6 Device ID and Revision ID

The 14-bit Device ID word is located at 8006h and the 14-bit Revision ID is located at 8005h. These locations are read-only and cannot be erased or modified. See **Section 10.4 "User ID, Device ID and Configuration Word Access**" for more information on accessing these memory locations.

4.7 Register Definitions: Device and Revision

REGISTER 4-3: DEVID: DEVICE ID REGISTER

	R	R	R	R	R	R				
	DEV<13:8>									
	bit 13					bit 8				
R	R	R	R	R	R	R				

DEV<7:0>

'1' = Bit is set

bit 7

Legend:

R = Readable bit

R

'0' = Bit is cleared

bit 13-0 **DEV<13:0>**: Device ID bits

Device	DEVID<13:0> Values							
PIC16F1764	11 0000 1000 0000 (3080h)							
PIC16F1765	11 0000 1000 0001 (3081h)							
PIC16F1768	11 0000 1000 0100 (3084h)							
PIC16F1769	11 0000 1000 0101 (3085h)							
PIC16LF1764	11 0000 1000 0010 (3082h)							
PIC16LF1765	11 0000 1000 0011 (3083h)							
PIC16LF1768	11 0000 1000 0110 (3086h)							
PIC16LF1769	11 0000 1000 0111 (3087h)							

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

bit 0

5.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS<1:0> bits:

- Default system oscillator determined by the FOSCx bits in the Configuration Words
- Timer1 32 kHz crystal oscillator
- Internal Oscillator Block (INTOSC)

5.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS<1:0>) bits of the OSCCON register select the system clock source that is used for the CPU and peripherals.

- When SCS<1:0> = 00, the system clock source is determined by the value of the FOSC<2:0> bits in the Configuration Words.
- When SCS<1:0> = 01, the system clock source is the secondary oscillator.
- When SCS<1:0> = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCSx bits of the OSCCON register are always cleared.
 - Note: Any automatic clock switch, which may occur from Two-Speed Start-up or Fail-Safe Clock Monitor, does not update the SCS bits of the OSCCON register. The user can monitor the OSTS bit of the OSCSTAT register to determine the current system clock source.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.

5.3.2 OSCILLATOR START-UP TIMER STATUS (OSTS) BIT

The Oscillator Start-up Timer Status (OSTS) bit of the OSCSTAT register indicates whether the system clock is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or from the internal clock source. In particular, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes. The OST does not reflect the status of the secondary oscillator.

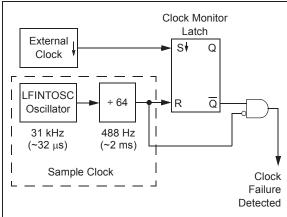
5.3.3 SECONDARY OSCILLATOR

The secondary oscillator is a separate crystal oscillator associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the SOSCO and SOSCI device pins.

The secondary oscillator is enabled using the OSCEN control bit in the T1CON register. See **Section 22.0 "Timer1/3/5 Module with Gate Control"** for more information about the Timer1 peripheral.

5.3.4 SECONDARY OSCILLATOR READY (SOSCR) BIT

The user must ensure that the secondary oscillator is ready to be used before it is selected as a system clock source. The Secondary Oscillator Ready (SOSCR) bit of the OSCSTAT register indicates whether the secondary oscillator is ready to be used. After the SOSCR bit is set, the SCSx bits can be configured to select the secondary oscillator.


5.3.5 CLOCK SWITCH BEFORE SLEEP

When a clock switch from an old clock to a new clock is requested just prior to entering Sleep mode, it is necessary to confirm that the switch is complete before the sleep instruction is executed. Failure to do so may result in an incomplete switch and consequential loss of the system clock altogether. Clock switching is confirmed by monitoring the clock status bits in the OSCSTAT register. Switch confirmation can be accomplished by sensing that the ready bit for the new clock is set or the ready bit for the old clock is cleared. For example, when switching between the internal oscillator with the PLL and the internal oscillator without the PLL, monitor the PLLR bit. When PLLR is set, the switch to 32 MHz operation is complete. Conversely, when PLLR is cleared, the switch from 32 MHz operation to the selected internal clock is complete.

5.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, EC, Secondary Oscillator and RC).

FIGURE 5-9: FSCM BLOCK DIAGRAM

5.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 5-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

5.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSFIF of the PIR2 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation.

The internal clock source chosen by the FSCM is determined by the IRCF<3:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs.

5.5.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the SCSx bits of the OSCCON register. When the SCSx bits are changed, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again become set by hardware.

5.5.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating.

Note: Due to the wide range of oscillator start-up times, the Fail-Safe circuit is not active during oscillator start-up (i.e., after exiting Reset or Sleep). After an appropriate amount of time, the user should check the status bits in the OSCSTAT register to verify the oscillator start-up and that the system clock switchover has successfully completed.

6.12 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON registers are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	х	1	1	Power-on Reset
0	0	1	1	1	0	x	0	х	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	0	1	1	1	0	x	х	0	Illegal, \overline{PD} is set on \overline{POR}
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during Normal Operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during Normal Operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	1u uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged; x = unknown; - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit (GIE) is set, the return address is pushed onto the stack and the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

REGISTER 11-5:	WPUA: WEAK PULL-UP PORTA REGISTER	

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
_	_		WPUA<5:0> ^(1,2)							
bit 7	·						bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit							
u = Bit is und	changed	x = Bit is unki	a = Bit is unknown U = Unimplemented bit, read as '0'							
'1' = Bit is se	t	'0' = Bit is cle	ared	-n/n = Value at POR and BOR/Value at all other Resets						
h:+ 7 0		unte de De estere (01							
bit 7-6	Unimpieme	Unimplemented: Read as '0'								
bit 5-0	WPUA<5:0	WPUA<5:0>: Weak Pull-up PORTA Register bits ^(1,2)								
	1 = Pull-up is enabled									
	0 = Pull-up is disabled									

<sup>Note 1: The global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
2: The weak pull-up device is automatically disabled if the pin is configured as an output.</sup>

REGISTER 11-6: ODCONA: PORTA OPEN-DRAIN CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	ODA<5:4>		—	ODA<2:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
	x = Bit is unknown	II = II nimplemented bit read as '0'
u = Bit is unchanged		U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

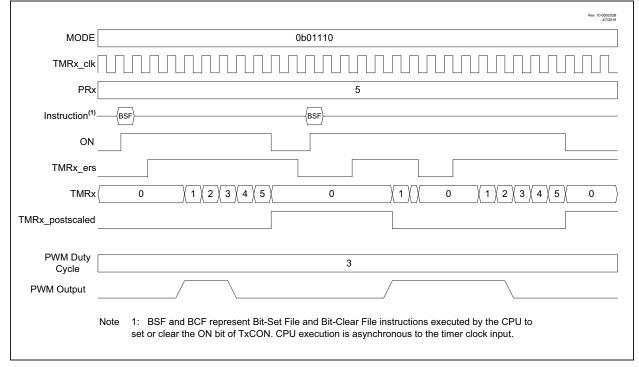
bit 7-6 Unimplemented: Read as '0'

bit 5-4	ODA<5:4>: PORTA Open-Drain Enable bits
	For RA<5:4> Pins:
	1 = Port pins operate as open-drain drive (sink current only)
	0 = Port pins operate as standard push-pull drive (source and sink current)
bit 3	Unimplemented: Read as '0'
bit 2-0	ODA<2:0>: PORTA Open-Drain Enable bits
	For RA<2:0> Pins:
	1 = Port pipe operate as open-drain drive (sink current only)

1 = Port pins operate as open-drain drive (sink current only)

0 = Port pins operate as standard push-pull drive (source and sink current)

23.6.8 LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES


In Level-Triggered One-Shot mode, the timer count is reset on the external signal level and starts counting on the rising/falling edge of the transition from Reset level to the active level while the ON bit is set. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 01110)
- High Reset level (MODE<4:0> = 01111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control, a new external signal edge is required after the ON bit is set to start the counter.

When Level-Triggered Reset One-Shot mode is used in conjunction with the CCP PWM operation, the PWM drive goes active with the external signal edge that starts the timer. The PWM drive goes inactive when the timer count equals the CCPRx pulse-width count. The PWM drive does not go active when the timer count clears at the PRx period count match.

FIGURE 23-11: LOW-LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE TIMING DIAGRAM (MODE<4:0> = 01110)

REGISTER 25-2: PWMxDCH: PWMx DUTY CYCLE REGISTER HIGH BITS

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			DC·	<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit				
u = Bit is unch	anged	x = Bit is unkn	own	U = Unimplem	nented bit, read	l as '0'	
'1' = Bit is set		'0' = Bit is clea	ired	-n/n = Value a	t POR and BO	R/Value at all c	ther Resets

bit 7-0

DC<9:2>: PWM Duty Cycle Most Significant bits These bits are the MSbs of the PWM duty cycle. The two LSbs are found in the PWMxDCL register.

REGISTER 25-3: PWMxDCL: PWMx DUTY CYCLE REGISTER LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
DC<1	:0>	—	—	—	—	—	—
bit 7							bit 0

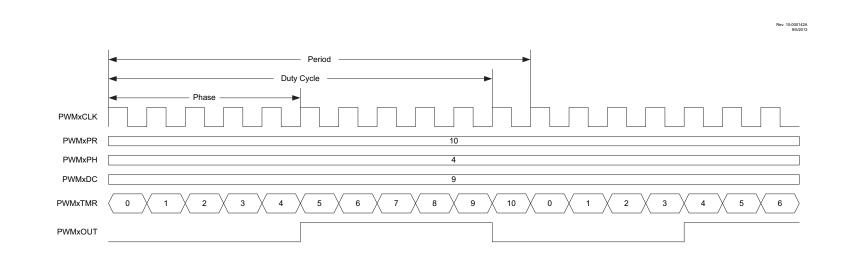
Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

 bit 7-6
 DC<1:0>: PWM Duty Cycle Least Significant bits

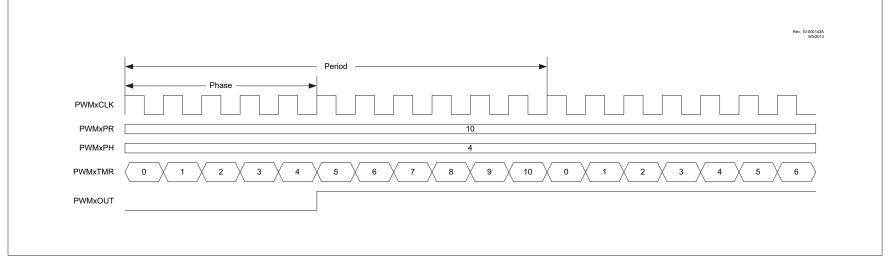
 These bits are the LSbs of the PWM duty cycle. The MSbs are found in the PWMxDCH register.

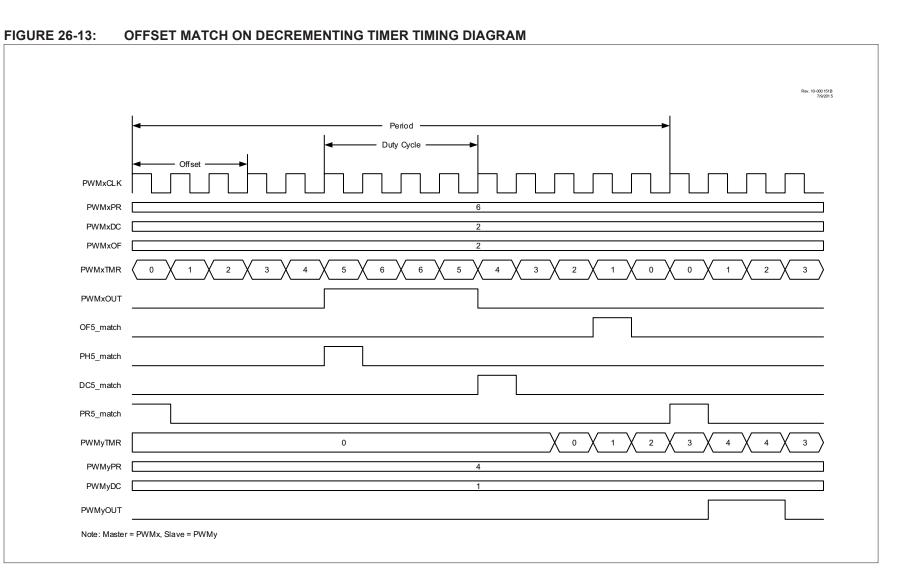
bit 5-0 Unimplemented: Read as '0'

TABLE 25-4: SUMMARY OF REGISTERS ASSOCIATED WITH 10-BIT PWM


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPTMRS	P4TSE	L<1:0>	P3TSE	L<1:0>	C2TSEL	C2TSEL<1:0>(1) C1TSEL<1:0>			264
PWMxCON	EN	_	OUT	POL	MODE	<1:0>	_	_	265
PWMxDCH		DC<9:2>						266	
PWMxDCL	DC<	1:0>	_	_	—	_	_	—	266
RxyPPS	—	—				RxyPPS<4:0>			
TxCON	ON		CKPS<2:0>		OUTPS<3:0>				244
TxCLKCON	—	—	—	—	CS<3:0>				243
TxPR	TMRx Peri	od Register							227
TRISA	—	—	TRISA	<5:4>	(1)		TRISA<2:0>		136
TRISB ⁽²⁾		TRIS	TRISB<7:4>			—	_	_	142
TRISC	TRISC7 ⁽²⁾	TRISC6(2)	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	147

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.


Note 1: Unimplemented, read as '1'.


2: PIC16(L)F1768/9 only.

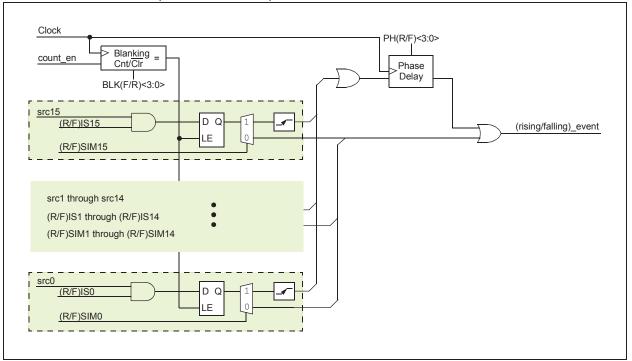
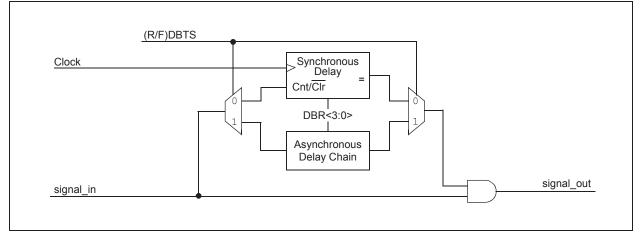


FIGURE 26-5: SET ON MATCH PWMx MODE TIMING DIAGRAM



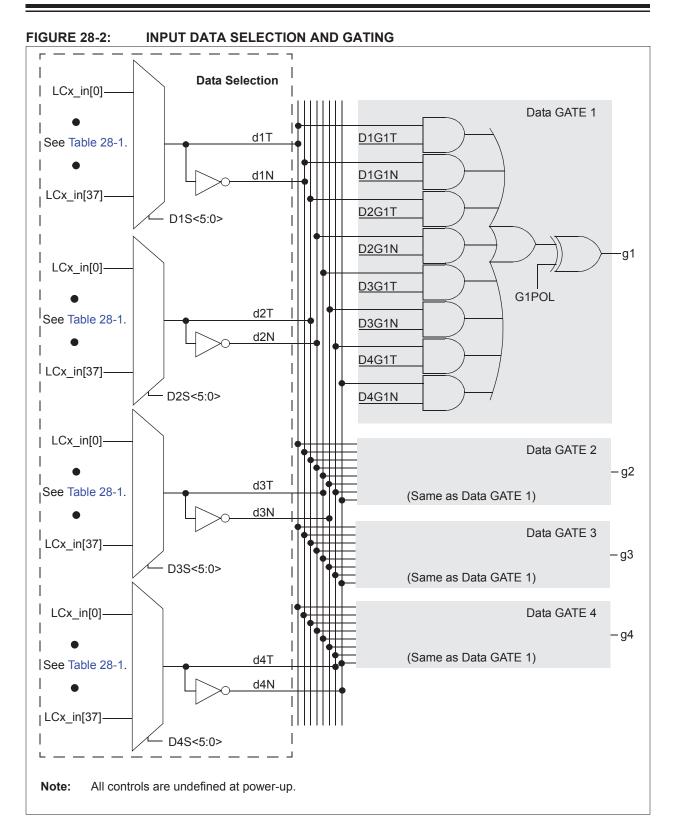


FIGURE 27-7:	COG	(RISING/FALLING)	INPUT BLOCK	<
			,	

FIGURE 27-8: COG (RISING/FALLING) DEAD-BAND BLOCK

REGISTER 29-3: OPAXNCHS: OP AMP x NEGATIVE CHANNEL SOURCE SELECT REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
_	—	—	_		NCH	<3:0>					
bit 7							bit 0				
Legend:											
R = Reada	able bit	W = Writable	bit								
u = Bit is ι	unchanged	x = Bit is unkn	iown	U = Unimplen	nented bit, read	l as '0'					
'1' = Bit is	set	'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets				
bit 7-4	Unimpleme	nted: Read as ')'								
bit 3-0	NCH<3:0>: (Op Amp Invertin	g Input Chanr	nel Selection bi	its						
		erved; do not us	•								
	•	,									
	•										
	•										
		erved; do not us									
		001 = Programmable Ramp Generator PRG2_out ⁽¹⁾ 000 = Programmable Ramp Generator PRG1_out									
				'RG1_out							
		erved. Do not us	e.								
		0110 = FVR_Buffer2 0101 = DAC4 out ⁽¹⁾									
		D100 = DAC3 out									
		$0011 = DAC2 \text{ out}^{(1)}$									
	0010 = DAC										
	0001 = OPA										
	0000 = OPA										

Note 1: PIC16(L)F1768/9 only

32.4 I²C MODE OPERATION

All MSSP I²C communication is byte-oriented and shifted out, MSb first. Six SFR registers and two interrupt flags interface the module with the $PIC^{\mathbb{R}}$ microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I²C devices.

32.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an Acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

32.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I²C communication that have definitions specific to I²C. That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips[®] I²C specification.

32.4.3 SDA AND SCL PINS

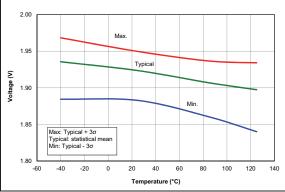
Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRISx bits.

- Note 1: Data is tied to output zero when an I²C mode is enabled.
 2: Any device pin can be selected for SDA and SCL functions with the PPS peripheral. These functions are bidirectional. The SDA
 - input is selected with the SSPDATPPS registers. The SCL input is selected with the SSPCLKPPS registers. Outputs are selected with the RxyPPS registers. It is the user's responsibility to make the selections so that both the input and the output for each function is on the same pin.

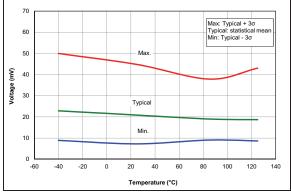
32.4.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 32-2: I²C BUS TERMS


TADLE 32-2:	
TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and terminates a transfer.
Slave	The device addressed by the master.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high.
Active	Any time one or more master devices is controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.
Write Request	Slave receives a matching address with R/\overline{W} bit clear and is ready to clock in data.
Read Request	Master sends an address byte with the R/\overline{W} bit set, indicating that it wishes to clock data out of the slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCL low to stall communication.
Bus Collision	Any time the SDA line is sampled low by the module while it is outputting and expected high state.

32.8 Register Definitions: MSSP Control

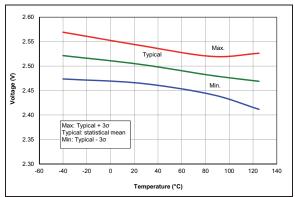
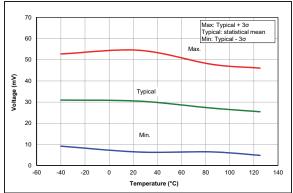
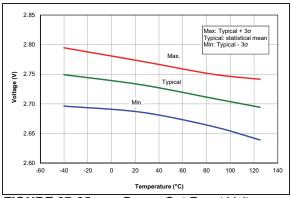

REGISTER 32-1: SSP1STAT: MSSP STATUS REGISTER

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0				
SMP	CKE	D/A	Р	S	R/W	UA	BF				
bit 7				•	-		bit 0				
Legend:											
R = Readable	e bit	W = Writable	e bit								
u = Bit is unc	hanged	x = Bit is unk	nown	U = Unimple	mented bit, read	l as '0'					
'1' = Bit is set	t	'0' = Bit is cle	eared	-n/n = Value	at POR and BO	R/Value at all c	other Resets				
bit 7		ata Input Samp	le bit								
	<u>SPI Master n</u>		and of data as	have the second							
		a sampled at e a sampled at n									
	SPI Slave me	-		o alpar and							
		e cleared wher	n SPI is used i	n Slave mode.							
		<u>r or Slave mod</u>									
					ode (100 kHz and	d 1 MHz)					
bit 6		e control is ena	-		400 KHZ)						
		ock Edge Sele r or Slave moc		ue only)							
		occurs on tran		tive to Idle clo	ck state						
	0 = Transmit	occurs on tran	sition from Id	e to active clo	ck state						
	In I ² C mode										
				s are compliant	t with SMBus spe	ecification					
bit 5	_	SMBus specific inputs Idress bit (I ² C mode only)									
		that the last byte received or transmitted was data									
		that the last b									
bit 4	P: Stop bit (I	P: Stop bit (I ² C mode only; this bit is cleared when the MSSP module is disabled, SSPEN is cleared)									
		s that a Stop bit has been detected last (this bit is '0' on Reset)									
		was not detecte									
bit 3		S: Start bit (I ² C mode only; this bit is cleared when the MSSP module is disabled, SSPEN is cleared 1 = Indicates that a Start bit has been detected last (this bit is '0' on Reset)									
		was not detecte		lected last (this	s dit is "0" on Res	set)					
bit 2		Vrite bit information		te only)							
					address match.	This bit is only	valid from the				
		ch to the next S									
	In I ² C Slave	mode:									
	1 = Read										
	0 = Write										
	<u>In I²C Maste</u>	<u>r mode:</u> t is in progress									
		t is not in progress									
				EN or ACKEN	I will indicate if th	ne MSSP is in I	dle mode.				
bit 1	UA: Update	Address bit (10)-bit I ² C mode	only)							
					in the SSPxADI	D register					
	0 = Address	does not need	to be update	d .							

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-61: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16LF1764/5/8/9 Only.

FIGURE 37-62: Brown-Out Reset Hysteresis, Low Trip Point (BORV = 1), PIC16LF1764/5/8/9 Only.

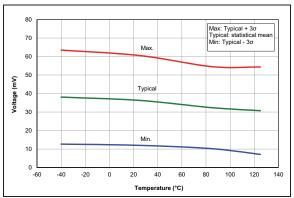

FIGURE 37-63: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16F1764/5/8/9 Only.

FIGURE 37-64: Brown-Out Reset Hysteresis, Low Trip Point (BORV = 1), PIC16F1764/5/8/9 Only.

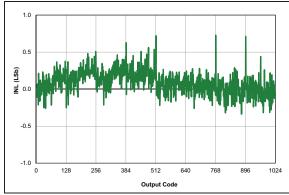


FIGURE 37-65: Brown-Out Reset Voltage, High Trip Point (BORV = 0).

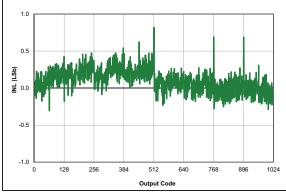


FIGURE 37-66: Brown-Out Reset Hysteresis, High Trip Point (BORV = 0).

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-79: ADC 10-Bit Mode, Single-Ended INL, VDD = 3.0V, TAD = 1μ S, 25° C.

FIGURE 37-80: ADC 10-Bit Mode, Single-Ended INL, VDD = 3.0V, TAD = 4μ S, 25° C.

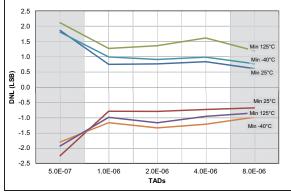


FIGURE 37-81: ADC 10-Bit Mode, Single-Ended DNL, VDD = 3.0V, VREF = 3.0V.

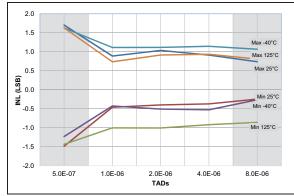
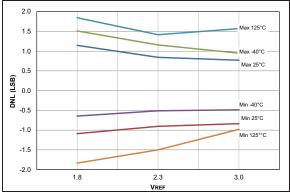
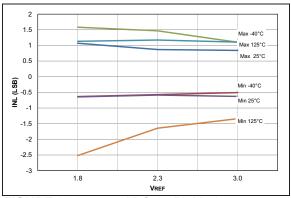




FIGURE 37-82: ADC 10-Bit Mode, Single-Ended INL, VDD = 3.0V, VREF = 3.0V.

FIGURE 37-83: ADC 10-Bit Mode, Single-Ended DNL, VDD = 3.0V, TAD = 1μ S.

FIGURE 37-84: ADC 10-Bit Mode, Single-Ended INL, VDD = 3.0V, TAD = 1μ S.